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Electricity consumption of Singaporean households
reveals proactive community response
to COVID-19 progression
Gururaghav Ramana and Jimmy Chih-Hsien Penga,1

aDepartment of Electrical and Computer Engineering, National University of Singapore, Singapore 117581

Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved July 12, 2021 (received for review December 28, 2020)

Understanding how populations’ daily behaviors change during
the COVID-19 pandemic is critical to evaluating and adapting
public health interventions. Here, we use residential electricity-
consumption data to unravel behavioral changes within peoples’
homes in this period. Based on smart energy-meter data from
10,246 households in Singapore, we find strong positive correla-
tions between the progression of the pandemic in the city-state
and the residential electricity consumption. In particular, we find
that the daily new COVID-19 cases constitute the most domi-
nant influencing factor on the electricity demand in the early
stages of the pandemic, before a lockdown. However, this influ-
ence wanes once the lockdown is implemented, signifying that
residents have settled into their new lifestyles under lockdown.
These observations point to a proactive response from Singa-
porean residents—who increasingly stayed in or performed more
activities at home during the evenings, despite there being no
government mandates—a finding that surprisingly extends across
all demographics. Overall, our study enables policymakers to
close the loop by utilizing residential electricity usage as a mea-
sure of community response during unprecedented and disruptive
events, such as a pandemic.
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M itigation of the coronavirus disease 2019 (COVID-19)
pandemic hinges on effecting massive behavioral changes

in individuals across the world, at least until pharmaceutical
interventions are developed and made available at scale (1, 2).
In this context, it is imperative to accurately assess populations’
responses during the pandemic, which enables policymakers
to adjust their interventions—particularly during critical peri-
ods, such as the initial stages of its progression—adaptively as
well as retrospectively (3–5). For instance, showing that people
are actively modifying their daily routines—e.g., by increasingly
working from home and avoiding venturing into public spaces—
can inform authorities about the extent to which they follow
through on recommendations from public health experts. The
challenge, then, is to identify specific measurable indicators that
can constantly and accurately capture such behavioral changes.

By reviewing the pertinent literature, we have identified the
following indicators that are currently being used to study social
behavioral changes during the COVID-19 pandemic. The first
indicator comprises responses gathered from the population by
means of surveys. Thereby, researchers have attempted to obtain
an overview of public perceptions (e.g., refs. 6 and 7). But this
approach has several disadvantages: 1) Self-reported responses
could either be untrue or exhibit a skew toward ideal or expected
behaviors, rather than reflecting the reality (e.g., respondents
could report that they are concerned about the pandemic and
are self-isolating, while in reality taking no such actions); and 2)
surveys only present snapshots of the population’s behavior at a
particular time. Therefore, it may be difficult to glean any mean-
ingful trends, given the fast-changing environment. The second
indicator encompasses anonymized data from mobile phones,

including passive geolocation data collected by mobile phone
operators and actively collected contact-tracing data through
dedicated applications (apps) (8–15). By determining the time
spent by people at their homes and outside (e.g., in work-
places, shops, etc.) and analyzing how these behaviors change
over time, recent studies (4, 5, 16–22) have attempted to discern
the social response and design targeted interventions. How-
ever, this approach suffers from limitations as well: 1) Contact-
tracing apps may not be used by many phone users, espe-
cially at the early stages of the pandemic; 2) individuals could
own more than one mobile phone, or multiple individuals may
share a phone; and 3) demographic differences in phone usage
exist, with groups such as children and the elderly potentially
underrepresented. These factors could distort the outcomes of
such studies.

Yet, while the above indicators attempt to gain insight into
people’s daily behaviors during the pandemic, surprisingly, stud-
ies in this context to date have not considered another potential
indicator: residential electricity consumption. These data are
routinely collected through smart energy meters, available to
policymakers in real time, and avoid all of the previously men-
tioned limitations. Importantly, the electricity consumption of
a household truly represents the occupants’ evolving at-home
behaviors during the pandemic. In other words, there are no
concerns of inaccuracies due to self-reporting. Secondly, since
the electricity consumption of all the homes in the community
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is metered, regardless of their demographics, using electricity
data to assess the population’s behavior will result in a more
representative assessment. With this in mind, we study the Singa-
porean context and analyze the electricity consumption of 10,246
households in the city-state from January to May 2020. By track-
ing how the households’ electricity demands change during this
period, we ascertain links between their behaviors and publicly
available information about the progression of the pandemic.
Our study shows that a strong positive correlation exists between
the household peak consumption and new reported COVID-
19 cases and that there is a lagged effect by 1 d. While the
Singaporean residential electricity consumption is typically influ-
enced predominantly by the weather (23–25), we find that in
the early stages of the pandemic, progression of the disease has
the most influence. This influence diminishes progressively as
the country transitions into a strict lockdown—termed as the
“Circuit Breaker”—in early April 2020, when people were only
allowed to leave their homes for essential activities, such as gro-
cery shopping and exercise. Overall, our findings underscore
the proactive response of Singaporean residents to the pan-
demic, implying that they took steps to protect themselves, even
before a government-mandated lockdown. This way, our study
differs from the literature analyzing social behavior during the
pandemic—while previous studies (19–22) have focused only on
behaviors after mobility restrictions were put in place by author-
ities, we also analyze the period prior to their enforcement,
assessing whether people adopted voluntary risk-mitigation
behaviors.

It should be noted that we are not the first to study how elec-
tricity consumption has been affected by the pandemic. A recent
study by Ruan et al. (17) has similarly examined the correlations
between COVID-19 progression and the electricity consumption
in different cities across the United States. However, in con-
trast to our study, their analysis was performed by using the

aggregate demand, which includes not only the residential sec-
tor, but also the commercial and industrial counterparts. As we
show later on, such an aggregation obfuscates trends in the res-
idential demand, which is arguably the most direct indicator of
the peoples’ daily behaviors, especially in a period when peo-
ple are increasingly staying at home. Other studies (e.g., refs.
26–32) have also focused on the overall power sector in differ-
ent countries during the pandemic, showing declining demand
as lockdowns are enforced and commercial and industrial activi-
ties wind down. While these studies discern the power industry’s
response to the pandemic, they provide limited insight insofar as
the objective is to adjust public health interventions by analyzing
the behaviors of the general public.

Results
We obtained the electricity consumption of 10,246 households
in Singapore from smart-meter data collected by their elec-
tricity service provider (Materials and Methods). With this, we
assessed whether the residents proactively responded to public
health authorities’ calls (33) to curtail the pandemic by avoiding
crowded public places on a voluntary basis. Specifically, we stud-
ied if their evening-time electricity consumption increased, which
would likely correlate with staying at home more during this time
or shifting behaviors by doing more activities at home rather than
outside. Note that while the entire populace may not have the
flexibility to work from home before an official lockdown, every-
one has available the option of avoiding crowded public places
after work in the evening. To evaluate if this indeed happened
in the initial stages of the pandemic in Singapore, we obtained
the peak value of the aggregated residential consumption (which
occurs in the evening; Fig. 1A) and studied if any relationships
exist between the daily peak consumption and the progression
of the pandemic. In particular, we used two metrics for the lat-
ter: the number of daily new COVID-19 positive cases and the
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Fig. 1. Relationship between COVID-19 case data and residential electricity consumption in Singapore. (A) Electricity-consumption profiles, aggregated for
10,246 households, for each day in the period of 23 January 2020 to 31 May 2020. (B) Daily peak values from A. (C) Daily new COVID-19 cases and recovered
cases announced by the Ministry of Health Singapore. (D) Normalized cross-correlation plot between the peak aggregate demand and new COVID-19
cases. (E) Normalized cross-correlation plot between the peak aggregate demand and recovered cases. For D and E, the corresponding Pearson’s correlation
coefficient and P value are indicated, and Insets present zoomed-in versions around the respective maximum cross-correlation values.
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number of daily recovered cases announced by the Ministry of
Health through daily situation updates (34) and subsequently
reported by the news media. It should be noted that these two
variables constitute the only immediate information made avail-
able to the public that allow the people to assess the progression
of the disease. We selected both of these data for our analy-
sis due to their potential opposing influences on the society’s
response—while the former may encourage people to be more
cautious and avoid crowded public places, the latter may signal
low disease severity to the public and encourage them to con-
tinue with business as usual. Fatality counts due to COVID-19
were not considered as a potential influencing factor, owing to
the relatively low death toll in Singapore when compared globally
and the fact that the first deaths happened only on 21 March 2020
(34) and cannot have had an effect on the population’s behaviors
in January or February 2020.

Fig. 1A shows the daily aggregated demand of all the house-
holds for the period beginning on 23 January 2020—which
is when the first COVID-19 positive case was detected in
Singapore—and ending on 31 May 2020, until which the elec-
tricity demand data are available to us. Clearly, the daily peak
always occurs in the evening from 8 PM to 11 PM; the cor-
responding peak values are obtained and plotted in Fig. 1B.
From this figure, we observe that the peak demand continues
to increase during this period. This trend would not be visible
from analyzing the aggregate demand of the residential, indus-
try, and commercial sectors. Indeed, such an aggregation would
actually exhibit an opposite trend, given that residential demand
only accounts for a small proportion of the total energy demand,
about 14.9% in the Singaporean context (35). Therefore, the
overall national demand reduced as the commercial and indus-
trial activities ramped down during the pandemic (25). Similar
declines in the overall demand were observed in other coun-
tries as well (17, 26–32). Toward our goal of assessing whether
people respond to the progression of the disease, we now plot
the COVID-19 case numbers for the same period in Fig. 1C
and study the cross-correlation between the daily new cases and
the peak demand (Fig. 1D) and that between the daily recov-
ered cases and the peak demand (Fig. 1E). The corresponding
Pearson’s coefficients r with the P value are also depicted in
the figure. Here, while we observe statistically significant corre-
lations (p� 0.05) between the peak aggregate demand and both
the daily new and recovered COVID-19 cases, we find that the
correlation between the latter pair is weaker. Further, from Fig.
1D, we find a maximum cross-correlation of 0.665 at a lag of 1
d, which suggests that the daily new cases have a 1-d-delayed
association with the peak demand. Meanwhile, Fig. 1E shows
a maximum cross-correlation of 0.479 at a lag of 5 d, implying
that peak aggregate demand leads daily recovered cases by 5 d.
To verify whether these correlations are spurious or represent
a long-term relationship between the data, we tested for coin-
tegration using the Engle–Granger cointegration test (36). For
both new and recovered cases, the test indicates cointegration
(p=1e−3 � 0.05 for both τ and z tests) with the peak demand
values. These results suggest that there is indeed a link between
the response of the society and progression of the disease. To
examine this in more detail, we considered two distinct phases
of the pandemic in Singapore: before the lockdown, or Circuit
Breaker, which began on 7 April 2020; and during the Circuit
Breaker. Analyzing the correlations during the two phases, we
find statistically significant correlations for the former, but not
the latter (SI Appendix, Note 1).

Proactive Community Response before the Circuit Breaker. An
important question now arises about the above observations: Is it
possible that the increase in the peak demand was not due to the
response of Singaporeans toward COVID-19 progression, but
was only caused by changes in the weather? We ask this because

studies in the past have shown that the Singaporean electricity
consumption mainly depends on the weather, with the demand
generally increasing with the temperature (e.g., see refs. 23–25).
Therefore, do the correlations shown in Fig. 1 D and E exist only
because the weather becomes warmer, or is it also because of the
social response to the pandemic?

To answer this question, we constructed a vector error correc-
tion model (VECM) for the peak aggregate demand, while con-
sidering weather as a contributing factor. More specifically, five
weather parameters were obtained and subsequently reduced to
two principal components that explain more than 99.9% of the
variance; see Materials and Methods for more details. In addi-
tion to these two weather principal components, the VECM
was also fed the daily new and recovered COVID-19 cases as
inputs. We then trained the model for the period beginning on
23 January 2020 until before 7 April 2020, when the government
implemented the Circuit Breaker. Using this trained model, we
performed forecast error variance decomposition to assess how
changes in each factor contributed to the changes in the peak
aggregate demand; in other words, we analyzed what the rel-
ative influence of each factor is on the households’ electricity
consumption. These results are presented in Fig. 2. Note that
the timeline for the forecast horizon is not to be confused with
the actual time progression; rather, the analysis only shows the
relative influence of the different influencing variables, given a
trained VECM with no other exogenous shocks after the x axis
equals zero. Three important observations can be gleaned from
Fig. 2. First, it confirms that both COVID-19 progression and the
weather influenced the electricity consumption. However, the
most significant factor is the new COVID-19 cases—contributing
over 93% of the variance—while the weather plays a relatively
minor role, with the two components contributing about 3%
combined to the variance. Second, although the government
did not implement mobility restrictions prior to the Circuit
Breaker, our results show that people proactively responded to
the increasing new COVID-19 cases; the increasing electricity
consumption suggests that people either stayed in to a greater
extent or performed more activities at home rather than outside
during the evenings. Finally, when comparing the roles played by
the daily new COVID-19 cases and the daily recovered cases,
we find that the influence of the latter is relatively negligible

Error variance decomposition of peak aggregate demand 

Fig. 2. Results from the VECM for the peak electricity consumption of
10,246 households in Singapore. The figure shows the error variance decom-
position of the influencing factors—daily new and recovered COVID-19 cases
and two weather components—on the electricity consumption. The red plot
corresponds to the portion of the forecast error variance in the peak aggre-
gate demand that is unexplained by changes in the various influencing
factors. Each of these variables experiences a one-SD shock at x axis equals
zero. The VECM was trained with data from the period 23 January 2020 to 6
April 2020, which is the pre-Circuit Breaker period. Results demonstrate that
the household electricity consumption is most influenced by changes in the
daily new COVID-19 cases.
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(less than 1%). Recall that we initially hypothesized that the
population’s concerns may be alleviated by news of people recov-
ering from their infections. Yet, we find that this is not the case,
according to our VECM, suggesting that people responded more
toward adverse news about the progression of the pandemic
rather than patient recoveries.

Impact of the Circuit Breaker. Having studied the pre-Circuit
Breaker period, we now shift our attention to households’ elec-
tricity consumption as the country implements a full lockdown.
We considered three specific time periods, as shown in Fig. 3A
and explained below: 1) Period-1 corresponds to the pre-Circuit
Breaker period, beginning on 23 January 2020, when the first
positive COVID-19 case was reported, and ending on 6 April
2020. 2) Period-2 also covers the pre-Circuit Breaker period,
beginning on 7 February 2020, when the Government of Singa-
pore elevated the Disease Outbreak Response System Condition
(DORSCON) to orange, indicating high disease severity and
potential community transmission (37). 3) Period-3 covers the
Circuit Breaker period, beginning on 7 April 2020 and end-
ing on 31 May 2020, until which the residential demand data
are available to us. For each period, we trained the VECM
and plotted the extent to which each influencing factor con-

tributes to the variance of the peak aggregate demand. This is
shown in Fig. 3B.

Clearly, the influence of the new COVID-19 cases on the elec-
tricity consumption reduces as time progresses. Even during the
pre-Circuit Breaker period—while it remains the most dominant
factor—its influence on the peak demand during Period-2 falls
to 89% from its original contribution of 93% in Period-1. Once
the lockdown is implemented (i.e., during Period-3), however,
its variance contribution is only 3.3%. As for the weather, we
observe the opposite trend, with the combined influence of the
two weather components increasing over time. While only con-
tributing to 3.2% and 5.9% of the variance in the peak demand
during Periods-1 and -2, respectively, their combined influence
grows to 29.6% during the Circuit Breaker period. This results in
weather becoming the dominant factor influencing the residen-
tial electricity consumption (excluding its own self-inertia). This
is understandable, given the fact that the lockdown in Singapore
was enforced strictly, and even first-time violators received sub-
stantial penalties (38); as such, the residents’ behaviors did not
change significantly in this period due to the progression of the
pandemic.

Until here, we have restricted our study to three specific time
periods. Alternatively, we could employ a sliding time window
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Fig. 3. Impact of the Circuit Breaker on household electricity consumption. (A) We trained the VECM on three specific periods in 2020. Period-1 covers the
interval from the reporting of the first COVID-19 positive case to the start of the Circuit Breaker. Period-2 also covers the pre-Circuit Breaker period, but
begins after the government elevated the DORSCON to orange. Period-3 covers the interval after the Circuit Breaker begins. (B) Variance contributions of
the different influencing factors on the peak residential consumption during the three periods indicated in A. (C) Illustrating how residents settle into their
new lifestyles during the Circuit Breaker. Each point on the x axis indicates the starting date of a 10-wk window whose data are used to train the VECM.
The figure depicts the forecast variance contribution of the new COVID-19 case numbers to the peak residential consumption for each time window, which
moves forward in steps of 2 d each. It also depicts the portion of the training window that falls prior to the Circuit Breaker.
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and repeat the above analysis using VECMs trained for each of
these windows. To this end, we consider a window 10 wk long,
which iteratively moves forward in steps of 2 d. The results are
presented in Fig. 3C, which depicts the variance contribution of
the new COVID-19 cases toward the peak aggregate demand.
The figure also depicts the proportion of the training window
that falls prior to the Circuit Breaker—this value reduces as
the window moves forward. Our results indicate that the influ-
ence of the new COVID-19 cases remains high, as long as the
VECM training window lies outside the Circuit Breaker period.
As the training window overlaps more and more with the Circuit
Breaker period, the influence reduces. This implies that resi-
dents no longer responded to the progression of the pandemic by
changing their behaviors and/or had grown accustomed to their
new lifestyles under lockdown.

Influence of Demographics. Social response during the pandemic
may be very different for different sections of the population,
as evidenced by several recent studies (e.g., see refs. 20–22).
To understand if demographic factors played a role in deter-
mining peoples’ response in the Singaporean context, we clas-
sified the 10,246 households into six different dwelling types:
one-room/two-room HDB, three-room HDB, four-room HDB,
five-room/executive HDB, private apartment/condominium, and
landed property (Materials and Methods). (HDB here refers to
residential apartments constructed by the Housing and Devel-
opment Board, Singapore.) These dwelling types exhibit clear
disparities in their family composition, average number of resi-
dents per household, and average income, with larger units more
likely to be family homes with more residents and higher incomes
(SI Appendix, Note 2). Results of the classification are sum-
marized in Fig. 4A. For each dwelling type, we aggregated the
demands of all the households belonging to that type. Subse-
quently, we employed the VECM that was described previously,
but now train six different instances—each instance was trained
with the peak aggregate demand of the corresponding dwelling
type, along with the weather components. Fig. 4B presents the
error variance decomposition results and shows that there are no
significant differences in the reactions of the households based
on the dwelling type. For each dwelling type, the overarching
trend is consistent—the peak value of the electricity demand

depends more on the progression of the disease during the initial
stages of the pandemic than later on during the Circuit Breaker
period. Referring to Fig. 4B, we observe a drop in the plot cor-
responding to households living in one-room/two-room HDB
apartments for the period 25 to 31 January 2020. The overlap
of this drop with the Chinese New Year holidays from 25 to 27
January 2020 suggests that any variation in the peak aggregate
demand for these households is owing to the holidays, rather
than the progression of the disease. The observation that only
one-room/two-room HDBs depict this trend may be due to a
large number of such households being nonfamily (SI Appendix,
Note 2), and the Singaporean culture calls for family reunions
during this widely observed holiday (39). We also analyzed the
cross-correlation between new and recovered COVID-19 num-
bers and the aggregate demand for each dwelling type, which
again shows similar responses by households, regardless of their
demographics (SI Appendix, Note 3).

Discussion
Our study has several implications. To begin, while residential
electricity-consumption data have traditionally been used only
for billing and grid-planning purposes, we have demonstrated
that these data can capture peoples’ at-home behaviors in real
time during a pandemic, adding to the list of bespoke data that
are available to researchers and policymakers for this purpose.
As noted earlier, this approach brings under the umbrella of
analysis more people, such as the young and the elderly, who
have been traditionally underrepresented in mobility data from
smartphones. Encouragingly, smart electricity-meter data are
becoming available in an increasing number of cities and coun-
tries (40). Next, although ours is a retrospective study, the analy-
ses can be performed in real time to inform cities’ public health
policies while tackling future waves of this, and other, pandemics.
We highlight four specific ways below. First, policymakers can
estimate the overall proclivity of the populace toward embrac-
ing risk-reduction behaviors. If people respond proactively at the
beginning of the pandemic, they are most likely to maintain a
responsive attitude to future interventions as well. While pub-
lic attitudes may change over the long-term, e.g., due to fatigue
(41), nevertheless, our study can anchor the necessary level of
effort put into related public health campaigns, particularly in

Classification of n = 10,246 households by 
dwelling type

15.8%

15%
11.5%

12.5% 16.6%

28.6%

Va
ria

nc
e 

co
nt

rib
ut

io
n 

of
 n

ew
 

C
O

VI
D

-1
9 

ca
se

s 
on

 p
ea

k 
ag

gr
eg

at
e 

de
m

an
d 

(%
)

Window start date

Portion of training window 
before Circuit Breaker (%)

Window start date

A

B

Fig. 4. Influence of demographics on Singaporean residents’ response to the pandemic. (A) Classification of 10,246 Singaporean households by dwelling
type. (B) The same as Fig. 3C, but for the aggregate demand of households belonging to different dwelling types.
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the absence of other real-time feedback. Second, policymakers
can anticipate the speed of response of the community to their
interventions. Our analysis suggests that Singaporean house-
holds responded to news of new COVID-19 cases with a delay of
about 1 to 3 d (see high cross-correlations in Fig. 1D for a lag of 1
to 3 d, peaking at 1 d). Therefore, if a specific intervention in the
near future fails to produce an impact within this time frame, it
may portend the need to revise its design and/or implementation.
Third, our VECM suggests that people respond more to public
health updates that focus on the extent of the disease spread dur-
ing the pandemic, i.e., the number of newly infected patients,
rather than the number of recoveries. This has implications
in designing future pandemic updates to the public. As such,
our study suggests that Singaporean authorities’ efforts at the
beginning of the pandemic were indeed effective in persuading
Singaporeans about the severity of the disease and the need to
effect immediate behavioral changes to tackle its spread. Fourth,
policymakers can gain crucial insight into whether populations
belonging to specific demographics require additional interven-
tions, especially by combining electricity-consumption data with
the corresponding location information (though unavailable to us
due to privacy reasons). If at any time we find inaction among
certain demographics, additional resources could be allocated
to these groups. In particular, this approach can be harnessed
during the global vaccine roll-out that is underway at the time
of writing of this article; if certain groups are unable to reduce
exposure, even during evenings, they can be targeted in the vacci-
nation program. Specific to the Singaporean populace, our study
suggests that households of all dwelling types responded in a
cohesive manner before the lockdown to reduce the risk of expo-
sure, despite significant disparities in their family composition,
household size, and income. Given that to protect oneself during
an infectious disease outbreak is to protect the society at large,
this broad response could have contributed to the effectiveness
of Singapore’s response to COVID-19. This observation from
the Singaporean context is seemingly in contrast with studies of
other populations [e.g., in the United States (20–22)] that have
reported that socio-economic disparities do differentiate popula-
tions’ behavior during lockdowns. While cultural differences may
have been a factor, we speculate that the differences arise because
the aforementioned studies assess peoples’ behaviors during the
day, which are predominated by their working habits, whereas we
only consider their behavior during the evening. However, further
studies are required to draw a definite conclusion.

Finally, we discuss the caveats of this study. First, as is the case
for all observational studies, there is always the fear that all per-
tinent explanatory variables may not have been considered while
explaining the observed behavior. In choosing the explanatory
variables for the electricity-consumption changes in our study,
we rely on existing studies (23–25) that show that the weather
is the predominant factor influencing Singaporean residential
electricity consumption and consider whether public informa-
tion about the worsening pandemic changed the consumption
patterns. On a related note, our study has established that the
explanatory variables are Granger causes of the electricity con-
sumption (Materials and Methods and SI Appendix, Note 4), but
this is distinct from structural causality (42). Although techniques
such as instrumental variable (43) or matching (44) could poten-
tially be used to establish structural causality, the present study
does not lend itself to these alternatives for several reasons: 1)
Every household is assumed to consume news about the pan-
demic at the same rate, i.e., they are all “treated”; and 2) even
if this were not the case, the data requirements for such analyses
would be prohibitive. Second, while our experiments show that
new COVID-19 cases influenced the peak household electricity
consumption, they do not specify the particular modifications in
the residents’ behavior or the underlying intentions that resulted
in these demand changes. Our interpretation is that these stem

from the populace proactively staying in during the evening to
a larger extent and/or performing more activities at home rather
than outside, with the intention of reducing potential exposure to
the disease. In any case, one can argue that any behavioral change
in response to the progression of the pandemic and in the absence
of government mandates qualifies as a proactive response.

Materials and Methods
The electricity-consumption data used in this study were obtained with
approval from the Energy Market Authority (EMA), Ministry of Trade and
Industry Singapore; contact ema enquiry@ema.gov.sg for access. The codes
used for our analyses are available at ref. 45.

Data Collection.
Electricity-consumption data. We obtained the smart-meter data of 11,901
unique residential consumers, who are supplied electricity by SP Group (46),
with the consent of the EMA, Ministry of Trade and Industry, Singapore (47).
This dataset consists of the kilowatt-hour consumption of the anonymized
individual households at a half-hourly resolution for the period 1 November
2019 to 31 May 2020. From this dataset, we discarded households with miss-
ing entries. As a result, we obtained the complete electricity-consumption
data for 10,246 households over the 7-mo period. While the original dataset
did not specify the class of the households, i.e., the dwelling type, we used
the average monthly electricity-consumption statistics (48) from the EMA
to classify the households into six categories: one-room/two-room HDB,
three-room HDB, four-room HDB, five-room/executive HDB, private apart-
ment/condominium, and landed property. In more detail, each consumer’s
average consumption during the months of November 2019, December
2019, and January 2020 was determined, and three separate classifications
were performed by assigning to each consumer the dwelling type with the
nearest average consumption, as reported by the EMA. The final classifi-
cation was obtained as the majority of the three previous classifications.
However, if all three classifications happened to be distinct, the consumer
was assigned the dwelling type based on their November 2019 consumption.
Weather data. Since the Singaporean electricity consumption is predom-
inantly influenced by the weather (23–25), we included weather as an
influencing factor while analyzing the change in the residential demand
using our VECM. The weather data used in this study were obtained
from Meteoblue (49). In particular, we obtained five different weather
parameters at an hourly resolution for the time period under consid-
eration: temperature, relative humidity, total cloud cover, solar irradia-
tion, and wind speed. The first two parameters are measured at 2 m
above the ground, while the wind speed is measured 10 m above the
ground. Since these five parameters are highly correlated with each other,
they were converted into two principal components, which explain over
99.9% of the variance, which serves to reduce the number of dimensions
of the data.
COVID-19 case data. We obtained COVID-19 case numbers released by the
Ministry of Health Singapore to the media (50). Specifically, these consisted
of the new positive COVID-19 cases and new recovered number of patients
every day from January to May 2020.
VECM. VECMs are used to capture complex relationships between multi-
ple time-series data (51). An extension of vector autoregression models (52),
VECMs are used when the time series to be analyzed are cointegrated, which
is indeed the case for our analysis. Cointegration between variables exists
when they are driven by a common stochastic trend; in such cases, there exist
one or more linear combination of these variables that is stationary. The
number of such linear combinations is referred to as the number of cointe-
gration relations and is a parameter of the VECM. Another key component
of the VECM is the degree of the multivariate autoregressive polynomial
composed of the first differences of the time series, p. Here, (p + 1) is the
order of the vector autoregression model representation of the VECM.

In our study, the MATLAB econometrics toolbox was used to implement
the VECM (53). The inputs to the model were the following: peak aggregate
electricity demand, daily new COVID-19 cases, daily new recovered cases,
and the first two principal components obtained from the five weather vari-
ables. Here, while the initial weather data were at an hourly resolution (i.e.,
24 data points per day), the two components were averaged over each day
in order to obtain a single data point per day per component. We veri-
fied if the four potential explanatory variables—daily new and recovered
COVID-19 cases and the two weather components—were Granger causes of
the peak aggregate electricity demand; see SI Appendix, Note 4 for the test
results confirming Granger causality. The following steps were performed
to train a VECM with data for a specific time period. Each of the input series
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was differenced, and their stationarity was verified by using the Augmented
Dickey–Fuller test (54). Next, the number of cointegrating relations between
the set of time series was found by using the Johansen cointegration test
(55). The VECM was then fit to the inputs by using maximum likelihood
(52). For each set of inputs, we varied the model parameter p in [0, 6] and
chose the value of p that minimized the Akaike information criterion (56).
Finally, with this model, we performed forecast error variance decomposi-
tion (51), considering a forecast horizon of 100 steps. The parameters of the
optimal VECM used for different simulations in this study are presented in
SI Appendix, Note 4.

Data Availability. Code has been deposited in the Power Engineering Lab
site (https://www.penglaboratory.com/code-singaporean-covid19-response;
ref. 45).
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