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Abstract: Proteins do not function
in isolation; it is their interactions
with one another and also with
other molecules (e.g. DNA, RNA)
that mediate metabolic and signal-
ing pathways, cellular processes,
and organismal systems. Due to
their central role in biological
function, protein interactions also
control the mechanisms leading to
healthy and diseased states in
organisms. Diseases are often
caused by mutations affecting the
binding interface or leading to
biochemically dysfunctional alloste-
ric changes in proteins. Therefore,
protein interaction networks can
elucidate the molecular basis of
disease, which in turn can inform
methods for prevention, diagnosis,
and treatment. In this chapter, we
will describe the computational
approaches to predict and map
networks of protein interactions
and briefly review the experimental
methods to detect protein interac-
tions. We will describe the applica-
tion of protein interaction networks
as a translational approach to the
study of human disease and eval-
uate the challenges faced by these
approaches.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Early biological experiments revealed

proteins as the main agents of biological

function. As such, proteins ultimately

determine the phenotype of all organ-

isms. Since the advent of molecular

biology we have learned that proteins

do not function in isolation; instead, it is

their interactions with one another and

also with other molecules (e.g. DNA,

RNA) that mediate metabolic and signal-

ing pathways, cellular processes, and

organismal systems.

The concept of ‘‘protein interaction’’ is

generally used to describe the physical

contact between proteins and their interact-

ing partners. Proteins associate physically to

create macromolecular structures of various

complexities and heterogeneities. Proteins

interact in pairs to form dimers (e.g. reverse

transcriptase), multi-protein complexes (e.g.

the proteasome for molecular degradation),

or long chains (e.g. actin filaments in muscle

fibers). The subunits creating the various

complexes can be identical or heteroge-

neous (e.g. homodimers vs. heterodimers)

and the duration of the interaction can be

transient (e.g. proteins involved in signal

transduction) or permanent (e.g. some

ribosomal proteins). However, protein in-

teractions do not always have to be physical

[1]. The term ‘‘protein interaction’’ is also

used to describe metabolic or genetic

correlations, and even co-localizations.

Metabolic interactions describe proteins

involved in the same pathway (e.g. the

Krebs cycle proteins), while genetically

identified associations identify co-expressed

or co-regulated proteins (e.g. enzymes

regulating the glycolytic pathway). As the

name implies, protein interactions by co-

localization list proteins found in the same

cellular compartment.

Whether the association is physical or

functional, protein-protein interaction

(PPI) data can be used in a larger scale

to map networks of interactions [2,3]. In

PPI network graphs, the nodes represent

the proteins and the lines connecting them

represent the interactions between them

(Figure 1). Protein interaction networks

are useful resources in the abstraction of

basic science knowledge and in the

development of biomedical applications.

By studying protein interaction networks

we can learn about the evolution of

individual proteins and about the different

systems in which they are involved.

Likewise, interaction maps obtained from

one species can be used, with some

limitations, to predict interaction networks

in other species. Protein interaction net-

works can also suggest functions for

previously uncharacterized proteins by

uncovering their role in pathways or

protein complexes [4]. Due to their central

role in biological function, protein inter-

actions also control the mechanisms lead-

ing to healthy and diseased states in

organisms. Diseases are often caused by

mutations affecting the binding interface

or leading to biochemically dysfunctional

allosteric changes in proteins. Therefore,

protein interaction networks can elucidate

the molecular basis of disease, which in

turn can inform methods for prevention,

diagnosis, and treatment [5,6].

The study of human disease experi-

enced extensive advancements once the

biomedical characterization of proteins

shifted to studies taking into account a

protein’s network at different functional

levels (i.e. in pair-wise interactions, in

complexes, in pathways, and in whole

genomes). For instance, consider how our

understanding of Huntington’s disease

(HD) has evolved from the early Mende-

lian single-gene studies to the latest HD-

specific network-based analyses. HD is an

autosomal dominant neurodegenerative

disease with features recognized by Hun-

tington in 1872 [7], and whose specific

patterns of inheritance were documented

in 1908 [8]. After almost a century of

genetics studies, the culprit gene in HD

was identified; in 1993, we learned that

HD was caused by the repeat expansion of

a CAG trinucleotide in the Huntingtin (Htt)

gene [9]. This expansion causes aggrega-
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tion of the mutant Htt in insoluble neuronal

inclusion bodies, which consequently leads

to neuronal degeneration. Yet, even when

the key disease-causing protein in HD had

been identified, the mechanism for Htt

aggregation remained unknown. In 2004,

Goehler et al. [10] mapped all the PPIs that

take place in HD and discovered that the

interaction between Htt and GIT1, a

GTPase-activating protein, mediates Htt

aggregation. Further validation ([11,12])

confirmed GTI1’s potential as a target for

therapeutic strategies against HD.

In this chapter, we will describe the main

experimental methods to identify protein

interactions and the computational ap-

proaches to map their networks and to

predict new interactions purely in silico. We

will describe the application of protein

interaction networks as a translational ap-

proach to the study of human disease and

evaluate the challenges faced by these

approaches.

2. Experimental Identification
of PPIs
2.1 Biophysical Methods

Protein interactions are identified

through different biochemical, physical,

and genetic methods (Figure 2). Historical-

ly, the main source of knowledge about

protein interactions has come from bio-

physical methods, particularly from those

based on structural information (e.g. X-ray

crystallography, NMR spectroscopy, fluorescence,

atomic force microscopy). Biophysical methods

identify interacting partners and also pro-

vide detailed information about the bio-

chemical features of the interactions (e.g.

binding mechanism, allosteric changes

involved). Yet, since they are time- and

resource-consuming, biophysical character-

izations only permit the study of a few

complexes at a time.

2.2 High-Throughput Methods
To document protein interactions at a

larger scale, automated methods have been

developed to detect interactions directly or

to deduce them through indirect approach-

es (Figure 2).
2.2.1 Direct high-throughput

methods. Yeast two-hybrid (Y2H) is one

of the most-commonly used direct high-

throughput method. The Y2H system tests

the interaction of two given proteins by

fusing each of them to a transcription-

binding domain. If the proteins interact,

the transcription complex is activated,

which transcribes a reporter gene whose

product can be detected. Since it is an in

vivo technique, the Y2H system is highly

effective at detecting transient interactions

and can be readily applied to screen large

genome-wide libraries (e.g. to map an

organisms’ full set of interactions or

interactome). But, the Y2H system is

limited by its biases toward non-specific

interactions. Likewise, Y2H cannot

identify complexes (i.e. it only reports

binary interactions) or interactions of pro-

teins initiating transcription by themselves.

Although protein interactions are usually

detected and studied in pair-wise form, in

reality they often occur in complexes and

as part of larger networks of interaction. In

vitro direct detection methods (e.g. mass

spectrometry, affinity purification) are better

suited to detect macromolecular inte-

ractions, yet, they have their own

limitations: interactions occurring in vitro

do not necessarily occur in vivo (e.g. when

proteins are compartmentalized in

different cell locations) and complexes

are often difficult to purify, which is a

required step in the protocol [13].

2.2.2 Indirect high-throughput

methods. Several high-throughput

methods deduce protein interactions by

looking at characteristics of the genes enco-

ding the putative interacting partners. For

instance, gene co-expression is based on the

assumption that the genes of interacting pro-

teins must be co-expressed to provide the

products for protein interaction. Expression

profile similarity is calculated as a correla-

tion coefficient between relative expression

levels and subsequently compared against a

background distribution for random non-

interacting proteins. Synthetic lethality, on the

other hand, introduces mutations on two

separate genes, which are viable alone but

lethal when combined, as a way to deduce

physically interacting proteins [14].

3. Computational Predictions of
PPIs

As discussed in section 2, experimental

approaches provide the means to either

empirically characterize protein interac-

tions at a small scale or to detect them at a

large scale. Still, experimental detections

only generate pair-wise interaction rela-

tionships and with incomplete coverage

(because of experimental biases toward

certain protein types and cellular localiza-

tions). Experimental identification meth-

ods also exhibit an unacceptably high

fraction of false positive interactions and

often show low agreement when generated

by different techniques [15–17]. Experi-

mental biophysical methods can comple-

ment the high-throughput detections by

providing specific interaction details; but

they are expensive, extremely laborious,

and can only be implemented for a few

complexes at a time.

Computational methods for the predic-

tion of PPIs provide a fast and inexpensive

alternative to complement experimental

efforts. Computational interaction studies

can be used to validate experimental data

and to help select potential targets for

further experimental screening [18]. More

importantly, computational methods give

us the ability to study proteins within the

context of their interaction networks at

different functional levels (i.e. at the

complex, pathway, cell, or organismal

level), thus, allowing us to convert lists of

pair-wise relationships into complete net-

work maps. Since they are based on

different principles, computational tech-

niques can also uncover functional rela-

tionships and even provide information

about interaction details (e.g. domain

interactions), which may elude some

experimental methods.

3.1 Computational Methods for PPI
Predictions

Computational interaction prediction

methods can be classified into two types:

methods predicting protein domain inter-

actions from existing empirical data about

protein-protein interactions and methods

relying entirely on theoretical information

to predict protein-protein or domain-

domain interactions (Figure 2).

3.1.1 Empirical predictions. The

computational techniques based on experi-

mental data use the relative frequency of

interacting domains [19], maximum likelihood esti-

mation of domain interaction probability [20,21],

co-expression [22], or network properties [23–27]

to predict protein and domain interactions.

The main disadvantage of empirical com-

putations is that, by relying on an existing

protein network to infer new nodes, they

propagate the inaccuracies of the experi-

mental methods.

3.1.2 Theoretical predictions.

Theoretical techniques to predict PPIs

What to Learn in This Chapter

N Experimental and computational methods to detect protein interactions

N Protein networks and disease

N Studying the genetic and molecular basis of disease

N Using protein interactions to understand disease
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Figure 1. A PPI network of the proteins encoded by radiation-sensitive genes in mouse, rat, and human, reproduced from [89].
Yellow nodes represent the proteins and blue lines show the interactions between them. The radiation-related genes were text-mined from PubMed
and the protein interaction information was obtained from HPRD.
doi:10.1371/journal.pcbi.1002819.g001
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incorporate a variety of biological

considerations; they take advantage of

the fact that interacting proteins coevolve

to preserve their function (e.g. mirrortree,

phylogenetic profiling [28–35]), occur in the

same organisms (e.g. [36,37]), conserve

gene order (e.g. gene neighbors method

[38,39]) or are fused in some organisms

(e.g. the Rosetta Stone method [40,41]).

3.2 Theoretical Predictions of PPIs
Based on Coevolution

Below, we will expand on two methods

generating theoretical PPI predictions

through coevolutionary signal detection

either at the residue or at the full-sequence

level.

3.2.1 Coevolution at the residue

level. Pairs of residues within the same

protein can coevolve because of three-

dimensional proximity or shared function

[42]. The intramolecular correlations of

interacting protein partners can be used to

predict intermolecular coevolution.

Residue-based coevolution methods

measure the set of correlated pair

mutations in each protein. A pair of

proteins is assumed to interact if they

show enrichment of the same correlated

mutations [42].

3.2.2 Coevolution at the full-

sequence level. Methods detecting

coevolution at the full-sequence level are

based on the idea that changes in one

protein are compensated by correlated

changes in its interacting partner to

preserve the interaction [29,30,42–45].

Therefore, as interacting proteins

coevolve, they tend to have phylogenetic

trees with topologies that are more similar

than expected by chance [46]. The

coevolution of interacting proteins was

first qualitatively observed for polypeptide

growth factors, neurotransmitters, and

immune system proteins with their

respective receptors [47]. Several

methodologies have been developed to

measure coevolution at the full-sequence

level, and among them, the mirrortree

method is one of the most intuitive and

accurate options. As shown in Figure 3,

mirrortree measures coevolution for a

given pair of proteins by i) identifying the

orthologs of both proteins in common

species, ii) creating a multiple sequence

alignment (MSA) of each protein and its

orthologs, iii) from the MSAs, building

distance matrices, and iv) calculating the

correlation coefficient between the

distance matrices. The mirrortree

correlation coefficient is used for

measuring tree similarity, thereby,

allowing the evaluation of whether the

proteins in question coevolved [28–

35].

The mirrortree method has been suc-

cessfully implemented to confirm experi-

mental interactions in E. coli [4], S.

cerevisiae [48], and H. sapiens [49]. But,

the degree of similarity between the

phylogenetic trees is strongly affected by

the sequence divergence driven by the

underlying speciation process [4,50].

Therefore, two proteins may have similar

phylogenetic trees due only to common

speciation events, but they may not

necessarily be interacting partners. By

subtracting the signal from speciation

events Pazos et al. [4] and Sato et al.

[50] showed improvements for the per-

formance of the mirrortree method. One

approach creates a ‘‘speciation’’ vector

from the distance matrices derived from

Figure 2. A diagram of the different experimental and computational methods to characterize, detect, and predict PPIs.
doi:10.1371/journal.pcbi.1002819.g002
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the ribosomal 16S sequences (for prokary-

otes and 18S for eukaryotes), while the

other uses the average distance of all

proteins in a pair of organisms. Both

methods subtract the speciation vector

from the original distance matrix con-

structed for the given protein pair.

In principle, to characterize protein

interactions at a systems level, all pro-

tein-protein and domain-domain interac-

tions in a given organism must be

catalogued. The mirrortree method is a

suitable option to complement experimen-

tal detections because it is inexpensive and

fast. Moreover, mirrortree only requires

the proteins’ sequences as input and thus

can be used to analyze proteins for which

no other information is available. Since

mirrortree predictions are based on differ-

ent principles than any other computa-

tional or experimental techniques, they

can also uncover functional relationships

eluding other methods. Still, the imple-

mentation of the mirrortree approach is

under several limitations. One limitation

of the mirrortree method is the minimum

number of orthologs it requires. Selecting

orthologs in large families with many

paralogs is also a considerable challenge

for mirrortree [49]. In addition, coevolu-

tion does not necessarily take place

uniformly across the sequence; different

sites may coevolve at different rates based

on functional constraints. Thus, coevolu-

tion signals vary when measured across the

entire sequence vs. at the domain level

[51].

4. Protein Networks and
Disease

4.1 Studying the Genetic Basis of
Disease

The majority of our current knowledge

about the etiology of various diseases

comes from approaches aiming to uncover

their genetic basis. In the near future, the

ability to generate individual genome data

using next generation sequencing methods

promises to change the field of transla-

tional bioinformatics even more.

Since the inception of Mendelian ge-

netics in the 1900’s, great effort has gone

into cataloguing the genes associated with

individual diseases. A gene can be isolated

based on its position in the chromosome

by a process known as positional cloning

[52]. A few examples of human disease-

related genes identified by positional

cloning include the genes associated with

cystic fibrosis [53], HD [9], and breast

cancer susceptibility [54,55]. Even in

simple Mendelian diseases, however, the

correlation between the mutations in the

patient’s genome and the symptoms is not

often clear [56]. Several reasons have been

suggested for this apparent lack of corre-

lation between genotype and phenotype,

including pleiotropy, influence of other

genes, and environmental factors.

Pleiotropy occurs when a single gene

produces multiple phenotypes. Pleiotropy

complicates disease elucidation because a

mutation on a pleiotropic gene may have

an effect on some, all, or none of its traits.

Therefore, mutations in a single gene may

cause multiple syndromes or only cause

disease in some of the biological processes

the gene mediates. Establishing which geno-

types are responsible for the perturbed

phenotype of interest is not straightforward.

Genes can influence one another in several

ways; genes can interact synergistically,

(as in epistasis), or they can modify one

another (e.g. the expression of one gene

might affect the expression of another).

Cystic fibrosis and Becker muscular

dystrophy, previously considered classical

examples of Mendelian patterns of inher-

itance, are now believed to be caused by

a mutation of one gene which is modified

by other genes [57,58]. Thus, even simple

Mendelian diseases can lead to complex

genotype-phenotype associations [59].

Environmental factors (e.g. diet, infection

by bacteria) are also major determinants of

disease phenotype expression often acting

in combination with other genotype-phe-

notype association confounders (i.e. plei-

otropy and gene modifiers). In fact, most

common diseases such as cancer, meta-

bolic, psychiatric and cardio-vascular dis-

orders (e.g. diabetes, schizophrenia and

hypertension) are believed to be caused by

several genes (multigenic) and are affected

by several environmental factors [60].

4.2 Studying the Molecular Basis of
Disease

Much can be learned from document-

ing the genes associated with a particular

Figure 3. A schema of the mirrortree method for predicting interacting proteins. The orthologs of two proteins (A and B from the same species)
are used to construct two multiple sequence alignments (MSAs). Distance matrices, which implicitly represent evolutionary trees, are constructed from the
MSAs. Each matrix square represents the tree distance between two orthologs and dark colors represent closeness. The two distance matrices are
compared using linear correlation. A high correlation between the distance matrices suggests interaction between proteins A and B.
doi:10.1371/journal.pcbi.1002819.g003
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disease (e.g. identifying risk factors that

might be used for diagnostic purposes).

Yet, to understand the biological details of

pathogenesis and disease progression and

to subsequently develop methods for

prevention, treatment and even diagnosis,

it is necessary to identify the molecules and

the mechanisms triggering, participating,

and controlling the perturbed biological

process. Deciphering the molecular mech-

anisms leading to diseased states is an even

bigger challenge than elucidating the

genetic basis of complex diseases [61].

Even when the genetic basis of a disease is

well understood, not much is known about

the molecular details leading to the

disorders.

4.2.1 The role of protein

interactions in disease. Protein

interactions provide a vast source of

molecular information; their interactions

(with one another, DNA, RNA, or small

molecules) are involved in metabolic,

signaling, immune, and gene-regulatory

networks. Since protein interactions

mediate the healthy states in all

biological processes, it follows that they

should be the key targets of the molecular-

based studies of biological diseased states.

Disease-causing mutations affecting

protein interactions can lead to

disruptions in protein-DNA interactions,

protein misfolds, new undesired

interactions, or can enable pathogen-host

protein interactions.

Protein-DNA interaction disruptions are most

clearly illustrated by the p53 tumor

suppressor protein and its role in cancer.

Mutations on p53’s DNA-binding domain

destroy its ability to bind to its target DNA

sequences, thus preventing transcriptional

activation of several anti-cancer mecha-

nisms it mediates (e.g. apoptosis, genetic

stability, and inhibition of angiogenesis).

Protein misfolding can result in disruptions

of protein-protein interactions, as occurs

in the Von Hippel-Lindau syndrome

(VHL)—VHL is a rare condition in which

hemangioblastomas are formed in the

cerebellum, spinal cord, kidney, and

retina. A mutation from Tyrosine to

Histidine at residue 98 on the binding site

disrupts binding of the VHL protein to the

hypoxia-inducible factor (HIF) protein. As

a result, the VHL protein no longer

degrades the HIF protein, which leads to

the expression of angiogenic growth fac-

tors and local proliferation of blood vessels

[62,63].

New undesired protein interactions are the

main causes of several diseases, including

Huntington’s disease (see introduction),

cystic fibrosis, and Alzheimer’s disease.

New interactions alter homeostasis since

they can lead to the loss of vital cellular

functions (due to misfolding and aggrega-

tion) and can cause cytotoxicity [11].

Pathogen-host protein interactions also play a

key role in bacterial and viral infections by

facilitating the hijacking of the host’s

metabolism for microbial need. The inter-

action between the Human papillomavirus

(HPV) and its host provides one of the

most striking examples of the centrality of

protein interactions in infectious diseases.

HPV infection occurs in a large fraction of

the population (75–80% of Americans

[64]) by generating lesions of the anogen-

ital tract and for some it leads to cancer.

Upon infection, the HPV genome is

frequently integrated into the host ge-

nome, but only two viral genes (E6 and

E7) are retained and expressed. Remark-

ably, the interactions of only two viral

proteins with the host’s proteins are

enough to cause HPV-induced carcino-

genesis. E6 and E7 bypass the immune

system by interacting with important

negative cell regulatory proteins to target

them for degradation and thus, inactiva-

tion. These two proteins also inhibit

cellular terminal differentiation, induce

cellular transformation and immortaliza-

tion of the host cells, and direct the

proliferation of the tumorigenically-trans-

formed cells [65].

4.2.2 Using PPI networks to

understand disease. PPI networks can

help identify novel pathways to gain basic

knowledge of disease. Note that pathways

are different from PPI networks. PPI

networks map the physical or functional

interaction between protein pairs resulting

in a complex grid of connections (Figure 1).

Pathways, on the other hand, represent

genetic, metabolic, signaling, or neural

processes as a series of sequential

biochemical reactions where substrates

are changed in a linear fashion. For

instance, the glycolysis pathway maps the

conversion of glucose to pyruvate through

a linear chain of ten different steps.

Pathway analysis alone cannot uncover

the molecular basis of disease. When

performing pathway analysis to study

disease, differential expression experi-

ments are the main source of protein

candidates. However, most of the gene

expression candidates are useless to path-

way-based analysis of disease because the

majority of human genes have not been

assigned to a pathway. Protein interaction

networks can be used to identify novel

pathways. Protein interaction subnetworks

tend to group together the proteins that

interact in functional complexes and

pathways [66]. Thus, new methods are

being developed to accurately extract

interaction subnetworks to yield pathway

hypotheses that can be used to understand

different aspects of disease progression

[67,68]. See Table 1 for useful resources

incorporating pathway and PPI informa-

tion in disease elucidation.

Mapping interactomes provide the op-

portunity to identify disease pathways by

identifying key subnetworks. In 2005, Rual

et al. [69] mapped the human protein

interactome. Below are some of the

findings that have been uncovered when

combining PPI and pathway analysis since

then.

(i) Over 39,000 protein interactions

have been identified in the human

cell [70].

(ii) Disease genes are generally non-

essential and occupy peripheral

positions in the human interac-

tome [71], although, in a few

diseases like cancer, disease genes

tend to encode highly-connected

proteins (hubs) [72,73].

(iii) Disease genes tend to cluster to-

gether and co-occur in central

network locations [6].

(iv) Proteins involved in similar pheno-

types (e.g. all cancer proteins) are

highly interconnected [73].

(v) Viral networks differ significantly

from cellular networks, which rais-

es the hypothesis that other intra-

cellular pathogens might also have

distinguishing topologies [74].

(vi) Etiologically unrelated diseases of-

ten present similar symptoms be-

cause separate biological processes

often use common molecular path-

ways [75].

PPI networks can be used to explore the

differences between healthy and diseased

states. Building interaction networks for

systems under different conditions (e.g.

wild type vs. mutant, presence of environ-

mental factor vs. its absence) might be the

key to understanding the differences

between healthy and pathological states.

The work by Charlesworth et al. [76] on

the perturbation of the canonical path-

ways and networks of interactions when

humans are exposed to cigarette smoke

illustrates the potential of such approach-

es. As one might expect, this study found

that the smoking-susceptible genes were

overrepresented in pathways involved in

several aspects of cell death (cell cytotox-

icity, cell lysis), cancer (e.g. tumorigenesis),

and respiratory functions. A somewhat

more unexpected finding, however, con-

firmed that exposure to the smoke envi-

ronmental factor affected a large subnet-
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work of proteins involved in the immune-

inflammatory response. This study gave

new insights into how smoke causes

disease: the exogenous toxicants in smoke

perturb several protein interactions in the

healthy cell state, thereby depressing the

immune system, while disrupting the

inflammation response. The study also

explained why smoking cessation has some

immediate health benefits; eliminating

smoke exposure reverses the alterations

at the transcriptomic level and restores the

majority of normal protein interactions.

Protein interaction studies play a major role in

the prediction of genotype-phenotype associations

while also identifying new disease genes.

The identification of disease-associated

interacting proteins also identifies poten-

tially interesting disease-associated gene

candidates (i.e. the genes coding for the

interacting proteins are putative disease-

causing genes). One of the best ways to

identify novel disease genes is to study the

interaction partners of known disease-

associated proteins [77]. Gandhi et al.

[78] found that mutations on the genes

of interacting proteins lead to similar

disease phenotypes, presumably because

of their functional relationship. Therefore,

protein interactions can be used to prior-

itize gene candidates in studies investigat-

ing the genetic basis of disease [79].

Others have used the properties of protein

interaction networks to differentiate dis-

ease from non-disease proteins. Based on

this approach, Xu et al. [80] devised a

classifier based on several topological

features of the human interactome to

predict genes related to disease. The

classifier was trained on a set of non-

disease and a set of disease genes (from

OMIM) and applied to a collection of over

5,000 human genes. As a result, 970

disease genes were identified, a fraction

of which were experimentally validated.

New diagnostic tools can result from genotype-

phenotype associations established through

PPIs. The genes of interacting proteins

can be studied to identify the mutation(s)

leading to the interaction disruptions seen

in healthy individuals or to the creation of

new interactions only present in the

diseased states. For example, Rossin et al.

used genome-wide association studies

(GWAS) to identify regions with variations

that predispose immune-mediated diseases

[81]. The GWAS studies provided a list of

proteins found to interact in a preferential

manner. The resulting disease single-

nucleotide polymorphisms identified by

GWAS studies such as that by Rossin et

al. can be eventually incorporated into

genotyping diagnostic tools.

Identifying disease subnetworks, and in turn

pathways that get activated in diseased states, can

provide markers to create new prognostic

tools. For instance, using a protein-net-

work-based approach, Chuang et al. [66]

identified a set of subnetwork markers that

accurately classify metastatic vs. non-

metastatic tumors in individual patients.

Metastasis is the leading cause of death in

patients with breast cancer. However, a

patient’s risk for metastasis cannot be

accurately predicted and it is currently

only estimated based on other risk factors.

When metastasis is deemed likely, breast

cancer patients are prescribed aggressive

chemotherapy, even when it might be

unnecessary. By integrating protein net-

works with cancer expression profiles, the

authors identified relevant pathways that

become activated during tumor progres-

sion, which discriminate metastasis better

than markers previously suggested by

studies using differential gene expression

alone.

Disease networks can inform drug design by

helping suggesting key nodes as potential

drug targets. Drug target identification

constitutes a good example of the potential

of integrating structural data with high-

throughput data [82]. The structural

details on binding or allosteric sites can

be used to design molecules to affect

protein function. On the other hand,

reconstruction of the different protein

networks (signaling, metabolic, regulatory,

etc.) in which the potential target is

involved can help predict the overall

impact of the disruption. If, for example,

the target is a hub (a highly connected

protein), its inhibition may affect many

activities that are essential for the proper

function of the cell and might thus be

unsuitable as a drug target. On the other

hand, less connected nodes (e.g. nodes

affecting a single disease pathway) could

constitute vulnerable points of the disease-

related network, which are better candi-

dates for drug targets. The work by

Yildirim and Goh [83] illustrates the

advantages of evaluating drugs within the

context of cellular and disease networks.

This group created a drug-target network

to map the relationships between the

protein targets of all drugs and all

disease-gene products. The topological

analysis of the human drug-target network

revealed that (i) most drugs target currently

known targets; (ii) only a small fraction of

disease genes encodes drug-target proteins;

(iii) current drugs do not target diseases

equally but only address some regions of

the human disease network; and (iv) most

drugs are palliative—they treat the symp-

toms not the cause of the disease, which

largely reflects our lack of knowledge

regarding the molecular basis of diseases

such that for many pathologies we can only

treat the symptoms but not cure them.

5. Summary—Trends in the
Translational Characterization
of Human Disease

We are still quite far from understand-

ing the etiology of most diseases. Further

advances on relevant experimental tech-

nology (e.g. genetic linkage, protein inter-

action prediction), along with integrative

computational tools to organize, visualize,

and test hypotheses should provide a step

forward in that direction. More than ten

years after the completion of the human

genome project, it is clear that our

approach to human disease elucidation

needs to change. The $3-billion human

‘‘book of life’’ and the $138-million effort

to catalog the common gene variants

relevant to disease have so far failed to

deliver the wealth of biological knowledge

of human diseases and the subsequent

Table 1. Pathway databases with disease information.

Resource Featured organisms Disease information Website

KEGG Yeast, mouse, human Comprehensive http://www.genome.jp/kegg/disease/

REACTOME Human+20 other species Sparse http://reactome.org/

SMPDB Human Small molecules’ Metabolic disease pathways http://www.smpdb.ca

PharmGKB Human Gene-drug-disease relationships http://www.pharmgkb.org/index.jsp

NetPath Human 10 immune and 10 cancer pathways http://www.netpath.org/index.html

doi:10.1371/journal.pcbi.1002819.t001
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personalization of medicine the scientific

community expected [84].

To date, biomedical research of the

etiology of disease has largely focused on

identifying disease-associated genes. But,

the molecular mechanisms of pathogenesis

are extremely complex; gene-products

interact in different pathways and multiple

genes and environmental factors can affect

their expression and activity. Likewise, the

same proteins may participate in different

pathways and mutations on their genes

may or may not affect some or all of the

biological processes they mediate. Thus,

gene-disease associations cannot be

straightforwardly deduced and their use-

fulness alone (in the absence of a molec-

ular context) in elucidating the biology of

healthy phenotype disruptions is question-

able. Evidence is accumulating to suggest

that in the majority of cases illnesses are

traceable to a large number of genes

affecting a network or pathway. The

effects on healthy phenotype disruption

may vary from one individual to another

based on the person’s gene variants and on

how disruptive the alterations might be to

the network [85].

To achieve a comprehensive genotype-

phenotype understanding of disease, trans-

lational research should be conducted

within a framework integrating methodol-

ogies for uncovering the genetics with

those investigating the molecular mecha-

nisms of pathogenesis. In fact, the studies

yielding the most biological insight into

disease to which we alluded in this chapter

were those which implemented a com-

bined genotype-phenotype approach;

those studies identified the disease-suscep-

tible genes and investigated their network

of interactions and affected pathways. As a

result, the combined approaches managed

to explain known clinical observations

while also suggesting new mechanisms of

pathology.

PPI analysis provides an effective means

to investigate biological processes at the

molecular level. Yet, any conclusions

obtained based on PPI methods must be

validated since these methods are subject

to limitations inherent to the nature of

data collection and availability. First, one

must be aware that the roles of protein

interactions are context-specific (tissue,

disease stage, and response). Thus, two

proteins observed to interact in vitro might

not interact in vivo if they are localized in

different cell compartments. Even when in

common cell compartments, protein abun-

dance or presence of additional interactors

might affect whether the interaction oc-

curs at all. Second, most of the PPI

methodologies use a simplistic ‘static’ view

of proteins and their networks. In reality,

proteins are continuously being synthe-

sized and degraded. The kinetics of

processes and network dynamics need to

be considered to achieve a complete

understanding of how the disruptions of

protein interactions lead to disease. Third,

human PPIs are often predicted based on

homology and from studies investigating

disease in other organisms. The same

mechanisms of interaction might or might

not exist in the organism of interest or

their regulation and phenotypic effects

might be different. Ideally, since network

and structural approaches are comple-

mentary, the combination of network

studies with a more detailed structural

analysis has the potential to enhance the

study of disease mechanisms and rational

drug design.

Currently, in the PPI field, a large

number of studies focus on the topological

characterization of organisms’ interac-

tomes. Those studies have yielded valuable

information regarding general trends of

molecular organization and their differ-

ences across genomes. To gain a deeper

understanding of individual diseases, how-

ever, the trend needs to move from global

characterizations to disease-specific inter-

actomes. Phenotype-specific interaction

network analyses should help identify

subnetworks mapping to pathways that

can be targeted therapeutically and point

to key molecules essential to the biological

function under study. Since disease infer-

ences are as good as the modeled PPI

networks, the ontologies used by PPI

resources need to be expanded to better

describe disease phenotypes, cytological

changes, and molecular mechanisms.

6. Exercises

Objective: To investigate Epstein-
Barr Virus (EBV) pathogenesis us-
ing protein-protein interactions

EBV is a member of the herpesvirus

family and one of the most common

human viruses. According to the CDC,

in the United States around 95% of adults

have been infected by EBV. Upon infec-

tion in adults, EBV replicates in epithelial

cells and establishes latency in B lympho-

cytes, eventually causing infectious mono-

nucleosis 35%–50% of the time and

sometimes cancer [86]. In the next four

sections, your goal will be to study the

interactions among EBV proteins and

between the virus and its host (using the

EBV-EBV and EBV-human interactomes

respectively) as a means to investigate how

EBV leads to disease at the molecular

level.

Datasets:

The following datasets were adapted

with permission from [87]

N Dataset S1: EBV interactome

N Dataset S2: EBV-Human interactome

Software requirements:

Download and install Cytoscape

(http://www.cytoscape.org, [88]) locally.

Note:

The instructions below correspond to

Cytoscape v. 2.8.0; but, should be appli-

cable to future releases.

I. Visualize the EBV interactome
using Cytoscape

A. Import Dataset S1 into cytos-
cape

N Select File -.Import -.Network (Multi-

ple File Types)

N Click the ‘‘Select’’ button to browse to

Dataset S1’s location

N Click ‘‘Import’’

B. Change the network layout

N Click on View-.Hide data panel

N Click the 1:1 magnifying glass icon to

zoom out to display all elements of

the current network’’

N Select Layout-.Cytoscape Layouts-

.Force-directed (unweighted) Layout

C. Format the nodes and edges

N Select View-.Open Vizmapper

N Choose the ‘‘Default’’ Current Visual Style

N Click on the pair of connected nodes icon in

the ‘‘Defaults’’ box

N Scroll down on the resulting dialog to

change the following default visual

properties:

NODE__SIZE = 20

NODE_FONT_SIZE = 20

N O D E _ L A B E L _ P O S I -

TION = (Node Anchor Points)

SOUTH

N Note: Feel free to click and drag any

nodes with labels that overlap to

increase visual clarity.

D. Print the EBV interactome

N Select File-.Export-.Current Net-

work View as Graphics

Answer the following questions:

i. How many nodes and edges are

featured in this network?
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ii. How many self interactions does the

network have?

iii. How many pairs are not connected

to the largest connected component?

iv. Define the following topological pa-

rameters and explain how they might

be used to characterize a protein-

protein interaction network: node

degree (or average number of neigh-

bors), network heterogeneity, aver-

age clustering coefficient distribu-

tion, network centrality.

II. Characterize the EBV-Human
interactome

Import Dataset S2 into cytoscape to

create a map of the EBV-Human inter-

actome. Format and output the network

according to steps A through D in part I.

Answer the following questions:

i. How many unique proteins were

found to interact in each organism?

ii. How many interactions are mapped?

iii. How many human proteins are

targeted by multiple (i.e. how many

individual human proteins interact

with .1) EBV proteins?

iv. How does identifying the multi-

targeted human proteins help you

understand the pathogenicity of the

virus? —Hint: Speculate about the

role of the multi-targeted human

proteins in the virus life cycle.

v. How might you test the predictions

you formulated above?

III. Characterize the topological
properties of the human proteins
that are targeted by EBV

Use the topological information pro-

vided for you in Table 2 to investigate

whether the EBV-targeted Human Pro-

teins (ET-HPs) differ from the average

human protein.

Answer the following questions:

i. Based on the ‘degree’ property, what

can you deduce about the connect-

edness of ET-HPs? What does this

tell you about the kind of proteins

(i.e. what type of network compo-

nent) EBV targets?

ii. What do the number and size of the

largest components tell you about

the inter-connectedness of the ET-

HP subnetwork?

iii. Why is distance relevant to network

centrality? What is unusual about the

distance of ET-HPs to other proteins

and what can you deduce about the

importance of these proteins in the

Human-Human interactome?

iv. Based on your conclusions from

questions i–iii, explain why EBV

targets the ET-HP set over the other

human proteins and speculate on the

advantages to virus survival the

protein set might confer.

IV. Integrating knowledge from
three different interactomes

Answer the following questions:

i. The Rta protein is a transactivator

that is central to viral replication in

EBV. When Rta is co-expressed with

the LF2 protein replication attenuates

and the virus establishes latency.

Solely based on the EBV-EBV net-

work, formulate a hypothesis to

explain how LF2 may be driving

EBV to latency suggesting at least

one molecular mechanism by which

LF2 may inactivate Rta.

ii. Why is establishing latency (opposed

to promoting rapid replication of

viral particles) an effective mecha-

nism of virus infection?

iii. Assign putative functions to EBV’s

SM and EBNA3A proteins based on

the function of the human proteins

with which they interact—Hint: Lo-

cate these proteins in the EBV-

Human network. What clinical ob-

servation (see the introductory para-

graph to section 6. Exercises) might

these proteins’ subnetworks explain?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)

Dataset S1 EBV Interactome Data.

(SIF)

Dataset S2 EBV-Human Interactome

Data.

(SIF)

Figure S1 EBV Interactome Map.

(PDF)

Figure S2 EBV-Human Interactome

Map.

(PDF)

Table 2. Topological properties of human proteins for exercise III.

Average topological property ET-HP Random human protein

Degree 1562 5.960.1

Number of components 4 12.660.25

Nodes in largest component 1,112 52165

Distance to other proteins 3.260.1 4.0360.01

doi:10.1371/journal.pcbi.1002819.t002
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