
Frontiers in Immunology | www.frontiersin.

Edited by:
Edecio Cunha-Neto,

University of São Paulo, Brazil

Reviewed by:
Luz Pamela Blanco,

National Institutes of Health (NIH),
United States

Katherine R. Martin,
Walter and Eliza Hall Institute of

Medical Research, Australia

*Correspondence:
Sharmila Bhattacharya

Sharmila.Bhattacharya@nasa.gov

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 23 May 2020
Accepted: 12 October 2020

Published: 02 November 2020

Citation:
Paul AM, Mhatre SD,

Cekanaviciute E, Schreurs A-S,
Tahimic CGT, Globus RK, Anand S,

Crucian BE and Bhattacharya S (2020)
Neutrophil-to-Lymphocyte Ratio:

A Biomarker to Monitor the
Immune Status of Astronauts.
Front. Immunol. 11:564950.

doi: 10.3389/fimmu.2020.564950

ORIGINAL RESEARCH
published: 02 November 2020

doi: 10.3389/fimmu.2020.564950
Neutrophil-to-Lymphocyte Ratio: A
Biomarker to Monitor the Immune
Status of Astronauts
Amber M. Paul1,2, Siddhita D. Mhatre1,3,4, Egle Cekanaviciute1, Ann-Sofie Schreurs1,
Candice G. T. Tahimic1,3,5, Ruth K. Globus1, Sulekha Anand6, Brian E. Crucian7

and Sharmila Bhattacharya1*

1 Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States, 2 Universities Space Research
Association, Columbia, MD, United States, 3 COSMIAC Research Center, University of New Mexico, Albuquerque, NM,
United States, 4 KBR, Houston, TX, United States, 5 Department of Biology, University of North Florida, Jacksonville, FL,
United States, 6 Department of Biological Sciences, San Jose State University, San Jose, CA, United States, 7 Biomedical
Research and Environmental Sciences Division, NASA Johnson Science Center, Houston, TX, United States

A comprehensive understanding of spaceflight factors involved in immune dysfunction and
the evaluation of biomarkers to assess in-flight astronaut health are essential goals for
NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker
candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity
environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-
lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established
ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating
wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV
simulation of leukocytes and HU-exposed mice showed elevated NLR profiles
comparable to spaceflight exposed samples. To assess mechanisms involved, we found
the simulated microgravity HARV-RWVmodel resulted in an imbalance of redox processes
and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant
treatment reversed these effects. In the simulated microgravity HU model, mitochondrial
catalase-transgenic mice that have reduced oxidative stress responses showed reduced
neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines
compared to wildtype HU mice, suggesting simulated microgravity induced oxidative
stress responses that triggered inflammation. In brief, both spaceflight and simulated
microgravity models caused elevated NLR, indicating this as a potential biomarker for
future in-flight immune health monitoring.

Keywords: neutrophils, spaceflight, simulated microgravity, NLR, inflammation, oxidative stress response
INTRODUCTION

Spaceflight can pose novel challenges to the health of astronauts. For instance, physiological aging
occurs significantly faster as a result of spaceflight, when measured by muscle wasting, loss of bone
density, and immune dysfunction (1, 2). Processes regulated by redox imbalance may contribute to
these adverse outcomes (3–9). Redox imbalance results from a disproportionate increase in reactive
org November 2020 | Volume 11 | Article 5649501
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oxygen species (ROS) produced by the mitochondria (10)
compared to antioxidants in the cell. Elevated ROS is also a
product of the oxidative burst response of neutrophils (11). In
response to stimuli, terminally differentiated neutrophils in
circulation become activated and engage the oxidative burst
response, producing inflammatory mediators (11). If left
unchecked, elevated ROS can cause cellular damage that
potentiates inflammation both on Earth and during spaceflight
(4, 12). Therefore, it is necessary to maintain tight regulation of
the oxidative burst response to limit inflammation (13) and
regulate immunity during prolonged spaceflight.

Neutrophils are granulocytes that constitute approximately
50–70% of the total leukocyte population in humans.
Neutrophils are the first responders to infection or injury and
are typically short-lived in blood circulation under homeostatic
conditions (14, 15). Lymphocytes are an important group of
white blood cells involved in both innate and adaptive immunity.
They constitute 20–50% of total leukocytes in circulation and
consist of natural killer, natural killer T cells, innate lymphoid
cells, T cells, and B cells (16, 17). On Earth, elevated neutrophil-
to-lymphocyte ratio (NLR) is a useful biomarker to measure
subclinical inflammation in humans (18). Chronic, persistent
inflammation can be a major pre-existing cause of disease
development (19, 20) and can be monitored by the expression
of blood-based biomarkers. For example, elevated NLR predicts
poor prognosis in some cancers (21–24), positively correlates
with age (25), and reflects chronic stress in mice (26). Although,
elevated human NLR (>3.53) (27) has been implicated in
clinical settings to identify heightened inflammation (18), this
biomarker has not yet been recognized for spaceflight-induced
inflammation. Spaceflight raises circulating white blood cell
(WBC) counts, primarily granulocytes, may reduce lymphocyte
counts (12, 28, 29), and impairs immune cell functions (6, 12, 30,
31). Although, the spaceflight environment elevates circulating
blood granulocytes counts in astronauts (29), the underlying
molecular mechanisms remain elusive. Currently, there are no
well-established biomarkers for astronauts on long-duration,
deep space missions, where medical intervention will be
limited. Thus, identifying biomarkers to monitor in-flight
astronaut health and developing countermeasures that reverse
these adverse outcomes are necessary for successful future
missions to the lunar surface and Mars. Therefore, we propose
that an elevated NLR may be a useful prognostic indicator or
diagnostic biomarker to assess astronaut immune status during
long-duration missions.

To test this, we analyzed both spaceflight-treated, and
ground-based simulated microgravity-treated, samples to
determine if NLR was elevated. Analyses of complete blood
count (CBC) leukocyte differentials revealed spaceflight caused
a progressive increase of granulocyte-to-lymphocyte (GLR) in
astronauts and NLR in rodents. To simulate microgravity using
established methods, human leukocytes were cultured in high-
aspect rotating wall vessels (HARV-RWV) in vitro and mice
were hindlimb unloaded (HU) in vivo (32, 33). HARV-RWV is a
bioreactor allowing 3D-spatial freedom for cells and can model
microgravity. It has two unique aspects similar to the spaceflight-
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associated microgravity environment, (1) a state of constant
suspension, and (2) a quiescent surrounding without any shear
or turbulent forces. Previous studies have determined leukocyte
responses utilizing HARV-RWV produce similar responses as
leukocytes cultured post-landing or ex vivo in flight (34–42).
Hindlimb unloading (HU) is a ground-based model mimicking
spaceflight-associated microgravity in rodents. The hindlimbs of
rodents are elevated to produce 30–40 degree head-down tilt,
inducing a cephalad fluid shift and preventing weightbearing
of hindlimbs (43). The HU model can lead to immune, bone,
and musculoskeletal alterations, some of which have also
been observed in International Space Station (ISS) crew (44,
45). In our study, functional outputs of neutrophils in response
to simulated microgravity (sµg) revealed elevated ROS
and proinflammatory myeloperoxidase (MPO) expression in
activated neutrophils. Interestingly, this effect could be
mitigated with antioxidant treatment. Furthermore, sµg HU
wildtype (Wt) mice displayed elevated neutrophils, NLR and
marginal inflammation, which was dampened in mitochondrial
catalase (mCAT) transgenic mice, known to show reduced
oxidative stress responses. Our findings demonstrated that,
albeit distinct mechanisms, both sµg models (in vitro HARV-
RWV and in vivo HU), displayed elevated oxidative stress and
NLR, that could be mitigated by antioxidants. Therefore,
modifying mechanisms involved in ROS-driven inflammation
(46) may provide a promising avenue to limit chronic
inflammation and maintain homeostatic immunity during
long-duration missions.
MATERIALS AND METHODS

Mouse and Human Ethics
Deidentified, human buffy coat samples from healthy donors
were obtained from Blood Centers of America, Oklahoma Blood
Institute, and isolated on-site at NASA Ames. The use of human
samples was approved by NASA Ames Institutional Review
Board (IRB, 201791646CTO-02, HR-357, and HR-358) with
informed consent from each blood donor. Astronaut and
rodent CBC data sets were approved for use by the electronic
(e)IRB/Life Sciences Data Archive (LSDA) advisory board
(#11028), sourced from previous publications (29, 47, 48). All
mice were purchased from Jackson Laboratories and were
housed in the Animal Care Facility at Ames Research Center.
Hindlimb unloading and subsequent blood isolation procedures
were performed following NASA Ames Research Center
Institutional Animal Care and Use Committee protocol
(IACUC, NAS-17-001-Y2).

Cell Culture
Human whole blood samples were separated using centrifuge
gradient Ficoll-paque Plus (Thermo Fisher Scientific) and the
lymphocyte/monocyte layer and granulocyte/top red blood cell
(RBC) layers were collected. Cells were RBC-lysed with 1XRBC
lysis buffer (Thermo Fisher Scientific) and resuspended (5 × 105

cells/ml) in RPMI containing 10% fetal bovine serum (FBS) and
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1% Penicillin/Streptomycin (Pen/Strep, Thermo Fisher
Scientific) for subsequent assays.

In Vitro Simulated Microgravity of
Leukocytes Using HARV-RWV
3Dhigh-aspect rotatingwall vessels (HARV-RWV, Synthecon)were
used to simulate microgravity with low-shear, hydrodynamic fluid
flow and omni-directional gravitational force on suspended cells in
rotating free-fall (34, 49–51). To optimize the measurement of
oxidative stress from granulocytes in human leukocytes, suspended
cells were cultured at 5 × 105 cells/ml in 10 ml and rotated at 20
revolutions per minute (RPM) in a parallel-to-ground axis to
simulate microgravity (sµg, omnidirectional g-force) for 20 h and
controls were plated in upright T-25 flasks (1 g, unidirectional g-
force). Following incubation, 1ml of samplewas collected, SYTOX™

live/dead dye-Red (Thermo Fisher Scientific) was added to the
sample and cells were immediately acquired on a BD
FACSMelody™. Stained cells were considered dead, and cells that
did not stain were considered live and were reported. For neutrophil
differential experimentswithantioxidant treatment,N-acetyl cysteine
(NAC, 1 mM) was added toWBC (5 × 105 cells/ml) and cultured in
HARV-RWV for 20 h, followed by flow cytometric analyses.

Mouse Blood Collections
Blood was collected from the vena cava on the day of euthanasia
and RBC were lysed using 1XRBC lysis buffer (Thermo Fisher
Scientific). Remaining WBC were fixed (2% PFA), washed in
PBS, labeled with leukocyte subset markers, and analyzed by flow
cytometric analyses.

Flow Cytometry Staining and Methods
Mouse and human blood samples were isolated, as described
above, and single-cell suspensions were generated for flow
cytometry acquisition. Debris was gated off and forward scatter
(FSC-A) and side scatter (SSC-A) profiled granulocyte,
monocyte, and lymphocyte populations were measured. Mouse
antibodies, including anti-CD45, anti-Ly6g, and anti-CD11b,
and human antibodies, including anti-CD66b, anti-CD16, anti-
MPO, CellROX™, SYTOX™ live/dead stain, and active Caspase
3/7 were used to label multiple leukocyte subsets, and measure
ROS formation and cellular viability. All antibodies and dyes
were purchased from Thermo Fisher Scientific. Unstained and
single-color compensation controls were used for all flow
cytometric experiments, with a minimum of 30,000 events
collected/sample. All acquisitions were performed using a S3
Cell Sorter (Bio-Rad) or a BD FACSMelody™ (BD biosciences),
and FlowJo (version 10.5.3) was used for data analysis.

Quantitative PCR (qPCR)
Total RNA was extracted from cells using Trizol reagent
(Thermo Fisher Scientific) and converted to cDNA using
iSCRIPT cDNA synthesis kit (Bio-Rad). All assays were
performed using iQ SYBR Green Supermix (Bio-Rad). An ABI
7500 Real-Time PCR (Applied Biosystems) was used and
threshold cycle values that were ≥35 cycles were excluded from
the results. Primers were designed using BLAST and purchased
from IDT with the following sequences: mouse b-Actin forward
Frontiers in Immunology | www.frontiersin.org 3
5’-AGAGGGAAATCGTGCGTGAC-3’ and reverse 5’-CAATA
GTGATGATGACCTGGCCGT-3’, Myeloperoxidase (Mpo)
forward 5’-ACCTACCCCAGTACCGATCC-3’ and reverse 5’-
AACTCTCCAGCTGGCAAAAA-3’, NADPH oxidase (Nox-2,
gp91phox, Cybb) forward 5’-ACTCCTTGGAGCACTGG-3’ and
reverse 5’-GTTCCTGTCCAGTTGTCTTCG-3’, and Il-1b
forward 5’-CCAAAGAAGAAGATGGAAAAGCG-3’ and
reverse 5’-GGTGCTGATGTACCAGTTGGG-3’.

Mice and Hindlimb Unloading
All mice handling and experiments were performed according to
the pre-approved NASA Ames Institutional Animal Care and
Use Committee (IACUC). Mice were generated for experiments
by breeding male, hemizyogous mCAT mice [male B6.Cg-Tg
(CAG-OTC/CAT) 4033Prab/J strain] (52, 53) with female
wildtype (Wt) mice (C57BL/6NJ) (Jackson Laboratories, Bar
Harbor, ME). C57BL/6NJ Wt mice were used as controls. DNA
was purified from tail snips using RedExtract-N-Amp (Sigma, St.
Louis, MO) followed by genotyping using forward 5’-
CTGAGGATCCTGTTAAACAATGC-3’ and reverse 5’-
CTATCTGTTCAACCTCAGCAAAG-3’ (54) primers for the
mCAT gene. For HU experiments, female mice were
acclimated to their assigned cages three days prior to the onset
of HU. Animals were 16-weeks of age at the beginning of HU.
For the 14-day HU study, C57BL/6NJ Wt female mice were
assigned to one of two treatments: normally loaded (NL)
controls, singly housed in standard vivarium cages or HU. For
the 30-day HU experiment, mice were assigned to one of four
groups: Wt/NL, Wt/HU, mCAT/NL, or mCAT/HU. In both 14-
and 30-day HU studies, mice were housed under 12 h light and
12 h dark cycle conditions and provided cotton nestlets (Ancare,
NES3600) as enrichment. Nestlets were refreshed daily. Ambient
temperature ranged from 23.3 to 25.6°C. Body weights were
monitored every 2–3 days throughout the experiment. Blood
draws were performed at euthanasia on days 14 or 30 (32).

Statistical Analyses
Data were compared with either paired or unpaired,
nonparametric or parametric analyses, or with one- or two-
way ANOVA using GraphPad Prism software (version 6.0). A
p < 0.05 was considered statistically significant. All statistical
analyses were supported by a trained statistician.
RESULTS

Spaceflight Elevates NLR and GLR
Peripheral WBC data from previously space-flown rodent and
astronaut experiments were re-analyzed to determine the
contribution of spaceflight to NLR and GLR immune profile
shifts. In rodents (47, 48), spaceflight increased NLR after 14
days in-flight and immediately post-landing (Figure 1A). Later
post-flight (2–8 days after landing, R+2 to R+8), NLR decreased
relative to flight (F14) and landing (R+0) values, suggesting a re-
adaptation response to Earth’s 1 gravity (1 g) (Figure 1A).
Retrospective GLR data were not recorded for this spaceflight
mission. Human WBC data (29) were re-analyzed and GLR was
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elevated after 180 days on-orbit (late) and in samples collected
within 2–3 hours post-landing (R+0) (Figure 1B). Later post-
flight (30-day, R+30), GLR recovered to pre-flight baseline levels
(L-180). Retrospective NLR data were not recorded for this
mission. Thus, a progressive increase in NLR and GLR
occurred in-flight and immediately post-landing in rodents
and humans, suggesting NLR may be a useful biomarker to
monitor astronaut immune status.

HARV-RWV sµg Elevates NLR in Human
Leukocytes In Vitro
Due to the constraints of conducting spaceflight experiments, we
further confirmed these results using an in vitro sµg model. For this,
human WBC were cultured in HARV-RWV sµg for 20 h. Flow
cytometry showed sµg increased granulocyte percentage (%) and
absolute counts, reduced lymphocyte and monocyte %, and
although not statistically significant, a reduced trend in absolute
counts (forward scatter area, FSC-A versus side scatter area, SSC-A)
(Figures 2A, B, and Figure S1A), and increased GLR (Figure 2C).
To determine if altered GLR was due to elevated survival of
granulocytes or increased death of lymphocytes, active Caspase 3/
7 staining was performed, which indicated elevated lymphocyte
apoptosis in sµg (Figures 2D, E). To characterize human neutrophil
populations within the WBC pool following sµg, cell surface
markers CD66b+ and CD16+ were used (55–58), which displayed
elevated neutrophils (Figure 2F) and elevated NLR (Figure 2G).
Collectively, these findings confirm the utility of NLR as a
biomarker to monitor astronaut immune status.

HARV-RWV sµg Elevates ROS and
Activates Neutrophils, While the
Antioxidant N-Acetyl Cysteine
Ameliorates This Effect
Elevated percentage and absolute count of granulocytes within
WBC (Figures 2A, B, and Figure S1A) were observed in sµg,
with no difference in apoptosis (Figures 2D, E). Elevated percentage
of neutrophils within WBC (Figure 2F) were also observed in sµg.
Frontiers in Immunology | www.frontiersin.org 4
Since mature granulocytes, including neutrophils, in blood are non-
proliferating, terminally differentiated cells, elevated percentages
may be due to differential light scatter properties, indicative of
cellular activation. CD66b not only serves as a marker for human
neutrophils, but its cell surface expression level per cell is also
elevated in activated neutrophils (58, 59). Therefore, we sought to
determine if sµg can activate neutrophils. We found sµg resulted in
elevated cell surface receptor median fluorescence intensity (MFI)
expression of CD66b per granulocyte, with no difference in CD16
MFI (Figures 3A, B), suggesting neutrophil activation during sµg.
We further confirmed neutrophil activation by uncovering elevated
cell surface receptor CD11b median fluorescence intensity (MFI)
within CD16+CD66b+ granulocytes (Figures S1B, C). Activated
neutrophils also express elevated reactive oxygen species (ROS) and
myeloperoxidase (MPO) during the oxidative burst response (11,
60–62). Furthermore, spaceflight and analog models on Earth (4–9,
63) can promote redox imbalance, triggering cellular damage and
persistent inflammation (12). We found ROS (via mean
fluorescence intensity, or MFI) per granulocyte and MPO (mean
fluorescence intensity, MFI) per neutrophil, were both elevated in
sµg, collectively suggesting sµg caused neutrophil activation
(Figures 3C, E).

N-acetyl cysteine (NAC) is an antioxidant that scavenges free
radicals, promotes glutathione biosynthesis, and decreases
mitochondrial membrane depolarization (64). To assess the effects
of NAC on neutrophil activation we cultured WBCs in the presence
or absence of NAC (1 mM) under sµg for 20 h. The results showed
reduced expression ofMPO in the presence of NAC (Figures 3D, E),
suggesting antioxidant treatment ameliorates sµg induced neutrophil
activation, thus serving as a promising countermeasure to suppress
spaceflight-induced inflammation.

Hindlimb Unloading (14-day) smg Increases
Circulating Blood Neutrophils and Elevates
NLR In Vivo
To test the effects of sµg on immunity in an in vivo model (32),
blood was collected from wildtype HU (Wt/HU) mice following
A B

FIGURE 1 | Spaceflight elevates NLR and GLR. (A) Rodent NLR from Space Life Sciences (SLS)-2 mission (47, 48) (n = 5–15). (B) Human GLR from published
data (29) (n = 23). L, launch; F, flight; R, return on Earth denoted in days. “Ear”ly, day 14 in-flight; “mid,” days 60–120 in-flight; and “late,” day 180. A non-parametric,
unpaired Mann-Whitney test compared ground controls with in-flight samples at each timepoint in rodent data set and a parametric, paired Student’s t-test
compared to L-180 days was performed in human data set, a * indicates p < 0.05. Error bars denote standard error of mean.
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14 days of HU. Cells were immunoprofiled to determine
neutrophil counts and NLR in circulating blood. Ly6g is a
ubiquitous cell surface marker in mice used to distinguish
eosinophils/myeloid-derived suppressor cells (Ly6glow) from
neutrophils (Ly6ghigh) (65) (Figure 4A). Compared to
normally loaded (NL) controls, no difference was observed in
eosinophil/myeloid-derived suppressor cell % (Figure 4B) and
absolute counts (Figure S2A) populations, while increased %
(Figure 4C) and absolute counts (Figure S2B) of neutrophils
were observed in HU. No difference in lymphocyte % (Figure
4D) or absolute counts (Figure S2C) were noted in the in vivo
HUmodel, in contrast with the reduced lymphocytes % observed
in vitro HARV-RWV sµg-treated leukocytes (Figure 2B) with
increased apoptosis of lymphocytes. No significant differences
Frontiers in Immunology | www.frontiersin.org 5
were observed with monocyte % or absolute counts (Figures
S2D, E). However, significantly elevated NLR was observed
following 14 days of HU (Figure 4E). Therefore, HU (14-day)
displayed elevated NLR values as observed previously with
rodents and humans in spaceflight and sµg experiments,
confirming elevated NLR in multiple reduced gravity models,
albeit produced via potentially different mechanisms.

Prolonged Hindlimb Unloading (30-day)
sµg Results in Elevated Blood Neutrophil
Persistence and NLR, While This Effect is
Mitigated in mCAT Mice
Elevated neutrophil numbers and persistence in blood
circulation result in tissue damage and impaired immune
A B

D E

F G

C

FIGURE 2 | HARV-RWV sµg elevates GLR and NLR. (A) Flow scatter plot: G, Granulocyte; M, Monocyte; L, Lymphocytes. (B) Percent (%) live population of each
cell type (n = 37–42). (C) GLR based on % population of each cell type (n = 37–42). (D) Representative flow histogram plots of active Caspase 3/7 within each
population type. (E) Percent (%) active Caspase 3/7 fluorescence within all events per leukocyte population (n = 10). (F) Bar graph of neutrophils (CD66b+CD16+)
within WBC post-20 h incubation at 1 g and sµg (n = 28). (G) Total NLR (n = 28). All experiments were repeated at least twice. A non-parametric, Wilcoxon matched
pairs signed rank test compared to 1 g was performed for sµg leukocyte differential analyses and GLR/NLR determination. A * indicates p < 0.05 and error bars
denote standard error of mean.
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responses (66). HU also induces redox imbalance (8). Therefore,
we compared the effects of prolonged HU (30-day) in Wt mice
with transgenic mice expressing human mitochondrial catalase
(mCAT) (54). Catalase is an antioxidant enzyme that converts
reactive hydrogen peroxide into non-reactive water and oxygen,
a cellular antioxidant mechanism that restores redox balance.
Comparable to 14-day HU, 30-day HU in Wt mice resulted in
elevated neutrophils, no significant difference in lymphocytes,
and an elevated NLR, while these results were mitigated in
mCAT/HU mice (Figures 5A–C and Figure S3). Oxidative
stress and inflammatory gene expression in Wt and mCAT
mice were assessed by qPCR. Compared to Wt/NL controls,
Mpo (p = 0.0240*) was increased inWt/HU (Figure 5D), while a
non-significant elevation in NADPH oxidase-2 (Nox-2, p =
0.6411) and Il-1b (p = 0.1349) were also observed (Figures 5E,
F). On the other hand, mCAT/HU mice partially mitigated some
of these effects (Figures 5D–F). Collectively, prolonged HU (30-
days) induced persistent NLR, oxidative stress and marginal
inflammation, while catalase overexpression mitigated some of
these outcomes.

Collectively, our findings demonstrated that, through
potentially different mechanisms, both spaceflight and multiple
sµg models elevated NLR, ROS, and MPO inflammation, while
Frontiers in Immunology | www.frontiersin.org 6
antioxidants mitigated some of these outcomes. Therefore,
elevated NLR may be a suitable prognostic biomarker to
monitor astronaut immune status and inflammation during
long-duration missions.
DISCUSSION

Spaceflight causes immune dysfunction that can lead to health
risks for astronauts. Health risks that arise from immune
dysfunction are complex and include an inability to defend
against pathogens, altered tolerance to self-antigens resulting in
potential autoimmunity development, chronic inflammation, and
immune senescence. Therefore, mitigation during spaceflight will
likely require selective targeting of specific immune cell types and/
or developmental stages. Elevated NLR may be a prospective
biomarker candidate to identify immune deviations that can
cause disease. Currently, elevated NLR is used as a clinical
biomarker to detect sub-clinical inflammation in humans and
predicts poor prognosis in cancer (18). In this study, a spike in
GLR in humans and NLR in rodents was observed at landing and
elevated GLR and NLR were observed during spaceflight
(Figure 1). In humans, GLR was elevated at 180-days in-flight,
A B

D EC

FIGURE 3 | HARV-RWV sµg activates neutrophils to produce ROS and MPO, while antioxidant treatment ameliorates this effect. (A) Representative CD16+ and CD66b+

median fluorescence intensity (MFI) histograms. (B) Median fluorescence intensity (MFI) cell surface expression of CD16+ and CD66b+ per granulocyte (n = 32).
(C) CellROX measurement of mean fluorescence intensity (MFI) of ROS per granulocyte (n = 10). Positive controls (+ve control) included a 30-min incubation with the
ROS-inducer tert-Butyl hydroperoxide (TBHP, 400 µM) (n = 2). (D) Representative flow histogram plot of MPO mean fluorescence intensity (MFI). (E) MPO MFI per
neutrophil (CD66b+CD16+) in the presence or absence of the antioxidant, N-acetyl cysteine (NAC, 1 mM, n = 10–24). All experiments were repeated at least twice. A
non-parametric, Wilcoxon matched pairs signed rank test compared to 1g or control groups, a * indicates p < 0.05, a # indicates the positive control with a p<0.05
compared to 1g. Error bars denote standard error of mean.
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suggesting prolonged exposure to spaceflight caused leukocyte
differential changes. This change in immune differentials may be
in response to elevated inflammation experienced in-flight (4, 6,
12), since elevated, chronic inflammation is often coupled with
immune dysfunction and disease development (13, 19, 20, 67–70).
Therefore, monitoring distinct biomarkers, such as elevated NLR,
can determine when countermeasures can intervene to avert
immune dysfunction, promote immune recovery, and prevent
disease development.

Elevated numbers of granulocytes and neutrophils were
observed in vitro following 20 h of HARV-RWV modeled
microgravity in human peripheral blood (Figure 2 and Figure
S1). However, since mature neutrophils are terminally
differentiated in blood circulation, i.e., banded or segmented
neutrophils, we estimate that this increased percentage is due to
increased scatter properties indicative of cellular activation. Indeed,
elevated cell surface expression of CD66b and CD11b per
granulocyte, which are activation markers for neutrophils (58,
59), were increased in sµg (Figure 3 and Figure S1). Further
studies revealed elevated ROS and MPO expression (Figure 3),
confirming HARV-RWV sµg resulted in granulocytes, and in
particular, neutrophil activation. Physiological effects of elevated
active granulocytes or neutrophils in circulation intensifies sterile
inflammation (70–72), promotes edema, and non-specific tissue
damage (73), and can threaten astronaut health if not adequately
controlled. Interestingly, MPO gene expression (Figure 5D) was
elevated in HU, suggesting immature neutrophil entry into
blood circulation, compared to neutrophil activation observed in
Frontiers in Immunology | www.frontiersin.org 7
vitro in the HARV-RWV. MPO gene synthesis only occurs in
bone marrow early in neutrophil development, i.e. immature
neutrophils (myeloblasts, promyelocytes, and myelocytes). MPO
gene expression ends once neutrophils differentiate into
metamyelocytes (74) and synthesized MPO protein is packaged
into granules released during neutrophil activation (75). Typically,
immature neutrophils are not released into blood circulation unless
the body is in a diseased or inflammatory state (74, 75). However,
since MPO gene expression was elevated in HU mice blood, this
suggests the potential for myelocyte/immature neutrophil
infiltration and may also serve as a biomarker for elevated
inflammation during spaceflight. To our knowledge no
measurements have been recorded for elevated immature
neutrophils in blood circulation in-flight; however, elevated
neutrophils were identified in blood from 9 of 16 astronauts at
landing (6, 76, 77). As compared to the rodent spaceflight results
(in-flight day 14), elevated neutrophils were also observed at days
14 and 30 of HU in mice (Figures 4C and 5A), suggesting the
physical effects offluid-shifting experienced during spaceflight and
HU may stimulate the release of neutrophils into circulation;
however this requires further investigation.

Indeed, elevated MPO during sµg may contribute to immune
dysfunction. MPO catalyzes hydrogen peroxide into reactive
intermediates that can damage proteins, lipids, and DNA (67).
Excess MPO impairs phagocytic function (67–69) and triggers
neutrophil degranulation, causing inflammatory tissue damage
(78) in cardiovascular disease (62, 67, 79). Pathologically this is
relevant during spaceflight, as cardiovascular disease is a
A B

D E

C

FIGURE 4 | 14-day HU sµg increases number of circulating blood neutrophils and elevates NLR. Blood from HU and NL (14-day) Wt mice. (A) Representative flow
cytometric gating scheme for Ly6glow (eosinophils/myeloid-derived suppressor cells) (65) and Ly6ghigh (neutrophils) within CD11b+/CD45+ myeloid cells and CD11b-/
CD45+ lymphocytes. % of eosinophils/myeloid-derived suppressor cells (B), neutrophils (C), and lymphocytes (D). (E) NLR deduced from neutrophils (Ly6ghigh

CD11b+/CD45+ events) to lymphocytes (CD11b-/CD45+ events) (n = 7). A non-parametric, unpaired Mann-Whitney test compared to NL controls was performed, a *
indicates p < 0.05. Error bars denote standard error of mean.
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prominent risk factor associated with returned astronauts (80).
Furthermore, elevated NLR is currently used as a predictor of
cardiovascular disease risk on Earth (81), thereby highlighting
the clinical relevance of monitoring NLR during spaceflight.
Neutrophil oxidative burst responses and elevated ROS can
induce cellular death (82), including lymphocyte apoptosis
(83), and suppression of T lymphocyte function (84). HARV-
RWV sµg induced ROS in granulocytes, indicating HARV-RWV
sµg activated granulocytes and triggered the oxidative burst
response. Thus HARV-RWV sµg can serve as a valuable model
to study ROS-induced inflammation (72, 85). Indeed, redox
imbalance occurs in humans and cell cultures exposed to
spaceflight (4–6) and in vitro ground-based sµg models (8, 9,
86). The cause of elevated ROS in sµg may be due to: (1) cell
death factors or other unknown stimulators of the oxidative
burst response, (2) a mechanosensitive stress receptor in
phagocytes that triggers redox imbalance (87), and/or (3) a
combination of these effects. In our study, HARV-RWV sµg
induced active Caspase 3/7 expression in lymphocyte
populations (Figure 2D), indicating lymphocyte apoptosis and
shifting of immune differentials to favor higher NLR and GLR.
Further analyses of our in vivo HU studies revealed no difference
in lymphocyte percent or absolute count populations (Figures 4
and 5, and Figures S2 and 3) compared to HARV-RWV sµg
Frontiers in Immunology | www.frontiersin.org 8
studies, suggesting elevated lymphocyte recovery or unknown
ROS-quenching mechanisms that limit lymphocyte apoptosis,
both of which require further studies.

Therefore, the two sµgmodels, HARV-RWVandHU, displayed
different mechanisms towards generating an elevated NLR. The
HARV-RWV microgravity model appears to display robust
lymphocyte turnover, i.e. elevated lymphocyte apoptosis, and
most likely immune function that may differ from astronauts in-
flight. However, this does not rule out that lymphocyte apoptosis
does not occur in vivo HU, as turnover of lymphocytes to replace
loss most likely occurs, albeit apoptosis may occur at a slower rate
than in vitro HARV-RWV. Furthermore, ROS concentration
within each sµg model may be drastically different. For example,
ROS levels inHARV-RWVmaybemuchhigher in the absence of in
vivo ROS quenchers compared to 14- or 30-day HU, which would
affect the rate of lymphocyte apoptosis (88, 89). Indeed,
concentration and exposure time of ROS determines cellular
responses. Homeostatic levels of ROS can promote cell survival,
while elevated ROS (oxidative stress) can induce cellular death (82).
In line with this, the timeline of measurements of lymphocyte
counts (20 h HARV-RWV versus 14- and 30-days HU) differ
between the two models; therefore direct comparisons cannot be
assumed. Finally, the HARV-RWV model cultured human blood
samples, which have different leukocyte percentages compared to
A B

D E F

C

FIGURE 5 | 30-day HU sµg results in elevated blood neutrophil persistence and NLR with this effect mitigated in mCAT mice. Blood from HU (30-day) Wt and
mCAT mice. % neutrophils (Ly6ghigh CD11b+/CD45+ events) (A), lymphocytes (CD11b-/CD45+) (B), and NLR (C) from NL and HU mice (n = 5–8). qPCR relative fold
change (RFC) of Mpo (D), Nox-2 (E), and Il-1b (F) in blood collected from Wt and mCAT, NL and HU mice (30-day, n = 3–8). A two-way ANOVA and a non-
parametric, Dunn’s multiple comparisons test was performed between groups, a * indicates p < 0.05. Error bars denote standard error of mean.
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mice leukocytes in theHUmodel; therefore the kinetics of apoptosis
across the two microgravity models would also be affected. Crucian
et al. showed there is an elevation of granulocytes in blood
circulation, while no differences are observed in lymphocyte
absolute counts, suggesting lymphocytes may not undergo
apoptosis in spaceflight; rather there may be release of more
granulocytes into blood circulation (29). Controversially however,
multiple reports have indicated lymphocytes and lymphocyte-like
cell lines undergo apoptosis during spaceflight/microgravity
conditions (36–42), albeit measurements were either reported
post-landing or from ex vivo cell cultures in flight. In fact, the role
of apoptosis in lymphocyte depression (ROALD) experiment that
was part of the BIO-4 mission and comprised of ESA, Energia, and
NASA agencies, was performed with the goal to understand how
microgravity affects lymphocyte apoptosis. The results showed after
48 h on-board the ISS ex vivo cultures of lymphocytes displayed
increased DNA fragmentation, PARP protein expression, and
elevated p53 expression, compared to ground controls (36). Due
to this, we believe the in vivo HU microgravity model, although
having its own limitations, may be a better representative ground-
based model for spaceflight. Nonetheless, additional studies are
required to better understand the degree of lymphocyte turnover
during in vivo HU that is comparable to spaceflight.

Monocytes were significantly reduced following HARV-RWV
(Figure 2B); however no differences were observed in HU mice
(Figures S2D, E), further indicating the variability between the
two simulated microgravity models. Yet, inconsistency with
these cell types in terms of population differentials have also
been noted across spaceflight literature (77, 90, 91), which may
be a factor of sampling timepoints. However, consensus suggests
phagocytic function of monocytes following spaceflight is
impaired (92, 93). Phagocytic impairment of monocytes can
directly affect clearance of neutrophils from circulation,
inflammation resolution (94), and can impact NLR. Therefore,
further research into the function and distribution of monocytes
following simulated microgravity are currently underway.

Transgenic mice expressing the human antioxidant gene
catalase reversed HU-induced elevation of NLR and dampened
inflammatory gene expression (Figure 5), suggesting redox
imbalance caused leukocyte differential changes. In line with this,
mice deficient in apolipoprotein E (ApoE), a protein with
antioxidant activity, display elevated ROS expression and
activated neutrophils (95). In our study, HARV-RWV sµg of
human leukocytes induced neutrophil activation that was
reversed in the presence of the antioxidant NAC (Figure 3D),
further suggesting antioxidants can suppress inflammation. Indeed,
in vivo NAC treatment successfully ameliorated acetic acid-
induced colitis by reversing pro-inflammatory mediators TNF-a,
IL-6, and MPO in rats (96). Collectively, these results indicate
antioxidants as viable countermeasures to regulate spaceflight-
induced inflammation and immune dysfunction.

Clinically, elevatedNLR (>3.53) (27) is a prognostic indicator for
cancer development, cardiovascular disease, inflammation, and
infectious conditions (18, 21–23, 25), but no NLR standard has
been established for astronaut immunity. Our results revealed
elevated GLR in astronauts at landing (GLR = 3.6, Figure 1B),
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compared to clinically relevant GLR (>2.24) (97), may result in
biological significance for astronaut health. Although restoration to
normal GLR occurred at landing on Earth, landing on the lunar
surface and/or Mars, where gravity is less than Earth’s, may pose a
significant risk to astronaut immune recovery. Therefore,
monitoring and developing countermeasures to mitigate elevated
NLR, GLR, and inflammatory neutrophil phenotypes for future
long-duration and long-distance space travel are essential for
mission success.

In summary, we identified increased GLR and NLR in both
human and rodent spaceflight samples and ground simulations
of microgravity. Our results in vitro indicated that leukocytes
shift in favor of elevated activated inflammatory neutrophils,
which may amplify disease development in vivo. Further,
antioxidants may be useful countermeasures to ameliorate
these outcomes in sµg, as NAC treatment inhibited activated
inflammatory human neutrophils in HARV-RWV and catalase
partially mitigated elevated NLR in HU mice. Based on these
findings, we suggest monitoring both in-flight and landing NLR
to assess astronaut immune status. We further advocate the
investigation of antioxidants as future countermeasures to
mitigate immune deviations, including elevated NLR and
inflammation, to safeguard astronaut health on future missions.
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