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Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical
models used to describe the motion of cell fronts, such as Fisher’s equation, invoke a mean–field assumption
which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the
presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk
simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair
correlation functions to show that spatial structure can form in a spreading population of cells either
through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images
from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the
same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain
very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell
proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading
populations.

M
oving fronts of cells are frequently observed in embryonic development, tissue repair and cancer
progression1–6. In vitro experiments, such as scratch or circular barrier assays, play an important role
in identifying and quantifying the mechanisms that control the motion of such cell fronts3,7–13. Standard

continuum models, such as Fisher’s equation or generalisations thereof, are often used to describe the motion of in
vitro cell fronts3,5,9,10,13–15. However, these models invoke a mean–field assumption implying that there is no
underlying spatial structure, such as cell clustering, present in the system16,17.

It is well known that strong cell–to–cell adhesion or sufficiently rapid cell proliferation can lead an initially
uniform population of cells to become clustered over time17,18. Our previous work has compared averaged discrete
simulation data with predictions from standard mean–field descriptions of these discrete simulations for systems
where either strong adhesion19 or rapid proliferation is present20,21. These previous comparisons have confirmed
that standard mean–field models fail to accurately predict the averaged behaviour of the discrete model which
implies that the usual mean–field assumption is inappropriate where either strong cell–to–cell adhesion or rapid
proliferation is present17,19–21. We do not aim to repeat these kinds of comparisons between averaged discrete
simulation data and the predictions of a mean–field model in this work. Instead, we analyze a detailed experi-
mental data set with the aim of demonstrating how the presence of spatial structure, such as cell clustering, can be
identified and quantified.

Unlike mean–field models, individual–based models explicitly incorporate spatial correlation effects20–22 and
allow us to visualise the cell spreading process in a way that is directly comparable with experimental
images10,11,23,24. However, individual–based models are computationally expensive and many realisations are
required to obtain reliable statistics, meaning that it is often difficult to simulate realistic biological systems22.
Mean–field models are more amenable to analytical exploration and hence can be advantageous over individual–
based models provided that the mean–field assumption is an accurate representation of the relevant system17,22.

It is not always clear which modelling framework is appropriate for a given context without first testing the
underlying model assumptions. For example, spreading populations of 3T3 fibroblast cells do not generally
exhibit visible cell clustering, whereas populations of MDA MB 231 breast cancer cells appear to be highly
clustered10,17. At first glance, it may appear reasonable to use a mean–field model to describe the spreading of
a population of 3T3 cells and a discrete model to describe the spreading of a population of MDA MB 231 cells.
However, recent work has indicated that the presence or absence of spatial correlations can be difficult to detect
visually and so our use of a mean–field model for 3T3 cell population spreading may, in fact, be inappropriate18.
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Consequently, applying diagnostic tools which are capable of iden-
tifying spatial structure in a given cell population may provide
insights into which modelling frameworks are suitable for exploring
a particular system.

Several methods have been developed to assess the degree of spa-
tial correlations in populations including measurements of the coor-
dination number, Ripley’s K function and Moran’s I statistic21,25–28. A
specific measure of spatial correlations is the pair–correlation func-
tion, F(r), which describes how the probability of finding two objects
at a given distance, r, relates to the the probability of finding two
objects, separated by the same distance, in a spatially uniform popu-
lation17,18,25. Pair–correlation functions are a useful tool as they can be
used to distinguish between spatial patterns, such as aggregation or
segregation, at various length scales18,25,29. In particular, pair–correla-
tion functions have been successfully used to distinguish differences
between spatial patterns of benign and malignant cells30.

In this work, we quantify the extent to which the location of
individual MM127 melanoma cells31–33 are spatially correlated dur-
ing an in vitro cell spreading assay. We perform several in vitro
experiments where cells are initially placed in a circular barrier and
then the population spreads outwards after the barrier is lifted10,11. In
particular, we consider a detailed experimental procedure where all
experiments are repeated under two different conditions: first, where
cells are treated to prevent proliferation, and second, where cell
proliferation is permitted. This is important because MM127 mela-
noma cells are known to be motile, adhesive and proliferative11, and
our experimental procedure allows us to examine the effects of pro-
liferation separately from adhesion. This therefore allows us to deter-
mine whether spatial correlations are present, and, if so, whether the
spatial correlations are associated with cell proliferation or cell–to–
cell adhesion10,11.

To assess the degree of spatial correlations in our experimental cell
populations, we calculate the pair–correlation function developed by
Binder and Simpson25, which accounts for volume exclusion (crowd-
ing) and is relevant when considering biological cells which cannot

occupy the same location in space. We also examine the conditions
under which spatial structure can form in a spreading cell population
using discrete simulations that mimic the spreading melanoma cell
population. Using the pair–correlation function we confirm that the
distribution of cells is initially spatially uniform. Finally, we use the
pair–correlation function to determine whether any spatial correla-
tions over short length scales emerge during the cell spreading pro-
cess. All experiments are repeated for two different initial cell
densities. Our results confirm that the degree of cell motility, cell
proliferation and cell–to–cell adhesion in the spreading melanoma
cell populations does not lead to significant spatial correlations.

Results
Visual inspection of spreading MM127 melanoma cell popula-
tions does not provide insights into possible spatial correlations.
Circular barrier assays were conducted to examine the role of spatial
correlations in a spreading population of MM127 melanoma cells
over a period of t 5 48 hours11. The exact nature of the experiments
is described in the methods section. Briefly, cells were initially placed
inside a circular barrier and the barrier was then lifted allowing the
cell population to spread outwards. To distinguish whether cell
proliferation has a significant effect on the presence of spatial
correlations in the cell population, we performed experiments with
Mitomycin–C pretreatment to suppress cell proliferation34 and then
repeated the experiments without Mitomycin–C pretreatment.

Figure 1 shows images of the entire spreading cell populations, as
well as the relative location and size of various square subregions,
each of dimension 600 mm 3 600 mm, located both in the centre of
the spreading population [Fig. 1 (a)] and towards the edge of the
spreading population [Fig. 1 (e)]. Our analysis will focus on cell
behaviour in these subregions. We also provide images, in Fig. 1,
showing the distribution of individual cells within smaller subre-
gions, of dimensions 300 mm 3 300 mm, at the centre of the spread-
ing cell population [Fig. 1 (b–d)] and at the edge of spreading cell
population [Fig. 1 (f–h)]. For the purposes of analysis, R and W

Figure 1 | Experimental subregions of spreading MM127 melanoma cell populations. The role of spatial correlations in spreading MM127 cell

populations was investigated by considering circular barrier assays initiated with 30,000 cells. For each experiment we calculated the pair correlation

functions in four subregions, each of dimension 600 mm 3 600 mm, at the centre of the spreading cell population and in four subregions, each of

dimension 600 mm 3 600 mm, at the edge of the spreading cell population. The relative size and approximate location of these subregions is shown in (a)

and (e), where the scale bar corresponds to 1,500 mm. Subregions showing the location of individual cells are shown at t 5 0 hours in (b) and (f), at t 5

48 hours for experiments without cell proliferation in (c) and (g), and at t 5 48 hours for experiments with cell proliferation in (d) and (h). Note that the

subregions in (b–d) and (f–h) are of dimension 300 mm 3 300 mm. We describe the geometry of each subregion using coordinates (r, w), such that r

indicates the direction of outward spreading and w measures the width of the subregion. The subregions in (a) and (e) correspond to 1 # r # 600 mm and

1 # w # 600 mm, while the regions in (b–d) and (f–h) correspond to 1 # r # 300 mm and 1 # w # 300 mm.
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denotes the length and width of the subregion, respectively. Here, r
corresponds to the radial distance in the direction of outward spread-
ing (1 # r # R) and w corresponds to the direction perpendicular to r
(1 # w # W). We expect an even distribution of individual cells at t
5 0 hours since the experiments were initialised by placing cells as
uniformly as possible inside the circular barrier11. Examining the
snapshots at t 5 0 hours, the cells appear to be spatially uniform
with no visual evidence of clustering. However, without further ana-
lysis, it is difficult to conclude whether the cells are clustered or not18.

If we compare results at t 5 48 hours in Fig. 1 (c–d) and (g–h),
after cells have had the opportunity to migrate, adhere to other cells,
and to proliferate, the cell populations still appear to be relatively
uniform. However, it is difficult to conclude whether the cells are
clustered or not simply from inspecting these snapshots. Comparing
the snapshots where cell proliferation is permitted to those where cell
proliferation is absent, it is clear that cell proliferation dramatically
increases the density of cells but it is unclear whether there is any
major change in the extent of cell clustering. Furthermore, compar-
ing the snapshots of cells within the subregions located at the centre
of the population with the subregions located towards the edge indi-
cates that there is very little difference between the distributions of
cells in these two different locations. Although there is no clear visual
indication of spatial correlations, previous work18,25 suggests that
further analysis should be undertaken before we can be certain that
there is no underlying spatial structure present in the MM127 cell
population.

Discrete simulations of the experimental process provide insight
into possible mechanisms inducing spatial correlations. Before we
analyse the experimental images to quantify the role of spatial
correlations, we first investigate how spatial correlations may
emerge in the spreading MM127 melanoma cell populations by
simulating the barrier assay using a discrete random walk model
that incorporates cell motility, cell–to–cell adhesion and cell
proliferation. We consider a two–dimensional model since the
MM127 melanoma cell population spreads as a monolayer for the
duration of the experiments11.

In this work, we considered two types of lattices; (i) a simulation
lattice, and (ii) a pair correlation lattice. The simulation lattice, with
lattice spacing D, is used to perform random walk simulations of the
barrier assay. This involves modelling the spreading of a population
of simulated cells, which mimic real cells in the experiments, under-
going motility events modulated by cell–to–cell adhesion, and pro-
liferation events. Here,D is an indication of the average area that each
individual cell occupies on the tissue culture plate. We chose to focus
on the area occupied by the nucleus since the total area occupied by
the cell fluctuates whereas the area occupied by the nucleus does not.
To determine D, we measured the area of the nucleus and converted
this into an estimate of the diameter of the nucleus (D < 18 mm,
supplementary information).

The pair correlation lattice is used to compute the pair correlation
function on a finer lattice, with lattice spacing d 5 1 mm. Both
experimental images and discrete simulation images are discretised
onto the finer pair correlation lattice by resizing the dimensions of
the image such that each pixel is 1 mm 3 1 mm (supplementary
information). Each pixel on the pair correlation lattice is either
vacant (white pixel) or occupied (black pixel). Each black pixel is
an object on the pair correlation lattice and corresponds to part of a
cell in the experiments or part of a simulated cell in the discrete
simulations. The advantage of discretising cells onto a pair correla-
tion lattice using several black pixels (d=D) as opposed to discretis-
ing with one cell per lattice site is that we avoid having to select the
location of individual cells on the lattice as this is not always an
accurate representation of the original location of cells in the experi-
ments25. The pair correlation signal is computed for all pair distances
on the pair correlation lattice between 1 mm and 600 mm. For specific

details of the calculation of the pair correlation function, F(r), we
refer the reader to the methods section. When we present our esti-
mates of the pair correlation function, F(r), we focus on pair dis-
tances in the interval 1D# r # 5D (18 mm # r # 90 mm) since we are
primarily interested assessing spatial correlations over small to inter-
mediate length scales19,35, but no smaller than the diameter of the
nucleus25.

Random walk simulations are initialised to mimic the experi-
mental procedure where either 20,000 or 30,000 cells are placed,
uniformly at random, inside the circular barrier. Each circular bar-
rier, of diameter 6,000 mm, is placed into the centre of a well on a
tissue culture plate. The well has a diameter of 15,600 mm. To mimic
this geometry in the discrete simulations we place either 20,000 or
30,000 simulated cells, uniformly at random, inside a circular region
of diameter of 334 < 6,000/18 lattice sites. This circular region is
located approximately in the centre of a square lattice of side length
867 < 15,600/18 lattice sites.

A random sequential update algorithm is used to perform the
discrete simulations36. If there are S(t) simulated cells at time t, dur-
ing the next time step of duration t, S(t) simulated cells are selected at
random, one at a time, and given the opportunity to move with
probability Pm(1 2 q)a. Here, 0 # Pm # 1 is the probability that an
isolated simulated cell can move a distanceD during the time interval
t, 0 # q # 1 is a measure of cell–to–cell adhesion strength, and a 5 0,
1, 2, 3 or 4 is the number of occupied nearest–neighbour lattice sites
of that simulated cell. If q 5 0, there is no cell–to–cell adhesion and
nearest neighbour simulated cells do not adhere to each other. As q
increases, the strength of cell–to–cell adhesion increases, and the
motion of nearest–neighbour simulated cells is reduced as the cells
adhere more tightly to each other. A simulated cell at position (iD, jD)
steps to (iD6D, jD) or (iD, jD6D) with each target site chosen with
equal probability of 1/4. Since our model is an exclusion process,
which explicitly incorporates crowding effects, any attempted mot-
ility event where the target site is occupied will be aborted. Once the
S(t) potential motility events have been assessed, another S(t) simu-
lated cells are selected at random, one at a time, and given the oppor-
tunity to proliferate with probability 0 # Pp # 1. If the opportunity to
proliferate is successful, the proliferative simulated cell attempts to
deposit a daughter simulated cell at (iD 6 D, jD) or (iD, jD 6 D) with
each target site chosen with equal probability of 1/4. Again, any
attempted proliferation event where the target site is occupied will
be aborted. We relate the parameters in the discrete model, Pm and
Pp, to standard measures of the cell diffusivity, D 5 PmD

2/(4t), and
the cell doubling time, td 5 t loge(2)/Pp

11. Our previous work, which
did not include any measurement of spatial correlation, modelled the
spread of MM127 melanoma cell population and indicated that we
have D < 248 mm2/hour11.

To understand how different mechanisms give rise to different
spatial correlations in the discrete model, we simulated the spreading
MM127 cell populations with varying degrees of cell motility (D),
cell–to–cell adhesion strength (q) and cell proliferation (td). Figure 2
shows several snapshots from the discrete model after t 5 48 hours.
In each snapshot, the initial distribution of simulated cells is shown
as an inset. The corresponding average pair correlation functions,
�F rð Þ, calculated using equation (9) (methods section), are shown in
Fig. 3. In all cases, we analysed four subregions, of dimension 600 mm
3 600 mm, both at the centre of cell population, as indicated by Fig. 3
(a), and four subregions at the edge of the cell population, as shown in
Fig. 3 (e). Each spreading experiment was simulated using three
identically–prepared realisations of the discrete model, giving a total
of N 5 3 3 4 5 12 identically prepared subregions. Pair correlation
signals, �F rð Þ, were computed from the discrete simulation data using
exactly the same procedure that we apply to the experimental images,
as described in the following section. The simulation lattice was
resized onto the pair correlation lattice so that each lattice site corre-
sponds to a physical length of d 5 1 mm. This means that each square
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simulated cell is composed of 18 3 18 5 324 black pixels. Additional
results indicate that the choice of d is relatively insensitive provided
that d , D (supplementary information).

Results in Fig. 2 (b–c) and (g–h) mimic experiments with
Mitomycin–C pretreatment in which cell proliferation is suppressed
by setting Pp 5 0. Here, simulated cells undergo cell motility events
modulated by cell–to–cell adhesion, but do not proliferate. Four
subregions, each of dimension 600 mm 3 600 mm, were considered
at the centre of the cell population [Fig. 2 (a)] and at the edge of the
cell population [Fig. 2 (f)]. The discrete snapshot at t 5 0 hours,
shown as an inset in Fig. 2 (b), appears spatially uniform, and this
is confirmed by the corresponding pair correlation signal in Fig. 3 (b)
which shows that �F rð Þ<1 between 1D # r # 5D. If spatial correla-
tions are present, we expect the pair correlation signal to deviate from
unity25.

Discrete snapshots, after t 5 48 hours, are shown in Fig. 2 for
simulations with weak cell–to–cell adhesion [Fig. 2 (b) and (g)]
and strong cell–to–cell adhesion [Fig. 2 (c) and (h)]. Visually we
see that there is a significant difference in the spatial distribution
of individual simulated cells when the strength of cell–to–cell adhe-
sion is high. Here, simulated cells form clusters of around 5–15
individuals. In contrast, if we consider the case with weak cell–to–
cell adhesion, the spatial distribution of individual simulated cells
appears to be uniform and there are very few clusters. The corres-
ponding pair correlation signals for each case, for subregions located
at the centre of the cell population [Fig. 3 (c)], confirm our visual
observations since �F rð Þ fluctuates around unity for simulations with
weak cell–to–cell adhesion and deviates significantly from unity for

simulations with strong cell–to–cell adhesion. The pair correlation
signal for strong cell–to–cell adhesion indicates that �F 1Dð Þw1
meaning that pairs of simulated cells at a distance of 1D are more
probable than pairs of objects at the same distance in a spatially
uniform population. The pair correlation signal at the edge of the
population [Fig. 3 (g)] shows the same trend and illustrates that there
is relatively little difference between the spatial distribution of cells at
the centre and at the edge of the spreading population.

Similar results can be observed in Fig. 2 (d–e), (i–j) and Fig. 3 (d)
and (h) where we show the results of simulations that mimic experi-
ments without Mitomycin–C pretreatment and where cell–to–cell
adhesion is not present (q 5 0). Here, simulated cells undergo cell
motility and cell proliferation events. In this case, we compare slow
and rapid proliferation mechanisms where we observe that rapid cell
proliferation leads to clustering. Here, �F 1Dð Þw1 and �F 2Dð Þw1,
indicating that simulated cells at pair distances between 1D # r #

2D are more likely to occur than pairs of objects, separated by the
same distance, in a spatially uniform population. To highlight the
differences between slow and rapid proliferation, we obtained the
results in Fig. 2 (d–e) and Fig. 2 (i–j) by initiating the simulations
with a smaller number of simulated cells (5,000) than in the experi-
ments. Furthermore, we also reduced the degree of motility in the
simulations where we considered rapid proliferation. These differ-
ences were required otherwise the lattice becomes fully confluent
after t 5 48 hours with rapid proliferation and we note that a con-
fluent monolayer of simulated cells has, by definition, no spatial
structure. Therefore, reducing the initial number of cells and their
motility rate allowed us to compare the spatial structure present at

Figure 2 | Discrete simulation snapshots with different combinations of cell motility, cell–to–cell adhesion and cell proliferation mechanisms. The

emergence of spatial correlations in a spreading cell population was examined by simulating the biological process using a discrete random walk model

with different combinations of adhesion, motility and proliferation. For each simulation we calculated the pair correlation functions in four subregions,

each of dimension 600 mm 3 600 mm, at the centre of the spreading cell population (a–e) and in four subregions, each of dimension 600 mm 3 600 mm, at

the edge of the spreading cell population (f–j). The relative size and approximate location of these subregions is shown in (a) and (f), where the scale bar

corresponds to 1,500 mm. Simulations are performed on the simulation lattice where the lattice spacing, D5 18 mm, corresponds to the average diameter

of the nucleus. Results in (b–c) and (g–h) correspond to simulations at t 5 0 hours where 30% of simulation lattice sites are initially occupied with

simulated cells, uniformly at random. While results (d–e) and (i–j) are initially occupied at 5%. The initial distribution of simulated cells, for each

simulation, is shown as an inset in red. The size of the inset is approximately 550 mm 3 550 mm. Simulation snapshots with no proliferation and weak

adhesion (q 5 0.3) are shown in (b) and (g) and snapshots with no proliferation and strong adhesion (q50.7) in (c) and (h). All results with no

proliferation include unbiased motility where D 5 PmD
2/4t 5 248 mm2/hour. Snapshots in (d) and (i) illustrate simulations with no adhesion and slow

proliferation (td 5 23 hours). While results with no adhesion and rapid proliferation (td 5 12 hours) are shown in (e) and (j). Results with proliferation

are simulated using D 5 248 mm2/hour for td 5 23 hours and D 5 23 mm2/hour for results with td 5 12 hours. Results in row 1 and 2 correspond to pair

correlation signals computed at the centre and at the edge of the cell population, respectively.
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t 5 48 hours before the lattice became confluent. The cell doubling
time for MM127 melanoma cells is approximately 23 hours meaning
that the total cell number will have approximately tripled over t 5

48 hours in a modestly crowded environment. Hence, we expect in
our experiments that the cell density, in regions away from the edge
of cell population, will be approaching confluence by t 5 48 hours.
This means that any spatial correlations present in experiments with
Mitomycin–C pretreatment could be masked by proliferation when
it is not suppressed. This observation emphasises the importance of
considering different experimental conditions to distinguish
between the effects of different mechanisms10,11.

Our discrete simulation investigation indicates that cell popula-
tions where strong cell–to–cell adhesion or rapid cell proliferation
are present are associated with spatial correlations and clustering
which implies that the mean–field assumption is inappropriate to
describe such systems18. The failure of the mean–field assumption to
predict the averaged discrete behaviour for systems with either
strong adhesion or rapid proliferation has been examined prev-
iously19–21. Although we know in advance that cell–to–cell adhesion
and cell proliferation plays a role in governing the spreading of
MM127 melanoma cell populations11, without any kind of analysis
of the spatial distribution of individual cells within the population it

is unclear whether these mechanisms are sufficiently strong to induce
significant spatial correlations and clustering11.

Spatial correlations are not present in spreading MM127 mela-
noma cell populations. Our experimental snapshots in Fig. 1 did not
provide any conclusive visual evidence about whether spatial
correlations may be present in the spreading melanoma cell
populations. To quantitatively determine the extent to which the
cell populations are spatially correlated, we computed the average
pair correlation signals for all experiments using the same procedures
applied to the discrete simulations, as discussed in the methods
section. For each set of experiments, we analysed four subregions,
each of dimension 600 mm 3 600 mm, at the centre of cell
population, as indicated by Fig. 1 (a), and four subregions, each of
dimension 600 mm 3 600 mm, near the edge of the cell population, as
shown in Fig. 1 (e). Each experiment was repeated three times giving
a total of N 5 3 3 4 5 12 subregions. We note that each experimental
subregion produces a similar pair correlation signal, F(r), over all pair
distances considered in this work. Supplementary results illustrate
that for each experiment and location considered, there are no
obvious differences in the pair correlation signal across replicates
or subregions. Hence, we treat each realisation as an identically

Figure 3 | Different mechanisms in discrete simulations lead to varying pair correlation signals. Average pair correlation signals were computed from

discrete simulations with varying degrees of cell–to–cell adhesion strength and cell proliferation in subregions, of dimension 600 mm 3 600 mm, located

at the centre and at the edge of the spreading simulated populations. The relative size and approximate location these subregions are shown in (a) and (e),

respectively, where the scale bar corresponds to 1,500 mm. Simulations are performed on the simulation lattice where the lattice spacing, D 5 18 mm,

corresponds to the average diameter of the nucleus. Solid lines in (b–d) and (f–h) correspond to simulations without cell proliferation in which 30% of

simulation lattice sites are initially occupied with simulated cells, uniformly at random. Dotted lines correspond to simulations with proliferation in

which 5% of simulation lattice sites are initially occupied. Average pair correlation signals, constructed using N 5 12 subregions from three replicate

simulations, are shown at t 5 0 hours in (b) and (f), at t 5 48 hours for simulations without proliferation in (c) and (g), and at t 5 48 hours for

simulations with proliferation in (d) and (h). Pair correlation signals in (c) and (g) are shown for simulations with no proliferation and weak cell–to–cell

adhesion (q 5 0.3, red) and strong cell–to–cell adhesion (q 5 0.7, blue). All results without proliferation include unbiased motility where D 5 PmD
2/4t 5

248 mm2/hour. Pair correlation signals for simulations with no adhesion and slow proliferation (td 5 23 hours, red) and rapid proliferation (td 5 6 hours,

blue) are shown in (d) and (h). Results with proliferation are simulated using D 5 248 mm2/hour for td 5 23 hours and D 5 23 mm2/hour for results with

td 5 12 hours. Results in row 1 and 2 correspond to pair correlation signals computed at the centre and at the edge of the cell population, respectively.
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prepared, independent subregion, and we determine the average pair

correlation function, �F rð Þ~
XN

n~1

Fn rð Þ
 !,

N , where N 5 12.

Average pair correlation signals for all sets of experiments are
shown in Fig. 4. Given that our experiments were initiated by placing
cells as uniformly as possible inside the circular barrier at t 5

0 hours, we expect that the pair correlation signal will fluctuate
around unity (�F rð Þ<1) for all pair distances. The signals at t 5

0 hours in Fig. 4 (b) and (f) confirm that the cells are initially dis-
tributed uniformly at random inside the barrier both at the centre of
the cell population and at the edge of the cell population. Results after
t 5 48 hours, for subregions located at the centre [Fig. 4 (c–d)] and at
the edge [Fig. 4 (g–h)] of the cell population, for all experiments with
and without cell proliferation, also indicate that the average pair
correlation signal, �F rð Þ, fluctuates around unity for pair distances
between 1D # r # 5D.

The pair correlation signals in this work were computed using data
extracted from experiments where 30,000 cells were placed inside the
circular barrier initially. To investigate whether the initial cell density
affects the presence of spatial correlations, we repeated the procedure
using a different initial cell density where 20,000 cells were placed as
uniformly as possible in the barrier and we found similar results
(supplementary information). In addition to considering the pair
correlation at the centre of the population and at the edge of the
population, we also calculated the pair correlation signal at other

locations across the spreading cell population. These additional
results show that the pair correlation signal does not change signifi-
cantly across the spreading cell population (supplementary
information).

All results presented so far involve computing the pair correlation
function, F(r), by considering distances between pairs of pixels in the
direction of outward spreading, r. Alternatively, we could consider
distances between pairs of pixels in the direction perpendicular to
outward spreading, w, to give F(w). Additional results (supplement-
ary information) compare F(r) and F(w), showing that the average
pair correlation function is independent of the direction considered.

Discussion
In this work, we investigated the presence of spatial correlations in a
spreading population of MM127 melanoma cells by computing pair
correlation signals at the centre and edge of the spreading cell popu-
lation. Our results indicate that there is very little underlying spatial
structure present in the experimental system. Assessing the presence
of spatial correlations using statistical tools, such as the pair correla-
tion function, allows us to quantify the degree to which spatial struc-
ture is present in a given cell population. This information may
provide insight into which potential modelling frameworks could
be used to represent the experimental system. The relative absence
of spatial structure in the spreading MM127 melanoma cell popula-
tions implies that a mean–field model could be appropriate to rep-

Figure 4 | Spatial correlations are not present in spreading MM127 melanoma cell populations. Average pair correlation functions were extracted from

images showing the location of individual cells in four subregions, each of dimension 600 mm 3 600 mm, at the centre of the spreading cell population (a)

and four subregions, each of dimension 600 mm 3 600 mm, at the edge of the spreading cell population (e). The relative size and approximate location of

these subregions is shown in (a) and (e), respectively, where the scale bar corresponds to 1,500 mm. Average pair correlation signals are shown at t 5

0 hours in (b) and (f), at t 5 48 hours for experiments without cell proliferation in (c) and (g), and at t 5 48 hours for experiments with cell proliferation

in (d) and (h). Results in (b–d) and (f–h) correspond to pair correlation signals computed at the centre and at the edge of the spreading cell population,

respectively. The horizontal axis is measured as multiples of the average diameter of the nucleus which is approximately 18 mm. Snapshots of the

experimental subregions after image processing are shown as an inset. The size of the inset is approximately 215 mm 3 215 mm. Each pair correlation

signal was averaged over 12 subregions of dimensions 600 mm 3 600 mm, using three identically prepared experimental replicates. The error bars

correspond to one standard deviation about the mean (N 5 12). All experiments were conducted by initially placing approximately 30,000 cells inside the

barrier assay.
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resent these experiments, at least over the time scales explored in the
experimental data set16,17.

Using our experimental data set, we have been able to investigate
the relative roles of cell proliferation and cell–to–cell adhesion in
terms of how they contribute to the formation of clustering. This is
important because many experimental and modelling approaches
neglect to consider the roles of adhesion and proliferation separately,
meaning that it could be difficult to distinguish between the contri-
butions of each mechanism10,11. We are interested in identifying the
potential contribution of each mechanism since the analysis of the
resulting spatial patterns from our discrete model indicates that both
rapid proliferation and strong cell–to–cell adhesion can lead to sig-
nificant spatial patterning and clustering. In contrast, our experi-
mental results indicate that there were no major differences
between the spatial distribution of cells in a population where cell
proliferation was suppressed compared to the spatial distribution in a
population where cell proliferation was present.

Methods
Cell culture. Human malignant melanoma cells (MM127,31–33) were cultured with
10% fetal calf serum (FCS), RPMI–1640, 2 mM L-Glutamine, 23 mM HEPES
(Invitrogen, Australia) and 1% v/v penicillin/streptomycin (Invitrogen, Australia).
Prior to confluence, cells were lifted using 0.05% trypsin–EDTA(13) (Invitrogen,
Australia) and viable cells were counted using a Trypan blue exclusion test and a
haemocytometer.

Circular barrier assay. The experimental procedure has been reported in detail
previously10,11. Metal–silicone barriers (Aix Scientifics, Germany) were cleaned,
sterilised, dried and placed in the centre of each well of a 24–well tissue culture plate.
Experiments were performed using two different cell densities: 20,000 and 30,000
cells per well. Cell proliferation was suppressed in half of all cell solutions by adding
10 mg/mL Mitomycin–C (Sigma Aldrich, Australia) for one hour at 37uC prior to
transfer to the wells34. 100 mL of cell suspension was carefully inserted into the barrier
to ensure that the cells were approximately evenly distributed. Cells were allowed to
settle and attach for four hours in a humidified incubator at 37uC, 5% CO2 and 95%
air. Assays commenced with the removal of the barrier and the cell layer was washed
with warm serum free medium (culture medium without FCS) and replaced with
0.5 mL of culture medium. Cultures were incubated at 37uC in 5% CO2 and 95% air
for t 5 0 and 48 hours. Each assay, for each time point, was repeated three times.

Image acquisition and analysis. The cell nuclei were stained using 1 mg/ml
Propidium Iodide (Invitrogen, Australia) in phosphate buffered saline and images
were acquired using a Nikon Eclipse Ti inverted microscope fitted with a Nikon
digital camera. Overlapping adjacent images were used to reconstruct a transect
images detailing the location and size of individual cell nuclei along the spreading cell
population. MATLAB’s Image Processing Toolbox37 was used to convert the images
into black and white by thresholding the image (rgb2gray, imadjust, im2bw). Images
were discretised onto the pair correlation lattice by rescaling the image so that each
square pixel corresponds to a length of d 5 1 mm (imresize). White pixels correspond
to unoccupied lattice sites and black pixels indicate occupied lattice sites. Each cell on
the pair correlation lattice is composed of several black pixels. In all cases, a visual
check was performed to validate that all cells had been correctly identified using the
software. For discrete simulations, the simulation lattice was rediscretised onto the
pair correlation lattice by scaling the lattice by a factor of 18 such that a simulated cell
occupying one lattice site on the simulation lattice instead occupied 18 3 18 5 324
lattice sites on the pair correlation lattice and is composed of 324 black pixels.

Pair–correlation function. Pair correlation functions were computed by considering
pair distances between all black pixels on the pair correlation lattice for both
experimental images and discrete simulation data25. The pair correlation lattice is a
finite square lattice with integer coordinates, each site corresponding to the centre of a
pixel and assigned coordinates (r, w), where r[ 1,2, � � � ,Rf g is a coordinate on an axis
aligned in the direction of outward spreading and w g {1, 2, …W} in the direction
perpendicular to the direction of outward spreading. In our calculations we used R 5

W. The occupancy of black pixels on the pair correlation lattice is captured by the
indicator function,

M r,wð Þ~
0 if site r,wð Þ is vacant,

1 if site r,wð Þ is occupied:

�
ð1Þ

The number of black pixels (n) at any given time and the corresponding pair
correlation density (r) are given by

n~
XW
w~1

XR

r~1

M r,wð Þ, ð2Þ

r~
n

RW
, ð3Þ

where a and b denote generic pixels with coordinates (ra, wa) and (rb, wb),
respectively. We define the set of paired black pixels as

y~ a,bð Þ wa~wb, raj =rb, M ra,wað Þ~M rb,wbð Þ~1f g: ð4Þ

The subset of black pixel pairs at distance i (1 # i # R) is

Si~ a,bð Þ ra{rbjk ~i, a,bð Þ[yf g: ð5Þ

The number of elements in the subset Si indicate the counts of pair distances

cr ið Þ~ Sij j for i~1, . . . R: ð6Þ

The normalisation factor is given by

bcr ið Þ~W2 R{ið Þrbr, ð7Þ

where r̂ corresponds to the conditional probability of selecting the second black pixel
in the black pixel pair given that the probability of selecting the first black pixel is the
usual density r,

r̂~
n{1

RW{1
: ð8Þ

The pair–correlation function, F(i), is given by

F ið Þ~ cr ið Þbcr ið Þ : ð9Þ

The pair–correlation function is calculated using N subregions giving an average

pair–correlation function �F rð Þ~
XN

n~1

Fn rð Þ
 !,

N . If �F rð Þ~1, the probability of

finding two black pixels at a given distance, r, is equal to the probability of finding two
black pixels at the same distance in a spatially uniform distribution of objects18,25. If
�F rð Þv1, the probability of finding two black pixels at a given distance, r, is less than
the probability of finding two black pixels at the same distance in a spatially uniform
distribution of objects18,25. Alternatively, if �F rð Þw1, the probability of finding two
black pixels at a given distance, r, is greater than the probability of finding two black
pixels at the same distance in a spatially uniform distribution of objects18,25.
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