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Abstract

Systemic administration of immune checkpoint blockade (ICB) monoclonal antibodies (mAbs) 

can unleash antitumor functions of T cells but is associated with variable response rates and 

off-target toxicities. We hypothesized that antitumor efficacy of ICB is limited by the minimal 

accumulation of mAb within tissues where antitumor immunity is elicited and regulated, which 

include the tumor microenvironment (TME) and secondary lymphoid tissues. In contrast to 
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systemic administration, intratumoral and intradermal routes of administration resulted in higher 

mAb accumulation within both the TME and its draining lymph nodes (LNs) or LNs alone, 

respectively. The use of either locoregional administration route resulted in pronounced T cell 

responses from the ICB therapy, which developed in the secondary lymphoid tissues and TME 

of treated mice. Targeted delivery of mAb to tumor-draining lymph nodes (TdLNs) alone was 

associated with enhanced antitumor immunity and improved therapeutic effects compared to 

conventional systemic ICB therapy, and these effects were sustained at reduced mAb doses and 

comparable to those achieved by intratumoral administration. These data suggest that locoregional 

routes of administration of ICB mAb can augment ICB therapy by improving immunomodulation 

within TdLNs.

INTRODUCTION

Immune checkpoint blockade (ICB) using monoclonal antibodies (mAbs) specific to 

cytotoxic T lymphocyte antigen 4 (CTLA-4) and to programmed cell death 1 (PD-1) or its 

ligands has emerged as one of the most promising approaches in cancer immunotherapy 

to invigorate antitumor immunity (1, 2). CTLA-4 is a transmembrane receptor found 

constitutively on regulatory T cells (Tregs) and is limited in its expression by CD4 and 

CD8 T cells immediately after engagement of the T cell receptor. CTLA-4 directly competes 

with CD28 for B7 ligand binding on antigen-presenting cells (APCs), consequently leading 

to T cell anergy (3). Similarly, surface expression of PD-1 is broadly induced after T 

cell activation, and PD-1 is thought to function in peripheral tissues through its binding 

interactions with PD-1 ligands (PD-L1 and PD-L2) found on many cell subtypes including 

predominantly, but not limited to, tumor cells and APCs, respectively. After PD-1:ligand 

engagement, T cell function is dampened—an effect that protects the host during viral 

infection from immune-mediated tissue destruction leading to T cell exhaustion (3). By 

blocking these inhibitory pathways using function-blocking mAbs, activation and cytotoxic 

capabilities of T cells can be restored (1, 3).

Although the canonical view on ICB therapy effects is that they are mediated primarily 

within the tumor microenvironment (TME) by restoring antitumor functions of infiltrating T 

cells, evidence of the pleotropic effects of ICB mAbs continues to amass. Specific isotypes 

of anti-CTLA-4 (aCTLA-4) mAbs [immunoglobulin G2a (IgG2a)] mediate the depletion 

of tumor-resident Tregs (trTregs) via antibody-dependent cellular cytotoxicity, although other 

isotypes (IgG1) do not (4–6). In addition, whereas anti–PD-1 (aPD-1) mAb has been shown 

to restore the effector functions of CD8 and CD4 T cells (7), CD28 stimulation is required 

for aPD-1 efficacy, suggesting a role of B7-expressing APCs (8). aPD-1 has also been shown 

to modulate a stem-like CD8 T cell population capable of proliferating and giving rise to 

T cells of a tumor-killing effector-like phenotype (9–11). Furthermore, PD-L1 expression 

on tumor cells is not required for disease progression and aPD-1 efficacy in certain cancer 

types (12–14). Both aCTLA-4 and aPD-1 therapy have also been shown to broaden the 

repertoire of tumor-specific CD8 T cell clones (15–17), which is associated with improved 

clinical outcomes (18, 19). Solely blocking checkpoint pathways in the TME may thus not 

be sufficient to generate high response rates after ICB therapy.
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To this end, appreciation for lymphoid tissues as critical in the generation of effective 

immunotherapy responses is increasing (20, 21). CD103+ APCs transport antigen to tumor

draining lymph nodes (TdLNs) where they can prime naïve CD8 T cells (22, 23). Moreover, 

TdLNs are involved in mediating the effects of aCTLA-4 (24) and aPD-1 therapy (25). 

The presence of the aforementioned stem-like CD8 T cell compartment has been observed 

in mouse and human LNs, in addition to the TME, suggesting these tissues as a potential 

source of tumor-infiltrating lymphocytes (TILs) (26). However, the TME and TdLNs are 

poorly accessed using systemic drug administration (27–29), the predominant route used in 

both preclinical tumor models and human patients, which may limit drug effects. Clinical 

studies have reported dose-efficacy relationships of aCTLA-4 and aPD-1 therapies (30, 

31). Increasing the availability of ICB mAb within target tissues, including the TME and 

lymphoid tissues that are enriched in tumor-specific T cells, thus has the potential to 

improve ICB therapy.

Previous reports have described improvements in antitumor responses using intratumoral 

(i.t.) administration routes compared to traditional systemic administration (32–34). 

However, less is known about the antitumor effects of ICB modulation in LNs, although 

peri-tumoral administration has previously been investigated (24, 35) and subcutaneous 

(s.c.) administration is being explored in the clinic (36). Note that mAbs are large molecules 

(150 kDa) and thus are transported differently than traditional small-molecule drugs or 

other smaller biologics. Specifically, injection of compounds similarly sized to mAbs into 

the interstitium of peripheral tissues results in clearance from the injection site via the 

initial lymphatics and thus accumulation of such compounds in draining LNs (37). We 

hypothesized that mAbs would behave similarly, and therefore, direct administration into 

peripheral tissues would improve LN delivery of mAbs, allowing for improvement of ICB 

therapeutic effects. Our results in three preclinical solid tumor models (using melanoma 

and breast cancer cell lines) support the hypothesis that modulation of immune checkpoint 

pathways in (Td)LNs using locoregional administration of ICB mAbs enhances anti-tumor 

efficacy, enables dose sparing, and has the potential to reduce treatment-induced toxicity 

compared to systemically administered therapy.

RESULTS

Tumor-directed ICB augments local therapeutic responses

To evaluate whether augmenting the accumulation of administered mAb drug within target 

tissues can improve the effects of ICB, survival studies were performed in a poorly ICB

responsive tumor model (B16F10 melanoma) using both aCTLA-4 and aPD-1 mAbs and 

comparing intraperitoneal (i.p.) versus i.t. routes of administration. Modest reductions in 

tumor growth were induced by i.p. administration of ICB mAb; however i.t. administration 

instead resulted in profound reductions in tumor growth (Fig. 1A). To explore the potential 

effects on priming and expansion of T cells in response to endogenous tumor antigen, the 

systemic response of untreated tumors in the contralateral (c.l.) dorsal skin was concurrently 

monitored. Untreated tumors were found to be reduced in animals treated i.t. with ICB 

therapy (Fig. 1B). The net effect was a prolongation of mouse survival with i.t. compared 

to i.p. administration of ICB mAb (Fig. 1C). These data demonstrate the capacity of tumor
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localized ICB therapy to elicit a systemically functional antitumor immune response that 

exceeds the effects of systemically administered ICB therapy.

The immunological mechanisms underlying the therapeutic responses seen with i.t. and i.p. 

ICB therapy (aCTLA-4 and aPD-1 in combination) were explored. T cell phenotypes in 

i.t. saline (control)–or ICB-treated animals bearing single B16F10 tumors were analyzed 

12 days after tumor implantation. Administration i.t. led to a reduction in tumor burden 

(Fig. 2A) and was associated with a reduction in trTreg frequencies (Fig. 2B), which can be 

attributed to the particular aCTLA-4 mAb clone used (4–6). ICB therapy was also associated 

with an increase in CD8 TILs, although this effect was limited to i.t. administration here 

(Fig. 2C). Of these CD8+ TILs, the frequencies of granzyme B–producing (Fig. 2D) 

and effector [killer cell lectin-like receptor G1–positive (KLRG1+)] cell frequencies (Fig. 

2E) were similar between i.p. and i.t. administration, suggesting that effective therapy is 

associated with increased frequencies of CD8 TILs rather than reinvigoration of exhausted 

TILs. Cycling CD8 T cell frequencies were found to be increased in the TME and TdLN 

using i.t. administration, with comparable increases observed in the spleen between i.p. 

and i.t. administration, and with no changes observed in the non-TdLNs (nTdLNs) (Fig. 

2, F and G). Similar results for Ki-67+ frequencies were also observed in the CD4 T 

cell compartment (fig. S1). Frequencies of CD8 T cells within each tissue compartment 

exhibiting stem-like (PD-1+Tcf1+Tim3−) versus effector-like (PD-1+Tcf1−Tim3+) CD8 T 

cell phenotypes were also assessed. The phenotypes of activated (PD-1+) CD8 T cells were 

predominately effector-like in the TME compared to stem-like in the LNs, with a balance 

in-between in the spleen regardless of therapy or route of administration (Fig. 2H). Of note, 

ex vivo staining confirmed that therapeutic aPD-1 mAb did not block the binding of aPD-1 

mAb used for flow cytometry staining (fig. S2). These data support the concept that ICB 

efficacy is, in part, mediated by increasing the frequencies of TILs that may originate from 

the TME or peripheral tissues including the TdLN or spleen.

Administration route affects mAb biodistribution

Considering that responses were observed in secondary lymphoid tissues in addition to the 

TME after i.t. administration, we assessed the effect of route of administration on mAb 

accumulation within the spleen, LNs (tumor-draining or nondraining), and TME as well 

as other systemic tissues. Alexa Fluor 647–labeled aPD-1 or aCTLA-4 mAbs (fig. S3A) 

were measured after a single dose using four different administration routes: i.p., in the 

forelimb skin contralateral to the tumor (c.l.), in the forelimb skin ipsilateral to the tumor 

(i.l.), and i.t. 5 days after B16F10 tumor implantation (Fig. 3A). Tumor accumulation of 

mAb was sustained over 24 hours using an i.t. injection but was low to negligible using 

other administration routes (Fig. 3, B and C). mAb concentrations in the blood and spleen 

were also equivalent between administration routes (Fig. 3, C and D). When assessing mAb 

accumulation in LNs, i.p. administration resulted in minimal accumulation in any measured 

LN, whereas c.l. administration led to accumulation within nTdLNs (Fig. 3, E and F). Using 

i.l. and i.t. administration led to detectable concentrations of mAb solely within TdLNs 

(Fig. 3, E and F). These locoregional administration routes allowed for reduced dosing 

while maintaining mAb accumulation within TdLNs (Fig. 3, G and H). Accumulation of 

mAb in dLNs was not an effect of dye labeling, because administered nonfluorescent mAb 
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accumulated within dLNs as with Alexa Fluor 647–tagged mAb (fig. S3B). Using these four 

different routes of administration allowed for subsequent studies to explore the effects on 

drugging particular tissues of interest and their effects on ICB therapeutic efficacy.

To explore whether lymph-delivered mAb had access to LN T cells, aCD3 (in place 

of immune checkpoint targeting) mAb was administered in the forelimb to target LN

resident CD3-expressing T cells. A gradual increase in T cell labeling of aCD3 mAb was 

observed over 24 hours, with nearly 100% of T cells labeled with Alexa Fluor 647–aCD3. 

Because comparable total LN mAb concentrations measured in LN tissue homogenates were 

observed within LNs at all time points (Fig. 3I) and this measured LN mAb concentration 

was sufficient to label ~100% of T cells when LNs were mechanically and enzymatically 

degraded after resection (fig. S3C), this suggests that labeling of T cells by i.d. administered 

aCD3 mAb within intact LNs is a diffusion-limited, intra-LN transport process. These 

results are in line with a recently published study, confirming that mAb has access to LN 

cells (38). Overall, these results demonstrate that various administration routes can be used 

to direct the delivery of mAb to T cells in specific tissues, including the TME, LNs, spleen, 

and blood.

TdLN-targeted ICB improves anti-melanoma response

To elucidate the mechanistic effects of modulating immune checkpoints in various tissues 

on antitumor immunity, ICB mAbs were administered using the injection routes/locations 

depicted in Fig. 3A. This approach allowed the effects of ICB in specific tissues to be 

decoupled because i.t. administration results in appreciable mAb accumulation within the 

TME, TdLN, and spleen; i.d. forelimb injections target only the TdLN or nTdLN and spleen; 

and i.p. administration results in accumulation only in the spleen but not in the TME or 

in LNs. On days 5, 7, and 9 after B16F10 melanoma implantation, mice were treated with 

various ICB therapeutic regimens, including aPD-1, aCTLA-4, or the combination of the 

two. When used as monothera-pies, aPD-1 and aCTLA-4 mAb administered i.p. and in 

the forelimb c.l. to the tumor had no effect on tumor growth and animal survival, whereas 

administration of ICB in the forelimb i.l. to the tumor and i.t. reduced tumor growth during 

treatment to equivalent extents, which in the case of aCTLA-4 monotherapy led to prolonged 

survival (Fig. 4, A to D). However, ICB therapy was less effective in larger-sized tumors 

(fig. S4). Similar effects were observed when aPD-1 was combined with aCTLA-4 (Fig. 4, E 

and F). Overall, these data suggest that targeting of TdLNs (in addition to the spleen) results 

in the generation of robust antitumor immunity much greater than that seen with systemic 

administration.

Locoregional ICB promotes tumor immunity in lymphoid tissues

We next explored the effects of ICB therapy in combination with a model tumor vaccine. 

The rationale was to develop and expand a robust antitumor CD8 T cell pool in tumor

bearing animals before modulation of T cell activation and effector functions resulting from 

ICB. Mice bearing B16F10 melanomas expressing ovalbumin (OVA) were vaccinated i.d. 

in each limb with OVA protein as tumor antigen and CpG oligodeoxynucleotide (CpG) as 

an adjuvant 4 and 10 days after tumor implantation and before ICB mAb administration 

(aPD-1 and aCTLA-4 in combination) on days 5, 8, 11, and 14 (Fig. 5A). Irrespective 
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of the route of mAb administration, ICB improved vaccine effects during treatment, as 

measured by tumor outgrowth over the first 16 days (Fig. 5B). After cessation of therapy, 

ICB administered in the skin (either i.t. or i.d.) conferred improved survival (Fig. 5C) 

relative to that of systemically administered ICB (i.p.). T cell phenotyping on day 16 after 

tumor implantation revealed that increased CD8/Treg ratios and CD8 T cell infiltration 

correlated with smaller tumors (Fig. 5, D and E), whereas increased Treg frequencies 

correlated with increased tumor size (Fig. 5F). ICB administered i.t. reduced proliferating 

Tregs (CD4+FoxP3+Ki-67+) within the tumor compared to other ICB administration methods 

(Fig. 5G), an effect attributable to the particular aCTLA-4 mAb isotype used (4–6) and 

higher CTLA-4 surface expression on Tregs (fig. S5). When mice were treated with ICB 

therapy, increased infiltration of CD8 TILs was observed (Fig. 5H). However, similar rates 

of CD8 TIL proliferation were observed regardless of therapy or route of administration 

(Fig. 5I). Instead, increases in proliferation were observed in lymphoid tissues, specifically 

the TdLN using an i.d. or i.t. administration and the spleen with the addition of ICB 

therapy (Fig. 5J). Similar to results exploring the cell state of PD-1+ CD8 T cells (Fig. 2H), 

the PD-1+ CD8 T cells within the TME were predominately effector-like cells, whereas 

lymphoid tissues consisted of both effector- and stem-like CD8 T cells (fig. S6, A to D). 

Furthermore, CD8 T cells generated in LNs and spleen with ICB therapy were functional 

and capable of responding to tumor antigen upon ex vivo restimulation (fig. S6, E and 

F). Similar patterns were observed in the CD4 helper compartment (fig. S7). Together, 

these results are in line with neoadjuvant studies demonstrating that improved responses are 

associated with increased CD8 T cell proliferation and tumor infiltration (Fig. 2), which 

were achieved via concurrent drug modulation of immune checkpoint pathways in the TME 

and LNs.

TdLN- and TME-directed ICB enable dose sparing

Considering the dose-toxicity relationship of ICB therapy, we assessed ICB efficacy in a 

dose de-escalation study using aPD-1 and aCTLA-4 (fig. S8). Dose-dependent effects were 

observed in the case of nTdLN (c.l.) and TdLN (i.l.) delivery, whereas i.t. administration did 

not display a dose-efficacy relationship (fig. S8). This may be explained by our observed 

reductions in trTreg after following i.t. administration (Figs. 2B and 5G), which is in line 

with multiple other reports showing that the efficacy of aCTLA-4 therapy is due, in part, 

to the depletion of trTregs when an IgG2a clone is used (4–6). However, Treg depletion by 

aCTLA-4 has not been observed in the clinical setting, and instead, mAb clones of aCTLA-4 

used in human patients have been shown to act predominately via CTLA-4 receptor 

blockade and favoring CD28 ligation (39, 40). We therefore investigated the therapeutic 

effects of CTLA-4 blockade using a mAb clone of an IgG1 isotype (4F10) using an identical 

dosing schedule to those conducted using the Treg-depleting (IgG2a isotype) aCTLA-4 mAb 

clone (Fig. 4). Using this non–Treg-depleting aCTLA-4 mAb clone (IgG1), i.p. and c.l. 

administration had small antitumor therapeutic effects (Fig. 6, A to D). Conversely, both 

i.l. and i.t. administration elicited robust anti-tumor therapeutic effects even at the lowest 

tested dose (12.5 μg; Fig. 6, E to H). These data thus demonstrate that the benefits of LN 

targeting are applicable to multiple aCTLA-4 mAb clones with differing immunomodulatory 

mechanisms. These results suggest that the efficacy of ICB directed to the TdLNs alone or in 
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addition to the TME is roughly equivalent, at least at the doses tested in this model, pointing 

to LNs mediating the expansion of CD8 T cell immunity in response to ICB.

Directing ICB to TdLNs improves therapeutic effects in breast cancer

To extend these results beyond melanoma models, two different mammary carcinoma 

models, E0771 and 4T1, were implanted orthotopically in the fourth mammary fat pad. 

These implantation sites generate TdLNs differing from those generated using the dorsal 

lateral B16F10 melanoma model, specifically the ipsilateral inguinal (primary draining) 

and axillary (secondary draining) LNs. To deliver mAb to TdLNs or nTdLNs, mAb 

administration was performed in the flank skin of mice (Fig. 7A), whereas the systemic 

i.p. administration was kept the same and i.t. administration consisted of an injection 

into the mammary fat pad tumor site. After administration of fluorescently labeled mAb 

(aPD-1), i.t. administration resulted in sustained mAb retention in the TME, whereas 

other administration routes resulted in low to minimal TME concentrations (Fig. 7B). 

Accumulation of mAb in the spleen was equivalent regardless of administration route (Fig. 

7C). Contrastingly, i.l. and i.t administration of mAb (aPD-1 or isotype) led to higher TdLN 

accumulation, whereas c.l. administration led to accumulation within nTdLN (Fig. 7D).

Using aPD-1 in the E0771 model, locoregional therapy was as effective as systemic (i.p.) 

administration (fig. S9, A and B), motivating the exploration of aPD-1 in combination with 

aCTLA-4. To this end, a single dose of aPD-1 in combination with aCTLA-4 (clone 9H10) 

administered i.t., i.l., and c.l. resulted in reductions in tumor growth compared to either no 

treatment or systemic i.p. administration (Fig. 7E). Improvements in survival were found 

for this combination therapy (40 to 60% overall complete response) and were comparable 

between all administration routes (Fig. 7F). Dose de-escalation studies demonstrated that 

survival was dose sensitive, but effects were again roughly equivalent between ICB mAb 

administration route (fig. S9, C to F). These data demonstrate that the therapeutic benefits of 

ICB with aPD-1 in this model can be improved with aCTLA-4, which is expected given this 

aCTLA-4 mAb clone’s pleotropic effects on the antitumor immune response.

To decouple the effects of trTreg depletion and expansion of CD8 T cell immunity associated 

with aCTLA-4 mAb treatment, we evaluated the effects of the 4F10 mAb clone of aCTLA-4 

that does not result in trTreg depletion (Fig. 7, G and H). Antitumor therapeutic efficacy 

of all tested administration routes overall was much less effective, indicative of a major 

role that Tregs play in the immune physiology of the E0771 model. However, i.l. and i.t. 

administration did suppress tumor growth and prolong survival compared to i.p. and c.l. 

administration (Fig. 7, G and H). Effects of aPD-1 mAb in combination with aCTLA-4 

mAb (clone 4F10) in the highly metastatic 4T1 model were also tested. Improved responses 

were observed with c.l., i.l., and i.t. therapy compared to that of systemic i.p. therapy 

(Fig. 7, I and J), with no signs of metastasis in responding mice (fig. S9, G and H). 

When the trTreg-depleting aCTLA-4 clone (clone 9H10) was used, systemic therapy was 

just as effective as administration in the skin (both i.l. and c.l.; fig. S9, I and J). These 

data suggest that these breast tumor models are highly infiltrated with Tregs implicated 

in tumor progression. Nevertheless, as in the B16F10 melanoma model, (Td)LN targeting 
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of mAb improved therapeutic responses to ICB in two breast tumor models compared to 

conventional systemic administration.

Locoregional administration reduces toxicities of ICB

ICB is associated with immune-related adverse events (iRAEs) that can lead to 

discontinuation of treatment, especially when aPD-1 and aCTLA-4 mAb therapies are used 

in combination (41). To explore ICB-related toxicities, blood was collected 2 to 3 days after 

the last mAb administration, and the serum was analyzed. When used with ICB alone, i.p. 

administration led to increased alanine transaminase (ALT) serum concentrations compared 

to no treatment or cutaneous injections in both the B16F10 and E0771 tumor models 

(Fig. 8A). Similar effects of locoregional therapy on ALT serum concentrations were also 

observed when mice were vaccinated (Fig. 8B). Furthermore, mAb concentrations in the 

liver, kidneys, and lungs were proportional to the administered dose of ICB mAb (Fig. 8C 

and fig. S10). Overall, these results suggest that locoregional administration of ICB mAb, 

which can elicit robust immunity and antitumor efficacy, reduces the toxicity associated with 

systemic and high-dose ICB therapy.

Controlled-release mAb formulation drugging TdLN improves effects of locoregional ICB

We explored the effects of sustained LN drugging through the use of a hydrogel formulation 

to improve local pharmacokinetics and reduce the need for multiple injections. Formed 

from biocompatible, U.S. Food and Drug Administration (FDA)–approved block co-polymer 

Pluronic F-127, equivalent hydrogel formulations have been used to prolong injection site 

protein retention (42) to improve drug bioactivity. After injection of fluorescently labeled 

mAb, the hydrogel formulation prolonged mAb retention at the injection site to over 72 

hours, leading to higher mAb concentrations in the dLN after injection compared to those 

resulting from administration of free (no polymer) mAb solution (Fig. 8, D and E). After 

a single injection of both aPD-1 and aCTLA-4 mAb on day 5 after tumor implantation 

in the B16F10 model, the hydrogel formulation injected in the forelimb i.l. to the tumor 

afforded improved antitumor efficacy, effects not seen when it was injected in the c.l. limb 

(Fig. 8, F and G). Furthermore, the hydrogel formulation improved efficacy relative to that 

of the free, unformulated mAb, suggesting that sustained mAb accumulation within TdLNs 

improves effects (Fig. 8, F and G). Overall, these results demonstrate the potential for 

controlled-release strategies directing mAb delivery into the lymphatic-draining tissue basin 

co-draining the tumor to improve the therapeutic effects of ICB.

DISCUSSION

ICB has emerged as a promising class of anticancer therapy, but these treatments are 

associated with low response rates and substantial toxicities, which may be related 

to systemic administration of these drugs. Targeting the TME versus LNs and spleen 

using different administration routes/doses/formulations was explored to increase mAb 

accumulation within these tissues and therefore modulate these pathways at the effector 

and priming phases, respectively. In three tumor models, varying from poorly to highly 

responsive to ICB, administration routes that mediate mAb accumulation in (Td)LNs led 
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to superior therapeutic effects on tumor control compared to those achieved by systemic 

administration.

An abscopal effect was observed with tumor-localized ICB using i.t. administration, 

demonstrating the generation of an antitumor immune response that is systemically 

functional. This is suggestive of tumor-localized therapy being capable of expanding 

endogenous antitumor immunity, given observations of higher TIL frequencies. Studies 

have indicated that increasing frequencies of CD8 TILs improve response to immunotherapy 

and patient survival (14, 18). Whether they originate from the TME or elsewhere before 

migrating into the TME remains unclear. However, tumor-specific T cells have been found 

in the blood after ICB treatment, suggesting the latter (17, 43). Here, we observed increased 

frequencies of proliferating CD8 T cells not only in the TME but also in the TdLN and 

spleen after i.t. treatment, suggesting that TILs may originate from multiple tissue sites. 

We did observe stem-like CD8 TILs; however, the predominant phenotype of activated 

CD8 TILs was effector-like, which may be due to proliferation and differentiation of 

tumor-resident stem-like CD8 T cells (44). In line with this, stem-like CD8 TILs reside 

in APC-enriched niches that support their function, and loss or absence of these niches is 

associated with disease progression (45). In addition to the TME, we observed stem-like 

CD8 T cells in secondary lymphoid tissues, consistent with previous reports (11, 44), 

including human LNs (26). Thus, secondary lymphoid tissues are a potential source of 

tumor-killing effector-like CD8 T cells. Accumulation of mAb within the spleen and LNs 

was also associated with expansion of the effector-like cell pool within these tissues. Poorly 

immunogenic TMEs lacking APC niches or TILs may therefore not respond to systemic 

ICB therapy, and may instead benefit from targeted delivery of ICB mAbs into lymphoid 

tissues where these stem-like CD8 T cells reside at high frequencies. Overall, our results 

support the conclusions that ICB therapy increases TIL frequencies and that, because TILs 

may originate outside the TME, lymphoid tissues represent potential tissue targets for ICB 

modulation.

The effect of LN-directed mAb delivery was found to be beneficial in multiple therapeutic 

settings. In the B16F10 melanoma model, systemic i.p. administration led to minimal 

therapeutic efficacy that may be due to poor delivery and accumulation of ICB mAbs in 

the TME and TdLNs. ICB therapy directed toward TdLNs via i.l. forelimb administration 

greatly improved response rates regardless of aCTLA-4 mAb clone used, which we 

hypothesize is due to improved T cell activation and subsequent infiltration into the TME. 

Dose de-escalation experiments revealed that ICB mAb directed to the TdLNs alone versus 

in combination with the TME via i.l. forelimb or i.t. administration, respectively, results 

in similar antitumor therapeutic effects. This is suggestive of the therapeutic benefits of 

ICB being conferred, at least partially, by activity within LNs, presumably at the APC:T 

cell synapse during the T cell priming phase. It may also be explained by the immune 

exclusion and poor immunogenicity of the B16F10 model. Put another way, drugging the 

TME does not appear to afford therapeutic effects when antitumor TILs are locally absent. 

This concept is in line with previous observations in melanoma models where knockout of 

T cell PD-1 expression does not improve tumor responses (12). This is further supported by 

our vaccination studies in the B16F10-OVA model, where ICB injected i.t. in combination 

with a tumor vaccine resulted in longer survival. Vaccination alone resulted in marked 
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expansion and infiltration of antitumor T cells, thus providing local TILs for potential ICB 

modulation. Therefore, addition of ICB directly into the tumor, along with a reduction 

of proliferating trTregs, resulted in improved survival of i.t. treated mice. In line with 

neoadjuvant phenotyping results, addition of ICB therapy increased frequencies of TILs, 

which may be due to the higher frequencies of proliferating T cells in lymphoid tissues. 

This suggests that modulation of ICB in the spleen or TdLN may promote and sustain 

lymphocyte infiltration into the TME.

In breast tumor models, targeting mAb to (Td)LNs alone or in combination with the 

TME improved therapeutic benefits compared to systemic therapy. Notable differences 

were observed in the E0771 model when using a trTreg-depleting mAb clone of aCTLA-4 

(9H10) versus a nondepleting clone (4F10), suggesting that these tumors are highly 

infiltrated with suppressive Tregs and/or that Tregs play a dominant role in immune-regulated 

disease progression in these models. An LN-directed drugging approach, which appears 

effective in eliciting robust T cell immunity, may thus need to be combined with other 

therapies to modulate such suppressive cell types to successfully combat breast cancer. 

Another consideration is that tumor physiology can vary greatly between tumor types and 

consequently affect mAb transport (34). Breast cancer models may have better mAb access 

to the TME from the blood relative to melanoma models, which may explain the i.p. efficacy 

observed. In the 4T1 model, c.l. administration improved treatment efficacy compared to 

systemic i.p. administration. This could be explained by the metastatic propensity and 

subsequent presence of tumor-associated antigen in tissues beyond the TME and TdLN 

including nTdLNs, thereby explaining the beneficial effects of nTdLN targeting.

When toxicity was explored, systemic i.p. administration increased the serum concentrations 

of ALT, whereas locoregional delivery did not. These data may be explained by a slower, 

more sustained delivery of ICB mAb into the circulation after cutaneous injection by virtue 

of clearance being mediated by lymphatic transport compared to a bolus delivery into the 

systemic circulation (46). Accumulation of mAb in systemic tissues was proportional to 

administered dose. This indicates that administration routes that afford dose sparing, such as 

injection into locoregional tissues, have the potential to minimize off-target toxicities.

There is interest in locoregional delivery of mAbs because systemic administration has 

several disadvantages, including cost and adherence (47). Local immune therapy via i.t. 

administration using aCTLA-4 and s.c. administration using aPD-1 has been reported 

for a variety of cancers including melanoma (36, 48). Here, we show that locoregional 

administration routes allow for efficient ICB mAb drugging of TdLNs to enable reduced 

dosing. This has advantages, including dose sparing to mitigate treatment toxicities and 

potential challenges associated with concentrating mAb solutions to accommodate the 

reduced injection volume relative to systemic infusions (~1/10), which can lead to protein 

aggregation, and therefore compromised efficacy, increased immunogenicity, and concerns 

for pharmacokinetic profiles (46). Moreover, this enables innovations in sustained mAb 

release strategies to be applied to ICB to reduce reliance on multiple injections and improve 

patient adherence. Because i.t. injections are not always feasible due to tumor size and 

internal location (48), locoregional administration targeting the LNs and not TME directly 

may also be advantageous as TIL frequencies are often low and exhausted T cells undergo 
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epigenetic reprogramming that can limit TIL rejuvenation potential (49, 50). In addition, as 

noted above, tumor physiology is highly variable, which can negatively influence i.t. mAb 

diffusion and lymphatic transport (51). However, TdLNs may be challenging to identify and, 

in some cases, absent due to removal during LN biopsy/dissection, which may limit this 

approach to certain indications or neoadjuvant settings. Nevertheless, locoregional injection 

at a distant site from the tumor that drains to the same TdLNs may be of interest as an 

alternative to i.t. administration to broaden the number of patients who might benefit from a 

locoregional treatment approach and reduce treatment invasiveness.

Limitations of this work include T cell phenotyping not being restricted to known antigen

specific T cell clones. Toxicity at the nontumor injection site, which may promote activation 

of non–tumor-specific T cells and thereby contribute to iRAEs, also remains unexplored. 

Despite overall improved efficacy with TdLN-directed ICB therapy, responses remained 

variable, suggesting the need for additional or combination therapy approaches to improve 

overall rates of response. Benefits to ICB therapeutic efficacy conferred by locoregional 

administration may also be limited to disease contexts with smaller tumor burdens, which 

may limit translation into the clinic.

In conclusion, directing ICB mAbs to (Td)LNs by locoregional administration enhanced 

antitumor efficacy compared to systemically administered mAb and reduced associated 

toxicities in both melanoma and breast cancers. This simple approach requires no chemical 

modifications to the ICB mAbs, only reformulation, and may hold potential for clinical 

translation due to the current FDA approval, interest in patient compliance, and need to 

improve safety and response rates.

MATERIALS AND METHODS

Study design

This study was designed to explore the effects of targeting ICB mAb to LNs on antitumor 

efficacy in mouse melanoma and breast cancer models. We evaluated in what tissues 

immune checkpoint pathways were active and explored how ICB delivery to LNs differed 

from systemic therapy with ICB alone or in combination with vaccination. Sample sizes 

were chosen on the basis of previously published studies. For animal studies, mice were 

randomized into various groups before treatment, with each cage having one mouse per 

group. Experiments were not performed in a blinded fashion.

Mice and cell lines

Cell lines were maintained in Dulbecco’s modified Eagle’s medium supplemented with 

10% fetal bovine serum and 1% penicillin/streptomycin/amphotericin B and periodically 

checked for mycoplasma contamination. C57Bl6 and BalbC mice were purchased from The 

Jackson Laboratory. All protocols were approved by the Institutional Animal Care and Use 

Committee. Tumors were implanted intradermally in 6- to 12-week-old mice and monitored 

in anesthetized mice by caliper measurements of tumor width, length, and depth. Mice were 

euthanized when tumors ulcerated or reached 1.5 cm in any dimension.
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Treatment of B16F10 melanoma–bearing mice

The dorsal skin of C57Bl6 mice was shaved, and B16F10 or B16F10-OVA cells (105) were 

implanted in the right dorsal flank on day 0. After 5 (when all tumors were visible), 7, and 

9 days, mice were i.d. injected with 150, 50, or 12.5 μg of anti-mouse CTLA-4 (clone 9H10 

or UC10–4F10–11; BioXCell) and/or rat anti-mouse PD-1 (clone RMP1–14; BioXCell) i.t., 

i.d. in the forelimb, or i.p. in 30 μl of saline. In abscopal tumor immunotherapy experiments, 

105 B16F10 cells were injected i.d. on the right dorsal skin of the mouse on day 0 and on the 

left dorsal skin on day 2. On days 5, 7, and 9, mice were injected with 150 μg of aCTLA-4 

(clone 9H10) and aPD-1 (i.d. or i.p.) in saline. For immune cell phenotyping, mice were 

euthanized on day 12 and tissues were harvested. In vaccination studies, at 4 and 10 days, 

CpG (3 μg) and OVA (10 μg) were i.d. administered in 30 μl of saline in each limb. On days 

5, 8, 11, and 14, mice received 150 μg of aCTLA-4 and aPD-1 mAb in 30 μl of saline either 

i.t., i.d. in the forelimb, or i.p. In studies evaluating the effects of sustained mAb release, 

Pluronic F127 (Sigma-Aldrich) was dissolved at 25 weight % in cold phosphate-buffered 

saline (PBS). Before injection, 25 μg of aCTLA-4 (clone 9H10) and aPD-1 mAb (5 μl) was 

mixed with 25 μl of the gel solution or PBS and i.d. injected once into one forelimb on day 

5.

In vivo mAb biodistribution studies

On day 5 after tumor implantation, mice were administered aCTLA-4 or aPD-1 mAb. 

Fluorescent imaging was performed with an IVIS Spectrum instrument (PerkinElmer) at the 

injection site over 24 hours. Twenty-four hours after mAb injection, mice were euthanized 

and tissues were collected for imaging and homogenization. Concentrations of mAb in 

homogenized tissues were determined using a standard curve of injected mAb solution in 

naïve tissue homogenates. Tissue background was subtracted from all measurements. For 

biodistribution experiments using aCD3 mAb, naïve mice were injected with 6.25 μg of 

mAb and euthanized after 1, 5, or 24 hours. LNs were either collagenase-treated for 30 

min followed by tissue disruption to form single-cell suspensions (a process described in 

Supplementary Materials and Methods) or immediately cut up and dispersed into a single

cell suspension to prevent ex vivo T cell labeling.

Treatment of E0771 and 4T1 breast cancer–bearing mice

E0771 (5 × 105) or 4T1 (3.5 × 105) cells resuspended in 30 μl of saline were implanted 

i.d. in the left mammary fat pad (fourth) in C57Bl6 or BalbC mice, respectively. For E0771 

experiments, aPD-1 or aPD-1 and aCTLA-4 (clone 9H10) in combination were administered 

i.d. when tumors were ~100 mm3. Alternatively, 30 μg each of aPD-1 and aCTLA-4 (clone 

4F10) mAb were administered on days 10, 14, and 17. For 4T1 experiments, 50 μg each of 

aPD-1 and aCTLA-4 (clone 4F10) mAb were administered on day 7 or 50 μg each of aPD-1 

and aCTLA-4 (clone 9H10) mAb were administered on days 7 and 10. At end point, LNs 

and the spleen were harvested and imaged and organ sizes were measured using ImageJ.

Statistics

Statistical significance of differences between experimental groups was calculated with 

Prism software (GraphPad). All data are expressed as means ± SD except for tumor growth 
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(SEM). ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05 by unpaired two-tailed 

t tests or one- or two-way analysis of variance (ANOVA) followed by Tukey post hoc test 

for multiple comparisons. For survival curves, log-rank (Mantel-Cox) test was performed. 

Original data are provided in data file S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Intratumoral administration of ICB promotes systemic antitumor immunity.
After B16F10 implantation, mice were administered 150 μg each of aPD-1 and aCTLA-4 

(9H10) mAb on days 5, 7, and 9 after tumor implantation i.p. or i.t. (A) Tumor growth 

curve of primary tumor (day 0 tumor implant). (B) Tumor growth curve of secondary tumor 

(day 2 tumor implant, nontreated tumor). (C) Survival curves of mice. Combined data of 

two independent repeats (total n = 10). Statistical analyses were done using ANOVA with 

Tukey’s test. Log-rank (Mantel-Cox) test for survival curves. *P < 0.05, **P < 0.01, and 

****P < 0.0001. Data are represented as means + SEM.
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Fig. 2. Tumor-bearing mice intratumorally administered ICB exhibit distinct T cell changes in 
TME, TdLN, and spleen.
(A) B16F10 tumor growth over 12 days with 150 μg of each ICB mAb [combination of 

aPD-1 and aCTLA-4 (9H10)] administered on days 5, 7, and 9 after tumor implantation. (B) 

Frequencies of CD4+FoxP3+ T cells. (C) Frequencies of CD8+ T cells in TME. Frequencies 

of granzyme B+ (D) and KLRG1+ (E) CD8+ T cells in TME. Frequencies of Ki-67+CD8+ 

T cells in TME (F) and lymphoid tissues (G). (H) Frequencies of “stem-like” (Tcf1+Tim3−) 

versus “effector-like” (Tcf1−Tim3+) CD8 T cells, pregated on PD-1+ cells, in the TME, 

nTdLNs, TdLNs, and spleen. (B to H) End point analyses of tissues on day 12. (D) to 

(F) represent one independent experiment (n = 5); (A) to (C), (F), and (G) represent two 

independent experiments (total n = 10). Statistical analyses were done using ANOVA with 

Tukey’s test. *P < 0.05, **P < 0.01, and ***P < 0.001. n.s., not significant. Data are 

represented by means + SEM (A) or ± SD (B to G).
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Fig. 3. Directed mAb delivery to various tissue combinations with different routes of 
administration.
Measured tissue concentrations of Alexa Fluor 647–labeled aPD-1 or aCTLA-4 (9H10) 

mAb. (A) Injection sites and color scheme. (B) mAb signal (IVIS quantification) in TME 

over 24 hours after injection. (C) mAb concentration in tumor, blood, and spleen 24 hours 

after injection. (D and E) Representative IVIS images of mAb accumulation in spleens 

(scale bar, 0.5 cm) (D) and LNs (scale bar, 0.25 cm) (E). (F) mAb concentrations in LNs 

24 hours after injection. (G and H) Measured concentrations of Alexa Fluor 647–labeled 

aPD-1 or aCTLA-4 in TdLNs using different mAb doses. (G) Representative IVIS images of 

mAb accumulation in TdLNs after i.l. administration (scale bar, 0.25 cm). (H) Quantification 

of (G). (I) Concentration of aCD3 (purple, left axis) and frequencies of T cell labeling of 

injected aCD3 (black, right axis) in LNs draining forelimb i.d. injection. Data represent two 

independent experiments (total n = 5). Statistical analyses were done using ANOVA with 

Tukey’s test. ***P < 0.001; n.s., not significant. Data are represented by means ± SD.
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Fig. 4. ICB directed toward TdLNs potentiates ICB therapeutic effects in melanoma.
B16F10 tumor growth and animal survival after aPD-1 monotherapy (A and B), aCTLA-4 

(9H10) monotherapy (C and D), and aPD-1 + aCTLA-4 (9H10) therapy (E and F) using 

150 μg of each mentioned mAb. Tumor growth is shown in (A), (C), and (E), and animal 

survival is shown in (B), (D), and (F). (A) to (D) represent one independent experiment (n 
= 5); (E) and (F) represent three independent experiments (total n = 15). Statistical analyses 

were done using ANOVA with Tukey’s test. Log-rank (Mantel-Cox) test for survival curves. 

*P < 0.05, **P < 0.01, and ****P < 0.0001. Data are represented by means + SEM.
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Fig. 5. ICB directed to TdLNs alone or in combination with the TME improves therapeutic 
effects of vaccination.
(A) B16F10-OVA treatment schedule and color scheme. Vaccination was performed by 

i.d. administration of 3 μg of CpG and 10 μg of OVA in each limb on days 4 and 

10. One-hundred fifty micrograms of each ICB mAb [aPD-1 and aCTLA-4 (9H10) in 

combination] using the indicated administration routes on days 5, 8, 11, and 14. (B) Tumor 

growth during the treatment window. (C) Animal survival curves. (D to F) Tumor volume 

(x axis) versus T cell infiltration (y axis): (D) CD8+/CD4+FoxP3+ TIL ratio, (E) CD8+ 

frequency of CD3+ TILs, and (F) CD4+FoxP3+ frequency of CD3+ TILs. (G) Frequencies 

of Ki-67+CD4+FoxP3+ in TME. (H) Frequencies of CD8+ T cells in TME. Frequencies of 

Ki-67+CD8+ T cells in TME (I) and lymphoid tissues (J). (B) represents three independent 

experiments (total n = 14); (C) represents one (vaccine control) or two (all groups excluding 

vaccine control) independent experiments (total n = 4 to 8); (D) to (J) represent two (vaccine 

control, ICB i.p., and ICB i.t.) or three (PBS control and ICB i.d.) independent experiments 

(total n = 8 to 14). Statistical analyses were done using ANOVA with Tukey’s test. Log-rank 

(Mantel-Cox) test for survival curves. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 

0.0001. Data are represented by means + SEM (B) or ± SD (G to J).
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Fig. 6. ICB directed to TdLNs alone or in combination with the TME potentiates ICB 
therapeutic effects independent of trTreg depletion.
B16F10 tumor growth and animal survival after ICB therapy using 150, 50, or 12.5 μg of 

each aPD-1 (clone RMP1–14) in combination with aCTLA-4 (clone 4F10); (A and B) i.p. 

administration, (C and D) c.l. administration, (E and F) i.l. administration, and (G and H) 

i.t. administration. Tumor growth is shown in (A), (C), (E), and (G), and animal survival is 

shown in (B), (D), (F), and (H). Combined data of two independent repeats (total n = 10). 

Statistical analyses were done using ANOVA with Tukey’s test. Log-rank (Mantel-Cox) test 

for survival curves. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Data are 

represented by means +SEM.
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Fig. 7. ICB directed to TdLNs elicits robust antitumor therapeutic effects in breast tumor 
models.
(A) Image of administration sites and color scheme. mAb concentrations in (B) TME, (C) 

spleen, and (D) LNs in E0771 tumor-bearing animals 24 hours after injection. (E) Growth 

curves of E0771 tumors treated with a single 100-μg dose of each aPD-1 and aCTLA-4 

(clone 9H10) when tumors reached approximately 100 mm3. (F) Survival of animals treated 

in (E). (G) Growth curves of E0771 tumors treated with 30 μg of each aPD-1 and aCTLA-4 

(clone 4F10) therapy on days 10, 14, and 20. (H) Survival of animals treated in (G). (I) 

Growth curves of 4T1 tumors treated with 50 μg of each aPD-1 and aCTLA-4 (clone 4F10) 

on day 7. (J) Survival of animals treated in (I). (B) and (D) to (F) represent two independent 

experiments (total n = 9 to 11); (C) and (G) to (J) represent one experiment (total n = 4 to 8). 

Statistical analyses were done using ANOVA with Tukey’s test. Log-rank (Mantel-Cox) test 

for survival curves. *P < 0.05, **P < 0.01, and ***P < 0.001; n.s., not significant. Data are 

represented by means + SEM (E, G, and I) or ± SD (B to D).
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Fig. 8. Locoregional administration reduces ICB-associated toxicities and improves TdLN
dependent effects of sustained mAb release.
Serum alanine transaminase (ALT) concentrations 12 days after B16F10 implantation and 

22 days after E0771 implantation (A) and 16 days after tumor implantation in vaccinated 

B16F10-OVA–bearing animals (B). (A) Closed circles, B16F10; open circles, E0771. Naïve: 

tumor-free mouse. PBS was administered i.t. (C) Liver mAb concentrations 24 hours after 

i.p. administration at various total doses. (D) mAb signal (IVIS quantification) in forelimb 

over 72 hours after injection. (E) dLN mAb concentrations 30 and 72 hours after injection. 

B16F10 tumor growth (F) and animal survival (G) after ICB therapy with 25 μg of each 

aPD-1 (clone RMP1–14) and aCTLA-4 (clone 9H10). (A) represents one experiment in each 

tumor model (total n = 10); (B) represents two (PBS control, vaccine control, ICB i.p., and 

ICB i.d.) or three (ICB i.t. and naïve) independent experiments (total n = 6 to 16); (C) to (G) 

represent one experiment [C and E, n = 2; D, n = 4; F and G, n = 4 (controls) or n = 8 (ICB 

groups)]. Statistical analyses were done using ANOVA with Tukey’s test. *P < 0.05, **P < 

0.01, ***P < 0.001. Data are represented by means + SEM (F) or ± SD (A, B, and D).

Francis et al. Page 24

Sci Transl Med. Author manuscript; available in PMC 2021 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	RESULTS
	Tumor-directed ICB augments local therapeutic responses
	Administration route affects mAb biodistribution
	TdLN-targeted ICB improves anti-melanoma response
	Locoregional ICB promotes tumor immunity in lymphoid tissues
	TdLN- and TME-directed ICB enable dose sparing
	Directing ICB to TdLNs improves therapeutic effects in breast cancer
	Locoregional administration reduces toxicities of ICB
	Controlled-release mAb formulation drugging TdLN improves effects of locoregional ICB

	DISCUSSION
	MATERIALS AND METHODS
	Study design
	Mice and cell lines
	Treatment of B16F10 melanoma–bearing mice
	In vivo mAb biodistribution studies
	Treatment of E0771 and 4T1 breast cancer–bearing mice
	Statistics

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.

