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Abstract

In cochlear implant (CI) users, measurements of electrically evoked compound action

potentials (ECAPs) prove the functionality of the neuron-electrode interface. Objective mea-

sures, e.g., the ECAP threshold, may serve as a basis for the clinical adjustment of the

device for the optimal benefit of the CI user. As for many neural responses, the threshold

determination often is based on the subjective assessment of the clinical specialist, whose

decision-making process could be aided by autonomous computational algorithms. To that

end, we extended the signal-to-noise ratio (SNR) approach for ECAP threshold determina-

tion to be applicable for FineGrain (FG) ECAP responses. The new approach takes advan-

tage of two features: the FG stimulation paradigm with its enhanced resolution of

recordings, and SNR-based ECAP threshold determination, which allows defining thresh-

olds independently of morphology and with comparably low computational power. Pearson’s

correlation coefficient r between the ECAP threshold determined by five experienced evalu-

ators and the threshold determined with the FG-SNR algorithm was in the range of r = 0.78–

0.93. Between evaluators, r was in a comparable range of 0.84–0.93. A subset of the param-

eters of the algorithm was varied to identify the parameters with the highest potential to

improve the FG-SNR formalism in the future. The two steps with the strongest influence on

the agreement between the threshold estimate of the evaluators and the algorithm were the

removal of undesired frequency components (denoising of the response traces) and the

exact determination of the two time windows (signal and noise and noise only).”The parame-

ters were linked to the properties of an ECAP response, indicating how to adjust the algo-

rithm for the automatic detection of other neurophysiological responses.

Introduction

A cochlear implant (CI) is an auditory prosthesis used to restore hearing in people with severe

to profound hearing loss. Its multi-electrode array is normally inserted into the scala tympani
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and makes use of electrical stimulation to excite the surrounding neuronal population. In turn,

this neuronal population generates action potentials that propagate along the auditory nerve

and usually leads to auditory perception and speech comprehension. A CI can also be used to

record the electrically evoked compound action potential (ECAP), which represents the neural

response from multiple auditory nerve fibers to an electrical stimulus. A typical ECAP

response waveform consists of a negative (N) peak at a latency of (0.33 ± 0.04) ms after stimu-

lus onset and a positive (P) peak at (0.66 ± 0.08) ms [1]. The morphology of an ECAP response

may change in that peaks may become less pronounced or disappear. A double P peak was

observed with a prevalence of 7–18% [2, 3]. The ECAP amplitude is defined as the difference

in voltage between the N and P peaks of an ECAP response. The ECAP threshold describes the

minimum electrical charge (which is the product of the phase duration and electric current

amplitude) needed to evoke a detectable ECAP response. Above ECAP threshold, the ECAP

amplitude increases with stimulus strength, thereby describing the ECAP amplitude growth

function (AGF). The AGF usually follows a sigmoidal shape, saturating at high stimulus levels.

Above an individual behavioral threshold level, which is not necessarily equal to the ECAP

threshold, loudness perception will usually increase with stimulus level. For safety reasons,

stimulus levels during ECAP measurements are limited to avoid unpleasantly loud sensations.

Therefore, recordings of ECAP AGFs up to saturation are rare.

ECAP measurements are important for clinical diagnostic and long-term care of CI users.

Clinical specialists use the ECAP threshold frequently [4], e.g., for long-term monitoring of

auditory health, to verify implant functionality, or as guidance for programming the audio

processor. The clinical routine sets additional requirements for determining the ECAP thresh-

old because the approach must be accurate, safe, and fast in order to be useable intraopera-

tively as well as postoperatively in adults and children. Different paradigms for recording

ECAP responses have been presented in the scientific literature and by CI manufacturers (for

a review see, e.g., [5]). The methods of determining ECAP thresholds are either fully or semi-

automated, or they are entirely based on manual identification of ECAP responses by an expe-

rienced clinician. An automated system based on a decision-tree approach [6], named

AutoNRTTM (Cochlear Ltd.), aims at simulating the procedure of visual detection by an

expert. It has been implemented into the clinical software Nucleus Custom SoundTM Suite

since 2005. A reliable N- and P-peak detection is a prerequisite for this method. Another

method of threshold estimation is based on the linear extrapolation from the steepest portion

of the AGF to the abscissa (stimulus level) with the intersection point representing the ECAP

threshold. In fact, this approach has been exploited in clinical software for automated thresh-

old determination by all CI manufacturers. Since each single ECAP response is contaminated

with noise, averaging several responses at a given stimulus level is commonly used for denois-

ing. In order to keep the measurement duration within reasonable time limits, only responses

at discrete levels with a relatively big current step size were recorded. This limits the resolution

at which the ECAP threshold can be determined. This problem was addressed in the design of

the FineGrain stimulation paradigm [7], which samples the AGF in smaller stimulus steps and

thus provides the means to use the higher ECAP AGF resolution for more accurate ECAP

threshold determination. As a further development of this idea, FineGrain was combined

with an automatic threshold determination approach, available as AutoART in the MAESTRO

software (MED-EL Medical Electronics, Innsbruck, Austria) since 2017, version 7 and higher

[7, 8].

ECAP measurements are important also for fundamental research on CIs. Due to regula-

tory and design requirements, the clinical software of any given manufacturer can only com-

municate with the CIs of that company. Therefore, the above-mentioned automated

algorithms (AutoNRT™ and AutoART), imbedded in the clinical software, may not be ideally

PLOS ONE Automatic ECAP threshold determination

PLOS ONE | https://doi.org/10.1371/journal.pone.0259347 November 1, 2021 2 / 21

and last author, since each of them published the

appropriate method previously. The method to

implement of the Data Processing Pipeline (DPP)

was devised by PS, MT, LG, and SH. Software

programming of DPP was realized by MT, KL, and

PS. Pseudonymized data were processed and

statistically analyzed by MT and KL. Visualization,

i.e. creation of figures was done by PS, MT, KL,

SH, and LG. The original draft was written by KL,

PS, MT, SH, and LG. All authors have read and

edited the manuscript.

Competing interests: LG, TL and SH declare no

competing interests. PS, KL and MT are employed

by MED-EL. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

No patents are registered regarding the novel FG-

SNR approach.

https://doi.org/10.1371/journal.pone.0259347


suited for research groups whose potential study populations cover several CI brands. In order

to perform identical measurements for all study participants, regardless of the CI brand, the

researchers may use (custom-made) research software that can communicate with all CIs via

corresponding programmable research interfaces [9]. However, the advanced ECAP measure-

ment paradigms of the clinical software cannot be used in the research setting. Especially for

such investigations, analysis of the signal-to-noise ratio (SNR) provides an intriguing alterna-

tive to estimate the ECAP threshold in a fully automated manner and independently of the

ECAP AGF. The SNR relates a desired signal (here: ECAP response) to background noise–a

high SNR (above an application-specific level) means there is a high level of signal and a low

level of background noise, which can be exploited for signal detection. Specifically, SNR-based

ECAP threshold estimation can be achieved in one of two ways: (1) estimation can be based on

the post-average residual noise and the useful variance [10] or (2) by a simple comparison of

variances calculated for two different time windows within one recording. Hereby, the vari-

ance within that part of the recording window that potentially contains an ECAP response is

compared to the variance within another part of the recording window that is known not to

contain an ECAP response [11]. There are two advantages of the latter method. Firstly, a reli-

able threshold can be determined independently of the morphology of the ECAP response. As

mentioned above, responses with double positive peaks may occur in up to 18% of cases [2, 3].

ECAP responses and algorithms based on peak-picking might struggle to define a reliable

AGF if double peaks are registered. Secondly, the SNR algorithm itself requires only a compa-

rably low computing power, which may be an advantage for certain applications.

The aim of this study was to make the benefits of advancements in clinical paradigms acces-

sible to SNR-based estimations of the ECAP threshold. Traditional stimulation with discrete

levels and large step-size was used for the SNR method [11]. However, it is likely that the preci-

sion of the approach would equally benefit from a higher resolution of the ECAP responses, as

previously seen in AGF-based approaches. The novel FineGrain-SNR (FG-SNR) formalism is

an extension of the SNR approach [11], which allows for single ECAP responses like those

used with the FineGrain stimulation paradigm [7]. Here, we show that ECAP thresholds calcu-

lated with the FG-SNR algorithm are comparable with the thresholds determined by experi-

enced clinicians. This, along with the fact that the FG-SNR algorithm is independent of any

hardware requirements, also highlights the applicability of the algorithm to scientific investiga-

tions. In addition, we investigated which of the parameters of the FG-SNR algorithm are most

important for future optimization. The findings of the investigation can be used for adjusting

the FG-SNR algorithm for automatic threshold detection of other (electro-)neurophysiological

responses.

Methods

In order to reach the aims of the study, ECAP AGF measurements were first performed on vol-

untary CI users during their regular clinical appointments. Subsequently, the ECAP AGFs

were analyzed by human evaluators to obtain data against which the decisions of the FG-SNR

algorithm were compared and analyzed.

Ethics statement

The Ethics committee of the Hannover Medical School, Germany, where the data were col-

lected with the research software, approved the study (ID 6586). All participants provided

their written informed consent before the start of any study-specific procedures. All partici-

pants have also given written informed consent to publish the respective data.
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Participants

Ten adult CI users (P01–P10) with a total of thirteen implants (participants P02, P03, and P05

were bilaterally implanted and provided data from both sides), contributed to this study.

Demographic data are shown in Table 1. All measurements were conducted between October

and December 2016. Only adults were included in this study. Another inclusion criterion was

that a CI with an i100 platform manufactured by MED-EL Medical Electronics (Innsbruck,

Austria) had to be in use for compatibility with the ECAP measurement hardware and soft-

ware. Users were asked during their regular follow-up visit if they would agree to participate in

the study. There was no additional criterion for selecting a participant. No additional visit was

necessary for the measurements.

ECAP measurements

Measurements were recorded via the MAX Programming Interface (MED-EL Medical Elec-

tronics, Innsbruck, Austria) connected to a personal computer running the research software

that is described in [7]. Symmetric charge-balanced biphasic pulses were used to elicit the

nerve response. The two phases were separated by an interphase gap of 2.1 μs. Stimulus rate

was between 40 and 76 pulses per second (pps). Pulse duration was between 30 and 40 μs. The

delay time between stimulus onset and the beginning of the recording was between 125 and

145 μs. Responses from anodic and cathodic leading stimuli were averaged to reduce the stim-

ulus artifact according to the alternating polarity paradigm (e.g., [5]). The results from each

implant comprised amplitude growth data recorded with the FG paradigm for all 12 electrode

contacts. This corresponds to 156 AGFs available for analysis.

Evaluation of the ECAP measurements by clinicians

Five experienced clinicians (AD, KS, LG, PS, SS) and one inexperienced clinician (SK), all

hereafter referred to as “evaluators”, analyzed each of the 156 AGFs independently from each

other in a randomized order (i.e., the order was different for each analyst). All traces of one

stimulation/recording electrode pair were available in the order of stimulus intensity. In addi-

tion, the custom software, ART Analyzer, was made available to the evaluators. This

Table 1. Participant demographics.

Implant ID Age at implantation in years Age at measurement in years Side of implantation Gender Implant type Electrode array type

P01 55–60 55–60 R F SYNCHRONY FLEX24

P02L 60–65 60–65 L M SYNCHRONY FLEX28

P02R 60–65 60–65 R M SYNCHRONY FLEX28

P03L 50–55 50–55 L F SYNCHRONY FLEX24

P03R 50–55 50–55 R F SYNCHRONY FLEX24

P04 55–60 55–60 R M SYNCHRONY FLEX28

P05L 45–50 50–55 L F SYNCHRONY FLEX24

P05R 50–55 50–55 R F SYNCHRONY FLEX24

P06 65–70 65–70 L F SYNCHRONY FLEX28

P07 50–55 50–55 L M SYNCHRONY FLEX28

P08 55–60 55–60 L F SYNCHRONY FLEX28

P09 55–60 55–60 L F SYNCHRONY FLEX24

P10 45–50 50–55 R F CONCERTO STANDARD

Age ranges are used instead of explicit ages to avoid potentially identifying participant information.

https://doi.org/10.1371/journal.pone.0259347.t001
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graphically orientated tool allows clinicians to apply various artifact reduction methods (alter-

nating stimulation, zero amplitude template subtraction, scaled template subtraction) and

includes an extrapolation tool that can optionally be used for threshold determination. The

evaluators judged whether an ECAP signal was present and, if yes, specified the ECAP thresh-

old. The evaluators were free to choose their own methods and criteria for classification and

threshold determination. Signals classified as “ECAP response unsure” by an evaluator were

considered as “no ECAP response”.

FG-SNR algorithm

The FineGrain (FG) stimulation paradigm usually does not repeat stimulation at the same

level. Consequently, its single ECAP recordings contain more noise, which could compromise

the success of the SNR approach, as already described in [11]. For that reason, the extension of

the SNR approach in order to cope with the FG stimulation paradigm requires the definition

of a data processing pipeline (DPP) for the ECAP tracings. The main task of the DPP is to

maximize the accuracy of ECAP threshold determination by reducing artifacts and noise. This

section gives an overview of the functionality of the FG-SNR algorithm, which is explained in

greater detail in S1 Appendix.

The workflow of the FG-SNR algorithm is illustrated in Fig 1. First, the responses are

checked for consistency (i.e., clipped responses are excluded), after which the alternating-

polarity paradigm is used to minimize stimulation artifacts. Then, a “zero amplitude template”

(ZAT), evoked by a stimulus of vanishing amplitude, is subtracted from the responses before a

two-stepped noise reduction is applied to attenuate undesired frequency components (artifacts

and noise) and to reduce noisiness of single ECAP traces. Once the ECAP recordings have

been denoised, ECAP threshold determination works as described in [11]. A quantity var (var-

iance) was introduced, which is the mean square amplitude of a signal, y, within a time win-

dow [ti; tj]. Two time windows were under consideration. One time window represents the

response with residual noise, “signal+noise”, within the time window [t1; t2] and the other rep-

resents the “noise only” part within [t3; t4]. Thus,

varsignalþnoise ¼
1

t2 � t1

Z t2

t1

y � yref
� �2

dt

and

varnoise ¼
1

t4 � t3

Z t4

t3

ðy � yref Þ
2dt:

The reference line, yref, is a function fitted to the data to compensate for the stimulus artifact

and possible DC components. Subsequently, the quotient

q ¼ SNR ¼
varsignalþnoise
varnoise

ð1Þ

is derived and finally the stimulus level dependence (i.e., the AGF) of q is analyzed. The

response threshold is defined by the crossing of this function with the horizontal line, q0 (see

Fig 2D, where q0 = 6 dB). If the solution is ambiguous, i.e., more than one crossing, the values

of q are converted to a binary variable (0 or 1) that indicates the absence (0 if q� q0) or
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Fig 1. Data processing pipeline of the FG-SNR algorithm. AC: anodic-cathodic; CA: cathodic-anodic. The colored

boxes represent steps where different parameters are being evaluated.

https://doi.org/10.1371/journal.pone.0259347.g001
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presence (1 if q> q0) of a response. Next, a sigmoid discrimination function of Boltzmann

type

f xð Þ ¼
1

1þ e� kðx� x0Þ

was fitted (see Fig 2E) using the Levenberg-Marquardt algorithm [12]. Here, x denotes stimu-

lus strength, f is the binary AGF, and x0 (inflection point of the sigmoid) and k (parameter

which corresponds to the slope of the sigmoid at the inflection point) are the parameters to be

fitted. In the FG-SNR algorithm, x0 is used to denote the ECAP threshold.

Fig 2 summarizes the different steps in the DPP which were carried out with baseline

parameter values (see Table 2) in an individual case. Quasi-continuous FG stimuli were

applied with alternating polarity, which resulted in unprocessed (raw) cathodic-anodic (A)

and anodic-cathodic (B) recording curves. Five recordings obtained from adjacent stimuli

Fig 2. Example result of an ECAP measurement obtained from the FG-SNR algorithm within a stimulation range of 0 to 36 nC. For illustrative

purposes, only every fourth curve is shown in panels A (cathodic-anodic), B (anodic-cathodic), and C (curves after averaging and ZAT subtraction). In

panel C, green traces indicate responses with an ECAP signal and red traces those without. Straight blue lines (partly hidden behind the actual data)

indicate the first order polynominal fit separately applied to the “signal + noise” and “noise only” time windows. Data from participant P03L,

stimulating electrode E01, recording electrode E03.

https://doi.org/10.1371/journal.pone.0259347.g002
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were averaged. Recordings below or equal to a stimulus charge of 5 nC were averaged to esti-

mate a ZAT and subtracted from each averaged resultant curve shown in C. Next, “signal

+ noise” and “noise only” time windows of each averaged curve were defined. If the SNR was

above threshold, it was classified as “ECAP signal present” (green traces, C). The SNRs,

according to Eq (1), were plotted as a function of the stimulus charge (“SNR growth function”;

D) and a sigmoidal fit was applied to determine the ECAP threshold (E).

Investigation of optimal parameters

All raw data were processed with the novel FG-SNR algorithm using the values of the set of

baseline parameters (Table 2) to determine whether an ECAP response was present. In case an

ECAP response was present, the ECAP threshold was estimated. Outcomes of threshold deter-

mination deduced from the algorithm were compared to those of the evaluators. As listed in

Table 2, the DPP contains several parameters that can be adjusted to optimize its performance

for future applications. Here, we varied the values of each parameter independently to explore

their influence and to find the optimum with respect to the correlation with the evaluator’s

decisions. A detailed description of how the parameters were varied is given in S1 Appendix.

Statistical analysis

The performance of the algorithm was assessed by means of both descriptive statistics and sta-

tistical tests. The impacts of the parameter variations were also assessed using descriptive sta-

tistics. Pearson’s correlation coefficient r was used as the primary descriptive statistical

parameter to capture similarity between the threshold estimates determined by the algorithm

and the evaluators. However, this outcome is affected by the number of samples. For that rea-

son, the number of AGFs, which were classified as containing an ECAP by both the FG-SNR

algorithm and any individual evaluator, was used as secondary descriptive parameter. The sta-

tistical tests consisted of the analysis of variance (ANOVA) procedure for (generalized) linear

mixed-effects models to assess the performance of the FG-SNR algorithm. The validity of the

assumptions underlying such models [13–15], i.e., normality of the residuals and the normality

of the random effects, was always verified both by means of statistical testing [16] with the sig-

nificance level of 5% and by means of a visual comparison of the distributions and the quan-

tiles against their theoretical counterparts. Upon discovery of significant effects, planned

pairwise comparison of means were performed to gain insight into the nature of the effect

using false-discovery rate-based compensation for multiple comparisons [17].

Table 2. Adjustable parameters of the DPP.

Parameter Brief description Baseline value

Zero Amplitude Template

(ZAT) option

Compensate for switch-on artifact of the amplifier. Only artifact

is assumed up to a maximum charge of:

5 nC

Low-pass filter edge

frequency

Eliminate high-frequency interferences of single ECAP

responses

3 kHz

Number of curves averaged Reduce noise by averaging adjacent ECAP responses of slightly

different stimulus levels

5

Time window of the “signal

+ noise” part

Define the time window where ECAP response is expected 195–895 μs

Time window of the “noise

only” part

Define the time window where no ECAP response is expected 1095–1795 μs

Method of post processing Compensate for stimulus artifact 1st order

polynomial fit

SNR ratio q (see Eq 1) To distinguish “signal+noise” from “noise only” 6 dB

https://doi.org/10.1371/journal.pone.0259347.t002
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Several statistical tests were performed to investigate the sensitivity and bias of the FG-SNR

algorithm in detecting the presence of an ECAP response. To that end, an ANOVA procedure

was first performed on a binomial generalized linear mixed-effects model. The dependent vari-

able in this model was the algorithm’s decision (1: ECAP present, 0: no ECAP present). The

evaluator’s decision (1: ECAP present, 0: no ECAP present) and ID (AD, KS, LG, PS, SK and

SS) were included as fixed factors, and the implant ID (P01, P02L, P02R, P03L, P03R, P04,

P05L, P05R, P06, P07, P08, P09 and P10) was included as a random factor. An additional sig-

nal-detection theory-based analysis was then performed to address the sensitivity and a poten-

tial bias of the algorithm’s decision using data pooled across the evaluators. To that end, AUC

values (AUC is the area under the curve derived from the receiver-operator characteristics)

and criteria were computed from the hit rate (both the algorithm and the majority of evalua-

tors indicated an ECAP threshold was present) and false alarm rate (the algorithm indicated

an ECAP response but the evaluators did not). Subsequently, separate ANOVA procedures

were performed on two linear mixed-effects models that both contained the implant ID as a

random factor and had either the AUC value or the criterion as the dependent variable.

The other set of statistical tests investigated if and how the ECAP threshold estimates pro-

vided by the algorithm differ from those provided by the evaluators. To that end, the differ-

ences between the ECAP threshold estimates of the algorithm and of any individual evaluator

were extracted. Upon extracting the differences, a linear mixed-effects model was constructed

by having the difference as the dependent variable and by including the evaluator ID and stim-

ulating electrode (from 1 to 12) as fixed factors and the implant ID as a random factor. Finally,

an ANOVA was performed to investigate the effects of the fixed factors on the aforementioned

difference.

Results

The outcome of the FG-SNR algorithm with baseline settings was compared to thresholds

determined by six evaluators. More specifically, we looked at (dis)similarities in classification

of ECAP presence and between thresholds. The FG-SNR algorithm and all six evaluators

agreed in their classification of ECAP presence or ECAP absence in 64% (100/156) of the

recordings. In 93 cases (59.6%), all evaluators and the algorithm agreed on the presence of an

ECAP response, and in seven cases (4.5%) all agreed on its absence. In the remaining 56 cases

(36%), results differed amongst the evaluators or between evaluators and the algorithm. With

respect to ECAP threshold accuracy, the results obtained with the algorithm correlated well

with the five most experienced evaluators’ assessments. Pearson’s correlation coefficient r was

between 0.78 and 0.93 (Fig 3). ECAP thresholds determined by the least experienced evaluator,

SK, were less consistent with the algorithm (r = 0.53). However, comparing SK’s decisions

with those of the five experienced evaluators resulted in an equally moderate correlation

(r = 0.52–0.62).

The first statistical test that was performed revealed that the algorithm’s decision (ECAP

presence: yes/no) depended, with high significance, on the evaluator’s decision (χ2� 42.0,

df = 1, p< 1 e-10). This result was in accordance with the high correlation found between the

ECAP thresholds determined by the algorithm and by the evaluators. The subsequent signal-

detection theory-based analysis bolstered this finding by revealing only a highly significant

interceptor effect (F[1, 13]� 243.8, p< 0.001) for the AUC, but no significant effects for the

criterion (F[1, 13]� 2.2, p> 0.05). Fig 4A illustrates this by showing the marginal means and

their 95% confidence intervals for the outcomes of the signal-detection theory-based analysis.

Firstly, the AUC of the algorithm is on average around 0.88, which corresponds to an excellent

discrimination ability [18]. In other words, the ability of the algorithm to discriminate between
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the presence and absence of an ECAP amongst the traces is similar to the majority decision

reached amongst the evaluators. Secondly, the average criterion of -0.38 indicates that the algo-

rithm has a small, albeit statistically non-significant, tendency to classify an ECAP as present

when the majority of the evaluators speak against it.

The difference in ECAP threshold estimates between the algorithm and individual evaluator

was significantly affected by the evaluator ID (χ2� 123.6, df = 5, p< 1 e-10) and the stimulat-

ing electrode (χ2� 35.0, df = 11, p< 0.001). The graphs in Fig 4B and 4C illustrate these

Fig 3. Comparison of ECAP threshold determination by the evaluators and the FG-SNR algorithm. Results of the FG-SNR approach were

calculated with baseline parameters. Underlying data is shown in S1 and S2 Tables.

https://doi.org/10.1371/journal.pone.0259347.g003
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Fig 4. Marginal means and their 95% confidence intervals. A. For outcome values from signal-detection theory-

based analysis. B and C. For differences in the ECAP threshold estimates of the FG-SNR algorithm and of the human

evaluators. Panel B shows the difference to individual human evaluators, averaged across all implants and stimulating

electrodes. Panel C shows the differences for different stimulating electrodes averaged across all implants and

evaluators. Data underlying these panels (A-C) are given in S3 Table.

https://doi.org/10.1371/journal.pone.0259347.g004
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effects, where the marginal means and their 95% confidence intervals show that the ECAP

threshold estimate of the algorithm was on average approximately 2.7 nC higher than those

estimated by the evaluators (Fig 4B). Moreover, the threshold estimates differed between the

evaluators (Fig 4B), which reflects the diversity in the evaluators’ opinions about the definition

of an ECAP threshold. Here, the threshold estimates of evaluator PS were found to be the clos-

est to the estimates of the algorithm, while the ones of evaluator SS were found to differ the

most from the estimates provided by the algorithm (p< 0.001 for paired comparison between

evaluators PS and SS). The effect of the stimulating electrode is shown in Fig 4C, which dem-

onstrates that the algorithm’s ECAP threshold estimate was closest to the estimates of the eval-

uators for the most apical electrodes (electrodes 1, 2, and 3) and differed the most for the basal

electrodes (p< 0.05 for all paired comparisons between electrode 11 and electrodes 1, 2, and

3). The dependence of the difference in ECAP threshold estimates (between evaluators and

algorithm) on the stimulating electrode can be explained by the SNR in general being higher

for apical electrodes [3, 19], which facilitates the determination of ECAP thresholds for both

the algorithm and the evaluator.

Impact of parameter variations in the DPP

The results from evaluating different parameters are shown with similar graphs in Fig 5. For

each parameter, the horizontal axis shows the different options for varying its value. The label

for the baseline condition appears in bold font. The stacked bars in the topmost panel for each

parameter indicate the number of AGFs where the algorithm and the “average” evaluator (the

mean value of the 6 evaluators’ opinions) agreed or disagreed in the ECAP classification. The

cases where the evaluators and the algorithm agreed on ECAP presence (dark green) were

used to compute Pearson’s r for the ECAP thresholds, shown as a boxplot presentation of

medians and quartiles in the bottommost panel for each parameter. Circles are indicating out-

liers. Here, all outliers stem from the poorer agreement between the unexperienced evaluator

SK and the FG-SNR algorithm. All results are also presented in S1 and S2 Tables. A summary

of the tested parameter options and the optimal parameters is given in Table 3.

Application of different zero amplitude template (ZAT) options. Omitting the subtrac-

tion of a ZAT can be seen to result in a much lower fraction of agreement on ECAP presence.

When no subtraction was applied, the algorithm missed the majority of cases that were classi-

fied as “ECAP response present” by the evaluators. The fraction of cases where the evaluators

and the algorithm agreed was very small, with high values of r. However, this is not meaningful

for such a low number of data points.

All ZAT-A options are based on averaged sub-threshold recordings, where A stands for

averaged below the given stimulus level in nC. While the distribution of classified fractions is

similar across all ZAT-A options, ZAT-A1 slightly reduces r compared to other options where

higher numbers of curves are averaged (ZAT-A3, ZAT-A5, ZAT-A7).

Approaches to represent the ZAT as fit (ZAT-F5, ZAT-F0) lead to a lower fraction of

detected ECAP thresholds and lower values of r compared to any approach comprising of

“averaging only”. The polynomial function of 2nd order (ZAT-F5) was not able to represent

the ZAT well enough. In the initial part of the curve (within the time window “signal

+ noise”), an artifact component was not reduced and, therefore, most traces were classified as

ECAPs regardless of whether they actually contained one or not. That made it impossible for

the algorithm to determine an ECAP threshold. In summary, none of the options that subtract

the ZAT based on the chosen fit nor the options that tested averaging over different stimulus

intensity ranges were considered an improvement compared to the baseline condition

(ZAT-A5 with averaging curves between 0 and 5 nC).
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Fig 5. Effect of choosing different parameter options on ECAP response classification and threshold determination. The different parameters are

shown on top of each block: ZAT, denoising, averaging, 2D filter, time window, post-processing, SNR threshold.

https://doi.org/10.1371/journal.pone.0259347.g005
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Application of different denoising options. No thresholds at all were determined by the

algorithm when filtering was omitted. Pearson’s r was similarly high for all three filters that

were tested, however, the lowpass (LP; cutoff at 3 kHz) and bandpass (BP; passband between

0.15 and 3 kHz) Butterworth (BW) infinite impulse response (IIR) filters (BW-LP 3k and

BW-BP 0.15/3k, respectively) resulted in a slightly higher r for two evaluators. Thus, both But-

terworth filter options can be considered an improvement over the LP finite impulse response

(FIR-LP 3k) filter used as the baseline option.

Application of different averaging options. The highest r of ECAP threshold estimation

between the algorithm and the evaluators was found when seven or more curves were aver-

aged. No averaging at all led to the lowest r with most evaluators. Correlation remained stable

even when a high number of curves were averaged, although averaging ECAP responses at dif-

ferent stimulus levels is expected to decrease the accuracy of threshold estimation. Therefore,

we aimed to identify the averaging option with the lowest number of adjacent response curves

that gives the best results: nine curves. This option was considered an improvement over the

baseline parameter of averaging five responses.

Use a 2D filter instead of separate denoising and averaging. A 2D Gaussian filter kernel

with a sigma of 3 and 5 samples in the respective directions was used. Although the parameter

choice was not systematically optimized, both the resulting r and the fraction of agreement in

classification were similar to the baseline conditions with a tendency to be better in most cases.

Our implementation required fewer lines of code and was executed slightly faster (numeric

results are not presented here because the implementation was not optimized for speed).

Application of different time windows. Pearson’s r was highest for defining “signal

+ noise” and “noise only” parts with the adjacent and the Gaussian time windows. Both

options were considered an improvement over the baseline setting, separated. In other words,

the performance of the algorithm was improved when the time windows for the “signal

+ noise” and “noise only” parts were either extended so that together they cover almost the

whole ECAP recording window (adjacent), or extended even to overlap with each other and

weighted with Gaussian functions (Gaussian).

Application of different post-processing options. The first order polynomial poly1

option (baseline setting) to remove residual stimulation artifact resulted in the highest value of

r. The algorithm seems to be robust against omitting the post processing because the results

are highly similar for the no processing option as well. However, using either a second order

polynomial poly2 or an exponential exp fit in post processing decreased r.

Table 3. Summary of all varied parameters, their tested conditions, and the “best” option.

Parameter Baseline value Tested Conditions Best option

Zero Amplitude Template (ZAT) option 5 nC No ZAT; averaging below 1, 3, 7 nC; F5 and F0 fit 5 nC

Denoising options 3 kHz (FIR-LP 3k) No filter, Butterworth filter lowpass 3k and Butterworth

Bandpass 0.15/3k

Both Butterworth

filters

Averaging options: Number of curves

averaged

5 curves 1,3,7,9,11,13,17,19,21,23,25,27,29,31, 33 9

Time window options: “signal + noise” and

“noise only” part

Separated Adjacent Adjacent and

GaussianGaussian

Post processing options First order polynomial fit

(poly1)

No post-processing, second order polynomial fit (poly2),

exponential fit (exp)

Poly1

SNR threshold criteria q (see Eq 1) 6 dB 1.5, 3, 4.5, 7.5, 9, 10.5 dB 6 dB

Cases where (one or more) conditions outperformed the baseline setting are highlighted in green. For details on the tested conditions, refer the corresponding section in

the results or the S1 Appendix.

https://doi.org/10.1371/journal.pone.0259347.t003
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Application of different SNR threshold criteria. A SNR threshold of 6 dB lead to the

highest value of r. The advantages of the 6 dB cut-off are that it is widely used as a criterion in

signal detection applications, it has been tested before [11], and the original arguments still

hold: with 6 dB, the energy of a detected ECAP signal is four times higher than the energy of

the background noise [11]. A less rigorous criterion, e.g., 3 or 4.5 dB, would result in signals

with smaller SNR to be classified as ECAPs, which might result in more false positives (our

data show this effect for the SNR threshold option of 1.5 dB).

Discussion

The SNR threshold detection algorithm [11] has the advantage of operating at relatively low

ECAP amplitudes and working for different ECAP response morphologies. The FG stimula-

tion paradigm [7] provides the means to sample the ECAP AGF with high resolution. The

novel FG-SNR approach allows for an extension of the SNR algorithm regarding the peculiari-

ties of the FG paradigm and was evaluated in this study. It was not the aim of this study to

compare or rank different methods of ECAP detection and threshold determination.

A new threshold detection algorithm must ultimately be evaluated versus the classification

by a clinical specialist [20], because this represents the only standard for “true” ECAP thresh-

olds to date. Since a certain bias–due to the individual methodology of the evaluator–is

expected to influence their opinion, we consulted six evaluators in attempt to understand not

only the performance of the FG-SNR approach, but also the variation in judgement across

individual specialists. We hypothesized that this validates the FG-SNR approach for use in

clinical practice. We found that the FG-SNR approach with baseline parameters reflects the

choice of human evaluators with regard to ECAP presence. The best correlation between the

ECAP determination of the evaluators was r = 0.93. Therefore, it is remarkable that the best

correlation between the algorithm (using baseline parameters) and the evaluators was r = 0.93

as well. Thresholds determined by the evaluators and the algorithm were closest to each other

at electrode contacts located at the apical end of the electrode array and differed the most from

each other at contacts located on the basal side (Fig 4B and 4C). This is in agreement with

ECAP amplitudes and slopes being largest at apical and lowest at basal electrode contacts in

MED-EL CI users [3, 19, 21] and indicates that estimating the threshold is more challenging in

the basal region for the evaluators, for the FG-SNR algorithm, and for both. This might be due

to more recording noise in the base of the cochlea, possibly due to contacts being located fur-

ther away from neural structures or a lower density/survival of neurons compared to the apex.

Any (automatic) ECAP threshold estimation must inevitably address the question of how

to determine the threshold. Some clinicians prefer the method of “first visual” to denote the

stimulus strength corresponding to the first trace they deem to contain a valid ECAP response

as the ECAP threshold. Others use the method of interpolation and define the ECAP threshold

as the stimulus strength at which ECAP AGF intersects with the noise floor. Among the auto-

matic ECAP measurement algorithms, AutoNRT™ can be seen to mimic the approach of “first

visual” whereas AutoART follows the method of interpolation. The present FG-SNR algorithm

and the previously presented SNR algorithms [10, 11] are, in our opinion, closer to the method

of “first visual”. Since the FG-SNR algorithm bases the ECAP threshold determination on a

sigmoidal fit on binary (ECAP yes/no) classifications instead of fitting a function to the ECAP

AGF, the FG-SNR algorithm could theoretically detect the ECAP threshold at a lower stimulus

strength than clinicians or algorithms relying partially on the interpolation. However, this

remains have to be evaluated by presenting only a subset of the ECAP AGF measurements to

the FG-SNR algorithm and searching for the stimulus strength, to which the ECAP threshold

estimates provided by the algorithm converge. In addition, it should be noted that the “first
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visual” approach and algorithms of determining the ECAP threshold cannot estimate the

ECAP AGF slope.

Differences in experience amongst evaluators affect the degree of similarity between the

evaluators’ and the algorithm’s decision. Clinicians continuously improve their craft in ECAP

threshold determination and ECAP detection with experience. In [22], when evaluating

AutoNRT™ algorithm (Cochlear Ltd.), the ECAP classification and threshold determination of

human evaluators were used as a reference as well (five experienced and two less experienced

evaluators in that case). The deviations observed amongst these seven evaluators are not

directly comparable to our study since other stimulus scales were used. However, similarly to

our study, the less-experienced evaluators tended to deviate more from the “average evalua-

tors” estimate than the algorithm that was under review. One limitation of our current study

may be that only one unexperienced evaluator was recruited to analyze the ECAP responses.

Based on the experience published earlier [22], we did not expect that unexperienced evalua-

tors would add significant value to this study. However, we wanted to show that detection of

ECAP responses and estimating their thresholds needs training. The experienced evaluators

had worked a few years up to 20 years in the field of cochlear implants whereas the unexper-

ienced evaluator had been involved only a few months by the time the evaluators analyzed the

ECAP responses.

We varied different parameters of the DPP of the FG-SNR approach separately to observe

and understand the effects on the outcome measure. The procedures and parameters which

we found to have the highest potential to alter or improve the DPP were (1) denoising of the

response traces, (2) selection of the time windows for the “signal + noise” and “noise only”

parts, and (3) the number of ECAP traces used for averaging. The first two most important

parameters are closely related to the neurophysiology-based knowledge about the characteris-

tics of the target response (the ECAP in this case). This is encouraging for applying the

FG-SNR algorithm to the automatic detection of other neurophysiological responses. The

importance of the averaging step highlights the need to adjust the number of traces depending

on the noisiness of the single measurement and the applicable step size when using the FG

stimulation paradigm to record a given neurophysiological response.

Denoising of the response traces is important for the functionality of the FG-SNR algorithm

because its purpose is to preserve signal components in the frequency range of a potential

ECAP response while removing and/or attentuating undesired components (i.e., artifacts and

noise). The better the denoising filter fulfils this purpose, the easier the classification becomes.

Indeed, from Fig 5 it becomes obvious that FG-SNR could not detect a single ECAP response

when no filter was applied. However, if the filter is too sharply tuned to match the frequency

properties of the ECAP response, the FG-SNR algorithm becomes overly sensitive and could

classify any remaining signal as an ECAP. For practical applications, the IIR filters are perhaps

more interesting since they offer lower computational costs to achieve a desired frequency

response. The uncontrollable phase response of an IIR filter does not affect the performance of

the FG-SNR algorithm, but the IIR filters had to be applied backwards to minimize the influ-

ence of ringing artifacts in our study. In its final portion, the ECAP signal was approximately

flat and, therefore, initial conditions for the filter were easily determined.

Appropriate determination of the time windows for the “signal + noise” and “noise only”

parts is vital for the functionality of the FG-SNR algorithm. The two time windows are to be

selected so that the former contains the “meaningful variance” of the response and the latter

contains only the measurement noise (compare to Eq 1). It was shown that the latencies of the

N and P peaks of the ECAP are only mildly dependent on the stimulus strength. The cohort of

N and P latencies were observed to be in the regions 300–400 μs and 600–700 μs, respectively,

and independently of the stimulus charge and electrode [1]. However, the “signal + noise”
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window contains not only the response but, among others, also residual stimulation artifacts

and ringing artifacts from the denoising step that can interfere with the SNR calculation. In

the original SNR approach [11], the “signal + noise” and “noise only” parts are both extracted

from different regions of the same curve. This has the benefit of saving measurements (and,

therefore, most likely time) compared to the task of generating two separate recordings for

noise and signal. Moreover, it ensures that the ambient noise and recording conditions are

identical. Consistent with this theorem, we found that, e.g., temporal weighting of the compo-

nents within the “signal + noise” and “noise only” parts with a Gaussian function can improve

the performance (median r increased from 0.86 to 0.89), because the stimulation and ringing

artifacts are more prominent at the beginning and at the end of the response.

Averaging of the adjacent ECAP traces to reduce noise was also found to impact the perfor-

mance of the FG-SNR algorithm. This can be explained by the noisiness of a single ECAP mea-

surement, which should be minimized by averaging across several recordings. When the FG

stimulation paradigm [7] is used to perform the ECAP measurements, the stimulus charge is

monotonously increased in small steps. Above threshold, the amplitude of the resulting

response is also expected to increase. Averaging of a certain number n of consecutive responses

should reduce noise while the error introduced by different ECAP amplitudes is limited when

n is small. An uneven number of averages ensures that an equal number of traces below and

above the nominal stimulus amplitude contribute to the average. Here, averaging across nine

adjacent traces was found to be optimal.

One limitation of this study is that it is based on a single data pool. For the validation of the

algorithm, one would ideally use a subset of data for training (optimizing parameters) and a

different subset for independently evaluating the performance of the optimized algorithm

[23]. The focus in our study was on understanding the effects of different parameters on

FG-SNR formalism, defining useful parameter ranges, and obtaining indications for optimiza-

tion. It would also be interesting to vary parameters simultaneously in future research to

understand how parameters affect and influence each other. Future experiments could evalu-

ate the expected clinical benefits of the FG-SNR algorithm, i.e., testing the minimum number

of necessary above-threshold recordings of the algorithm and the potentially positive effects

on measurement comfort (i.e., decreased loudness) and/or measurement duration. In addi-

tion, studying the performance of the FG-SNR approach in CI users with unusual ECAP mor-

phologies will be of interest for clinicial application, as well as comparing this paradigm with

other automated ECAP threshold determination methods.

Recently, it has been suggested to apply certain terms from error analysis to ECAP thresh-

old determination, more specifically: a quantity, which is suitable to describe the error around

the estimated threshold value [24]. The authors focused on two methods that are based on the

amplitude growth function: (1) threshold determination by using linear extrapolation and (2)

manual determination of the first visual ECAP response from all curves that were recorded.

Confidence intervals around the threshold estimates were derived by extrapolating the 95%

confidence interval around the linear fit (for the linear extrapolation method) or by using

guidelines (for the “first visible” approach) [24]. We agree with the authors that ECAP ampli-

tudes do have a measurement error and defining that error might help to clarify the mismatch

between ECAP thresholds and behavioral thresholds. However, with the FG-SNR approach

not being based on an amplitude growth function, we were unable to use a similar strategy.

Nevertheless, we wanted to explore the value of a precision term to ECAP thresholds deter-

mined by the FG-SNR algorithm. To that end, we evaluated the precision of the sigmoidal

function fitting-based threshold determination by applying the bootstrapping approach to

determine the 95% confidence intervals [25]. The procedure was first performed separately for

different CI users and for different stimulating electrodes, and then averaged across the
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individual CI users of the FLEX28 electrode array (i.e., the largest electrode population in this

study). The analysis revealed that the 95% confidence intervals of the threshold estimates are

maximally ± 1.24 nC wide (mean: 0.59; SD: 0.21), which makes the algorithm suitable also for

discovering clinically relevant differences, e.g., in test-retest studies [26–30].

Therefore, even without the possibilities for further improvements that were discussed

here, the concept of FG-SNR approach is suitable for ECAP classification and threshold deter-

mination. The algorithm is also hardware-independent and can be used with all CIs of differ-

ent manufacturers. The only requirement is that the (custom made) research software can

implement the FG stimulation paradigm [7]. Furthermore, we also deem the algorithm to be

applicable in principle for predicting thresholds of other neural responses, such as cortical

responses captured via electro- or magnetoencephalography (EEG and MEG, respectively)

measurements, upon adjusting the parameters according to the known neurophysiological

properties of the given target. Together, these aspects make the FG-SNR algorithm an intrigu-

ing tool for research on the neural responses elicited by CIs.

Conclusion

A data processing pipeline was defined and successfully implemented in order to extend the

signal-to-noise ratio (SNR) approach [11] for utilization with the FineGrain (FG) stimulation

paradigm [7] for electrically evoked compound action potential (ECAP) threshold determina-

tion. This is called the FG-SNR approach. The outcome ECAP thresholds of this novel

approach were evaluated versus the assessments of six evaluators. The ECAP thresholds esti-

mated with the FG-SNR algorithm were found to be representative of the evaluators’ judge-

ment, effectively demonstrating the use of this algorithm in clinical applications. The FG-SNR

algorithm is not limited to any particular cochlear implant (CI) brand and can principally be

applied for research purposes to any CI system by any manufacturer. Several parameters of the

data processing pipeline were identified as promising points for further optimization of the

FG-SNR formalism.

Supporting information

S1 Appendix. Details of the FG-SNR formalism. This document describes the data process-

ing pipeline (DPP) in detail and the assigned parameters needed for realization of the FG-SNR

approach.

(DOCX)

S1 Table. Results of ECAP response classification by the evaluators and the FG-SNR algo-

rithm and Pearson’s correlation coefficient r between evaluators and FG-SNR algorithm.

Column A designates the parameter which was varied, and column B relates to the specific set-

ting of this parameter. A parameter used as baseline is highlighted in green. Columns D–G

show in how many cases the evaluator and the FG-SNR algorithm found an ECAP response

(“true”). Column H shows Pearson’s correlation coefficient r for the correlation between the

ECAP threshold estimates of the evaluators and the FG-SNR algorithm. Columns I, J and K

show the average, median and standard deviation values of the r values across different evalua-

tors, respectively. Empty cells indicate that the correlation could not be computed.

(XLSX)

S2 Table. Detailed results of evaluators and FG-SNR algorithm. Sheets “FG-SNR ZAT”,

“FG-SNR Denoising”, “FG-SNR Number of averages”, “FG-SNR Time window”, “FG-SNR

Post-processing”, “FG-SNR SNR threshold” and “FG-SNR 2D filter” contain the ECAP thresh-

old estimates obtained by applying the FG-SNR algorithm with different options of its
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parameters. In each of those sheets, column D describe the parameter that is modified and col-

umn E shows the option, while column G shows the ECAP threshold estimate. Empty values

denote cases where no ECAP threshold was determined by the FG-SNR algorithm. Sheet

“Evaluators” contains the ECAP presence classifications (column E) and ECAP threshold esti-

mates given by the different evaluators.

(XLSX)

S3 Table. Data underlying Fig 4. These Excel Sheets show underlying data shown in Fig 4A–

4C.

(XLSX)
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22. Gärtner L, Lenarz T, Joseph G, Büchner A. Clinical use of a system for the automated recording and

analysis of electrically evoked compound action potentials (ECAPs) in cochlear implant patients. Acta

Otolaryngol. 2010 Jun; 130(6): 724–732. https://doi.org/10.3109/00016480903380539 PMID:

19958247

23. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelli-

gence technology for medical diagnosis and prediction. Radiology. 2018 Mar; 286(3): 800–809. https://

doi.org/10.1148/radiol.2017171920 PMID: 29309734

24. Biesheuvel JD, Briaire JJ, Frijns JHM. The Precision of eCAP Thresholds Derived From Amplitude

Growth Functions. Ear Hear. 2018; 39(4): 701–711. https://doi.org/10.1097/AUD.0000000000000527

PMID: 29219858

PLOS ONE Automatic ECAP threshold determination

PLOS ONE | https://doi.org/10.1371/journal.pone.0259347 November 1, 2021 20 / 21

https://doi.org/10.1080/14670100.2016.1240427
http://www.ncbi.nlm.nih.gov/pubmed/27900916
https://doi.org/10.1155/2014/501738
http://www.ncbi.nlm.nih.gov/pubmed/24688394
https://doi.org/10.3389/fnins.2017.00339
http://www.ncbi.nlm.nih.gov/pubmed/28690494
https://doi.org/10.1016/j.artmed.2006.06.003
http://www.ncbi.nlm.nih.gov/pubmed/16920343
https://doi.org/10.1186/s12938-018-0588-z
http://www.ncbi.nlm.nih.gov/pubmed/30340590
https://doi.org/10.1177/2331216517736464
https://doi.org/10.1177/2331216517736464
http://www.ncbi.nlm.nih.gov/pubmed/29113579
https://doi.org/10.1109/TBME.2012.2194292
http://www.ncbi.nlm.nih.gov/pubmed/22510942
https://doi.org/10.1080/14670100.2017.1402472
http://www.ncbi.nlm.nih.gov/pubmed/29161976
https://doi.org/10.2307/2529876
http://www.ncbi.nlm.nih.gov/pubmed/7168798
https://doi.org/10.1016/j.csda.2006.05.021
https://doi.org/10.1016/j.csda.2006.05.021
https://doi.org/10.2307/2333709
https://doi.org/10.1186/1475-925X-8-40
http://www.ncbi.nlm.nih.gov/pubmed/20015362
https://doi.org/10.1097/AUD.0b013e3182650abd
https://doi.org/10.1097/AUD.0b013e3182650abd
http://www.ncbi.nlm.nih.gov/pubmed/22885406
https://doi.org/10.3390/life11030203
https://doi.org/10.3390/life11030203
http://www.ncbi.nlm.nih.gov/pubmed/33807687
https://doi.org/10.3109/00016480903380539
http://www.ncbi.nlm.nih.gov/pubmed/19958247
https://doi.org/10.1148/radiol.2017171920
https://doi.org/10.1148/radiol.2017171920
http://www.ncbi.nlm.nih.gov/pubmed/29309734
https://doi.org/10.1097/AUD.0000000000000527
http://www.ncbi.nlm.nih.gov/pubmed/29219858
https://doi.org/10.1371/journal.pone.0259347


25. Wichmann FA, Hill NJ. The psychometric function: II. Bootstrap-based confidence intervals and sam-

pling. Percept Psychophys. 2001; 63(8): 1314–1329. https://doi.org/10.3758/bf03194545 PMID:

11800459
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