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This study presents and evaluates the mathematical model to estimate the mean and variance of single-lead ECG signals in sleep
apnea syndrome. Our objective is to use the volatility property of the ECG signal for modeling. ECG signal is a stochastic signal
whose mean and variance are time-varying. So, we propose to decompose this nonstationarity into two additive components; a
homoscedastic Autoregressive Integrated Moving Average (ARIMA) and a heteroscedastic time series in terms of Exponential
Generalized Autoregressive Conditional Heteroskedasticity (EGARCH), where the former captures the linearity property and the
latter the nonlinear characteristics of the ECG signal. First, ECG signals are segmented into one-minute segments. The het-
eroskedasticity property is then examined through various tests such as the ARCH/GARCH test, kurtosis, skewness, and
histograms. Next, the ARIMA model is applied to signals as a linear model and EGARCH as a nonlinear model. The appropriate
orders of models are estimated by using the Bayesian Information Criterion (BIC). We assess the effectiveness of our model in
terms of mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE). The data in this article is obtained from the Physionet Apnea-ECG database. Results show that the ARIMA-
EGARCH model performs better than other models for modeling both apneic and normal ECG signals in sleep apnea syndrome.

1. Introduction

ECG signal has an essential role in medical diagnosis for the
study of cardiac function and abnormalities. Considering the
abnormal activity of heart or heart rate variation (HRV)
could be an indicator of some diseases such as congestive
heart failure (CHF) [1], sudden cardiac death (SCD) [2], and
obstructive sleep apnea (OSA) [3]. OSA is a common re-
spiratory disease characterized by a cessation in the airflow
for at least 10 seconds [4]. The literature has stated that sleep
apnea affects approximately 2% of women and 4% of men
and that most of them are overweight [5]. Apnea increases
accidents and mortality rates. Previous research considered
apnea as a public health risk compared with smoking.
Untreated OSA can also cause depression, high blood
pressure, stroke, hypertension, death, and an increased risk
of long-term and short-term disease. It increases the risk of
myocardial infarction by up to 20% and heart attack by up to

40% [6]. Accurate and early diagnosis is an essential step in
the control and prevention of sleep apnea. So, it attracts
much attention in ECG research.

Polysomnography (PSG), a multimodality system, is the
most accurate and precise method of sleep monitoring,
which can be used to describe sleep stages and disorders.
PSG measures electrocardiogram (ECG), electroencepha-
logram (EEG), electromyogram (EMG), electrooculogram
(EOG), and respiratory airflow and peripheral oxygen sat-
uration (SpO2). After collecting the PSG data, physicians
rate the OSA events using statistical methods. The PSG
system, on the other hand, has two major defects. First,
manually scoring sleep stages according to the guideline
requires the use of physicians and appropriate sensors is
time-consuming and expensive. Therefore, PSG can only be
performed in sleep laboratories, which delays detection and
results in a long waiting list. Second, it is an obtrusive
approach, which requires the attachment of several sensors
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and wires. Sleep normality can be disrupted by the sensors
and wires, making PSG inappropriate for long-term sleep
researches [7]. So, developing methods that can accurately
detect apnea with a few signals at home is critical. These
approaches were focused on biosignals such as respiratory,
snoring, SpO2, and ECG signals, and several authors have
achieved a high level of performance in terms of OSA de-
tection [8-11].

Using wearable devices with some necessary biosensors
for sleep disorder diagnosis is safer because these devices are
designed with unobtrusiveness insight. Furthermore, they
are simpler to use, easier to find, and less expensive than
clinical measurements. The ECG is one of the most reliable
physiological signals given by various wearable devices and
used in many OSA studies [12]. Several researchers have
suggested innovative methods for evaluating sleep quality
and sleep apnea using only a single-lead ECG. The presence
of irregular characteristics in the ECG signal is seen as a
warning sign of sleep apnea. When sleep apnea occurs, the
oxygen saturation decreases and the cardiovascular system is
activated to maintain the oxygen intake constant. Further-
more, according to a clinical study in [7], patients’ com-
pliance is extremely low when wearing the pressure
transducer sensor to achieve nasal and oral respiration.
Patients usually pulled out the nasal cannula and nasal
airflow data can be unreliable compared to the ECG signal
due to lead loss. As a consequence, we chose ECG signals to
model OSA and normal events in this study.

The majority of ECG approaches proposed in the lit-
erature for sleep apnea detection are based on feature ex-
traction from single-lead ECG signals and using classifiers
[8-11]. Zarei and Mohammadzadeh Asl [10] proposed a
novel approach based on single-lead ECG autoregressive
(AR) modeling and ECG feature extraction using the
spectral autocorrelation function. Sequential forward feature
selection (SFES) is used to select the most appropriate
features, which are then fed into a random forest to classify
normal and apnea epochs. Singh et al. [8] extracted the mean
and the standard deviation from the instantaneous ampli-
tude (IA) and instantaneous frequency (IF) of each recon-
structed component (RC) of heartbeat intervals and
electrocardiogram-derived respiration (EDR) signals. Then,
stacked autoencoder-based deep neural network (SAE-
DNN) and support vector machine (SVM) are used to
categorize apneic and normal segments. Zhang et al. [11]
suggested a sleep monitoring model based on a single-
channel electrocardiogram using a convolutional neural
network (CNN). Rajesh et al. [9] extracted moments of
power spectrum density, waveform complexity measures,
and higher-order moments from the 1 min segmented ECG
subbands obtained from discrete wavelet transform (DWT).
The acquired feature set is fed to various classifiers such as
SVM, linear discriminant analysis (LDA), random forest,
and k nearest neighbors (kNN). All of these methods are
purely data-driven.

Signal modeling and feature extraction is an essential
step in the analysis of the ECG signals. Mathematical
modeling of the ECG signal is widely used in many car-
diovascular studies, such as ECG signals denoising, ECG
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beats segmentation, arrhythmias detection, heart rate esti-
mation, and synthetic ECG signal generation [13, 14].
Mathematically, modeling helps to understand how the
model’s factors influence the sensitivity and specificity in
computer-aided diagnosis methods. Different models have
been used for ECG signals such as autoregressive (AR)
model [15], autoregressive moving average (ARMA) [16],
generalized autoregressive moving average (GARMA) [17],
data flow graph (DFG) model [18], generalized orthogonal
forward regression (GOFR) [19], Gaussian mesa and bi-
Gaussian functions [19], hidden Markov models (HMM)
[20], morphological models [21], Hermite basis functions
[22], Gaussian model [23], principal component analysis
[24], Kalman filter [25], and time-varying autoregressive
model (TVAM) [26]. These ECG models have fitted
mathematical representations into HRV or the points of
ECG signals and need ECG preprocessing to achieve es-
sential components such as QRS complexes, P-wave, and
T-wave. The main drawback is that using these components
needs to determine the exact location of waves, which in-
creases the computation time, and the system performance
depends on the method used. Therefore, in this article, we
used an unprocessed single-lead ECG signal, which is lower
in cost. Only a few researchers used models to detect apnea
[26-28]. Mendez et al. [26] used a time-varying autore-
gressive model (TVAM) to assess power spectral densities
for the QRS complex area and the RR intervals. This study
aims to use time series models to propose a new ECG signal
model. This model can be used to detect normal and apneic
ECG signals. Sharma and Sharma [27] used a linear com-
bination of the lower order Hermite basis functions to es-
timate each QRS complex of the ECG signal. Hassan et al.
[28] used a tunable-Q factor wavelet transformation
(TQWT), and each subband was modeled using symmetric
Normal Inverse Gaussian (NIG) pdf. One issue neglected in
previous articles is that apnea is associated with fluctuations
in the ECG process. This property can be used to model
apnea and normal ECG signals.

Time-varying conditional standard deviation, usually
called volatility, describes periods of high oscillations dis-
tributed with relative calm periods and plays a vital role in
predicting time series fluctuations [29]. In statistics, heter-
oskedasticity indicates that a variable standard error is not
constant over time. It has been proven that hetero-
skedasticity modeling through Autoregressive Conditional
Heteroskedasticity (ARCH) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) and their variants
are helpful in the modeling varying volatility in nonsta-
tionary time series [29]. Real-world time series such as ECG
signals have volatility. In the literature, ECG volatility and
heteroskedasticity during apnea are underestimated. Huand
Tsoukalas [30] showed that Integrated GARCH(1, 1) could
model apneic ECG segments, and ARCH(1) can model the
normal ECG recordings. Experimental observations showed
that cardiovascular variations are complex, nonlinear, and
nonstationary [31]. Linear models like AR, Moving Average
(MA), and ARMA are coarse estimations of real-world
systems and usually have poor performance in forecasting
the evolution of nonstationary and nonlinear processes [31].
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The ARIMA model is usually used to model these patterns
[31]. Therefore, in this article, the ARIMA model is used to
model linear features of ECG signals. The consistency of
conditional variance is one of the essential assumptions used
by conventional ARIMA models to forecast future values. If
we assume that the ARIMA model fits an ECG signal, the
conditional variance should be constant. It has been shown
that during apnea, the homoskedasticity assumption is not
correct [29]. Instead of using the ARIMA model, which
focuses only on predicting the conditional mean of future
values, clusters of abundant variance need to use models that
can simultaneously predict both the conditional mean and
the conditional heteroscedasticity of the system. Since
ARIMA is a linear model, it cannot reflect nonlinear
characteristics such as volatility. ARIMA is a linear model
that reveals linear characteristics of the ECG signal, and
nonlinear features such as heteroskedasticity of the ECG
signal remain in residuals, which are modeled using a
nonlinear ARCH or GARCH model. Therefore, the pro-
posed model is based on the linear ARIMA model and a
nonlinear GARCH model. First, the heteroskedasticity
property of the ECG signal is examined through the ARCH/
GARCH test, kurtosis, skewness, and histograms. Next, the
linear characteristics of ECG signals are modeled using the
ARIMA model. To model the nonlinear heteroskedasticity
teatures of ECG signals, we use three different versions of the
original GARCH model: GARCH, Glosten-Jagannathan-
Runkle GARCH (GJR-GARCH), and Exponential GARCH
(EGARCH). Finally, the model with the maximum likeli-
hood value is selected as the best model among existing
models. The best orders of the models are then selected using
Bayesian Information Criteria (BIC) and the performance of
the proposed model is assessed in terms of four criteria:
mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage
error (MAPE).

The article is organized as follows: Section 2 briefly
addresses the fundamentals of ARIMA and GARCH models.
Section 3 provides descriptions of the proposed ECG signal
model, where data statistic measures and performance
metrics are also provided. Associated numerical results are
given in Section 4. Section 5 discusses the obtained results,
and the article is concluded in this section, too.

2. Prediction Model

In this section, a brief review of the ARIMA and GARCH
family models will be presented, respectively.

2.1. Autoregressive Integrated Moving Average (ARIMA).
Autoregressive Integrated Moving Average (ARIMA)
model is generalized as an ARMA model used in cases
where the signal is nonstationary. The ARIMA(p, d, q)
model consists of three parts: Autoregressive (AR), In-
tegrated (I), and Moving Average (MA). For a given time
series, an ARMA(p, q) model with p as the number of
autoregressive terms and q as the sum of lagged forecast
errors of the following type:

P q
<I—Zak>Xt=<l+Zbk>£t, (1)
k=1 k=1

where p is the number of autoregressive (AR) terms, a;, s are
AR parameters, q is the number of terms in moving average
(MA), by s are MA parameters, and ¢, is an independent
error term. ARMA models assume that signals are sta-
tionary, and the performance of the ARMA model reduces
whenever time trends and seasonality features exist.
Methods such as ARIMA are used to remove or reduce these
nonstationarity moments [32].

The ARIMA model of orders (p,d,q) is a process, X,,
whose differences (1 — L)dXt satisfy an ARMA(p, q) model,
which is stationary. d is a nonnegative integer (usually less
than (2)) and represents dth difference of X, to find a sta-
tionary time series. ARIMA models are always assuming the
data variance is constant. The following equation can be used
to describe the ARIMA(p, d, g) model.

P q
<1 -y akLk> (I-L)%X, = <1 +y bkLk>st, (2)
k=1 k=1

where L{X,} = X, - X,_, and d is the number of differences
required to stationary time series, g, s are AR parameters, p
is the model’s autoregression order (AR) and the number of
differential series lags, b, s are MA parameters, g is the order
of the model’s moving average (MA) and the number of
prediction error lags, and €, is independent error terms.
Modeling the ECG signal via ARIMA is essentially a three-
stage iterative process that involves the following: identifying
model order, model estimation, and checking the model.

2.2. Autoregressive Conditional Heteroskedasticity (ARCH)
Model. Conditional volatility models are known as heter-
oscedastic models, meaning the variance is not constant.
These models were widely used in finance because data
appear to differ or be highly volatile in these areas. Volatility
models were first introduced with the Autoregressive
Conditional Heteroskedasticity (ARCH) model in eco-
nomics by Engle [33]. In this model, the conditional variance
varies during time as a function of previous errors. Suppose
that Z () is a strong white noise process, Z () ~ N (0, 1); the
process y, can be an ARCH process, if a process is stationary
and has the following properties:

Ve =02y
(3)
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where Z(t) is a stochastic piece, o, is a standard deviation
depending on time, g is the length of ARCH lags, «,, >0, and
a;20, i=1,2,...,q

2.3. Generalized Autoregressive Conditional Hetero-
skedasticity (GARCH) Model. Although the ARCH method
has proven useful in modeling data instability, a relatively
long lag is often needed. A simplified version of the ARCH



model, i.e., Generalized Autoregressive Conditional Heter-
oskedasticity (GARCH), was proposed by Bollerslev [34] to
allow both longer memory and a more stable lag structure.
GARCH modeling is a statistical method for time series
modeling whose variances are a stochastic process widely
used in modeling financial time series. The main idea of this
model is that the conditional variance 7 has an AR structure
and also depends on past values of o,. GARCH(p, q) is
defined as follows:

Ve =02y

2 Lo d 2 (4)
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where p is the order of GARCH terms, g is the order of
ARCH terms, o >0, ;>0, f;>0. The GARCH model’s
application in various fields proves its ability to model data’s
uncertainty.

2.4. Glosten-Jagannathan-Runkle GARCH (GJR-GARCH)
Model. Some more complex GARCH parameterizations
were suggested for modeling the conditional variance after
the standardized GARCH model. These sophisticated
models aim to capture better the empirically demonstrated
stylized facts of the mechanism of conditional variance. The
asymmetric effect of the negative return shocks, for example,
is identified by the Exponential GARCH (EGARCH) model
[35] and the Glosten-Jagannathan-Runkle GARCH (GJR-
GARCH) model [36]. To conclude, there is no consensus on
which GARCH model offers the best for forecasting. Dif-
ferent studies prefer different GARCH parameters, with
different study times, different asset groups, and different
output assessment requirements. The asymmetric GARCH
models are, however, usually favored over the symmetric
GARCH model. The first model we used is Glosten-
Jagannathan-Runkle GARCH (GJR-GARCH). GJR-
GARCH is a nonlinear GARCH model that considers the
asymmetries in response to the conditional variance in an
innovation. The GJR-GARCH model’s principle is that
conditional variance dynamics admit that a regime switch
depends on the sign of past innovations. It models the
asymmetry in GARCH and defined by the following
equations:

Ve =02y
2 S 2 4 2 < 2 (5)
0y =+ Z &Yt Zﬁjat—j + Z ViliiYip
i1 =1 i1

where Z, isiid., I, ; =01if y,;>0,and I, ; =1 if y, ;<0

2.5. Exponential GARCH (EGARCH) Model. Nelson intro-
duced the Exponential GARCH (EGARCH) (p, q) model
[35] to catch the asymmetry:
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where o7 is a conditional variance; ay, a, 3, 6, and A are
coefficients. Z, can be a regular normal variable, or it can
come from a generalized distribution of errors. The structure
of g(Z,) allows for the sign and magnitude of Z, to have
different impacts on the volatility. Since log(c?) can be
negative, the parameters are not subject to sign restrictions.

3. ECG Signal Modeling Using ARIMA-
EGARCH

ECG signals are segmented into one-minute segments. Each
segment has 6000 samples, which contain either normal or
apneic conditions. We calculated the order of the models
from randomly selected 50% of the segments and then used a
test and validated the model’s output on the remaining
segments. The overall proposed scheme is demonstrated in
Algorithm 1.

3.1. Statistical Tests for ARCH/GARCH Effect. GARCH
models can only be used when the data are volatile. We need
to verify the volatility of data before using any GARCH
models. We use various tests to explore ECG segments’
statistical properties to examine whether GARCH family
models provide an efficient ECG signals modeling. One of
the approaches is by measuring histograms for verifying data
distribution. Kurtosis is the indicator of peaks in the data
distribution, and skewness is a symmetrical representation
of a mean distribution. The series is volatile when the
kurtosis value is greater than 3 and is skewed to either the left
or the right. In simple terms, the heavy-tailed distribution
indicates that the probability of encountering large devia-
tions from the mean is higher than in the case of normal
distribution. Kurtosis and skewness measurements are used
as follows:

Elx— )t
Kurtosis = (3674(4),
o
, (7)
E(x —
Skewness = Lﬁ,
o

where y and o are the mean and the standard deviation of x.
Another method for testing ARCH/GARCH effects is the
ARCH/GARCH test suggested by Engle [33]. This approach
tests a null hypothesis that the ARCH/GARCH effect does



Journal of Healthcare Engineering 5
(1) : decompose ECG signals into one-minute segments
(2) randomly select 50% segments as a training set
(3) select the best order of the ARIMA model from training segments using BIC
(4) select the best order of GARCH, GJR-GARCH, and EGARCH models from training segments using BIC
(5) choose a model with a maximum likelihood value
(6) use maximum likelihood estimation (MLE) to identify model coefficients
(7) evaluate the proposed model using MSE, RMSE, MAE, and MAPE on the remaining segments
ALGorITHM 1: The proposed procedure for modeling apneic and normal ECG signals.
not exist. Besides, this statistical test is asymptotically dis- Schwarz [39] provides the BIC:
tributed as chi-square. The final test form is based on the (n) (L)
Wilcoxon signed-rank test, which is a nonparametric sta- BIC: ¢, (k) = kln— - 2In— (10)
n n

tistical test to assess if two populations are similar without
assuming that they obey the normal distribution. The null
hypothesis of the test is that the output indicators are
equivalent or comparable to populations for GARCH
models versus ECG segments. The test statistics, W, is the
total of the positive difference ranks (i.e., x — y) between the
two samples. We set 0.05 as the level of significance for the
test. If the “P value” is less than 0.05, we can conclude that
the significance level of the null hypothesis is violated. This
test is given as follows:

(W —n(n+1)/4)
A (n(n+1)(2n + 1) — tiead;j)/24

(8)

z(x,y) =

where n corresponds to the sample size of the x — y.
Signrank uses
[tie,ank, tiead]j] = tiedrank (abs (diffxy), 0, 0, epsdift) to get
the tie adjustment value tieadj for the two-sample event.

3.2. Order Selection. An ARIMA(p, d, q) model can be
constructed by visually inspecting the autocorrelation
function (ACF) and partial autocorrelation function
(PACF). However, using objectively defined parameters
such as Akaike information criteria (AIC) and Bayesian
Information Criterion (BIC) is a more objective approach to
determine p, g, and d of an ARIMA(p, d, q) method. These
information criteria are statistical model fit measures [37].
They provided a set of results and assessed the relative fitness
of the model of a number of previously developed mathe-
matical models. Each of these criteria defines a c,, (k) for-
mula, where k denotes the number of model parameters and
n the number of observations. The model with the fewest
parameters, k, is called the best fit, and the quantity c,, (k) is
the smallest. The AIC [38] is an information processing
method focused on the principle of entropy. The AIC’s main
concept is to look at the model’s difficulty and its fit to the
sample data and come up with a score that combines the two.
Its formula is [37].

AIC: ¢, (k) = 2<§) -2 ln(—L), 9)

n

where L denotes the likelihood function, k denotes the
number of model parameters, and #n denotes the number of
observations.

Both of these criteria have advantages and disadvantages.
Shibata [40] studied the asymptotic properties of the AIC
estimation, concluding that the AIC estimate is inconsistent
and asymptotically overestimates k with a nonzero probability.
BIC is known to underestimate k [41]. Therefore, in the present
study, we used the BIC criterion. The model with the lowest
amount of BIC value is chosen as the most suitable match.

3.3. Evaluation Methods of Model Sufficiency. There is usually
no common criterion for evaluating a model’s forecast
output and comparing it with other benchmark models [42].
Since there are no common parameters for measuring er-
rors, various error metrics were used to verify the proposed
model’s efficacy. The model performance evaluation is done
in this analysis by comparing the expected values with their
corresponding observed values using traditional perfor-
mance metrics, such as mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) based on the following
equations:

MSE=i§:(X»—X-)2 (11)
N 1:1 1 1 >

(12)
1 Y _
MAE:N ;IXl_Xll’ (13)
1 Yix, - X,
MAPE =5 Z i 100%, (14)
i=1 i

where N is the number of samples in one segment and X, X
are observed and predicted values in one segment. These
errors are advisable for predicting time series with the same
scale and the same data processing procedures. The model
with the smaller value of MSE, RMSE, MAE, and MAPE is
selected as the best model. MAE and RMSE calculated the
average of forecast errors over a sample size n. MAE and



RMSE have the analyzed signal units. MAPE, which is a
dimensionless quantity, assesses the predictive model’s ac-
curacy. In statistics, MAPE calculates the precision of the
prediction of a forecasting system and is typically expressed
as a percentage. The predictive potential of the proposed
ARIMA-EGARCH model was assessed by using equations
(11)-(14).

4. Numerical Results

4.1. Data. In this study, the Physionet Apnea-ECG dataset
(https://www.physionet.org/physiobank/database/apnea-
ecg/) was used [43, 44] because of its availability and
widespread use in the literature. Recordings were obtained
from 32 people (25 men and 7 women). A total of 35 re-
cordings sampled at 100 Hz from normal subjects and
subjects with OSA were used. All signals were segmented
into one-minute segments, and each segment was labeled as
apnea or normal by physicians. Recordings varied in length
from slightly less than 7 hours to almost 10 hours and were
divided into three groups:

Apnea group: with 100 minutes or more of apnea, the
mean age is 50 years. The range of age is 29-63 years.

Borderline group: with 10-96 minutes of apnea, the
mean age is 46 years. The range of age is 39-53 years.

Healthy group: with 5 minutes or fewer of apnea, the
mean age is 33 years. The range of age is 27-47 years.

4.2. Results. The first step in the modeling method is to
approximate the mean of the data. In the literature, nu-
merous mean equation models have been studied. Among
these latest processes, which have been suggested, the
ARIMA-type model was one of the most commonly used
approaches in the literature due to its simplicity of execution
and its well-known ability to predict and forecast. Therefore,
this article applies the ARIMA model as the mean equation.
ECG signals are nonstationary. To implement the afore-
mentioned time series models on ECG signals, we must
ensure that the time series is stationary. If the data are
nonstationary, then the first difference is used to transform
it. Plotting the first difference data will show whether the
data have been converted into a stationary sequence. The
second difference is taken if it is still not stationary. Model
fittings can be made once the time series is stationarity. In
the ARIMA model, this mechanism determines the differ-
entiating parameter “d.” As “d” is typically less than 2, we
created the new time series by first and second differenti-
ating the ECG signal. To find p, ¢, and d order, several
combinations of ARIMA(p, d, q) are tested by the BIC, and
the model with the smallest amount of BIC is selected.
Results show that ARIMA(5, 2, 4) has the minimum amount
of BIC for most segments. So, we consider ARIMA(5, 2, 4)
for all segments.

Since the ECG signal is nonstationary, both the mean
and percentiles of the data are different at varying periods.
This means that the residual series differs over time, and the
constant variance concept of the standard time series models
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is broken. This further proves that the volatility model is
essential. The GARCH models can only be used on volatile
data. That is why a histogram is plotted to analyze whether or
not ECG segments follow a normal distribution. Figure 1
shows the histogram for one ECG segment.

Then, kurtosis is determined. The minimum and the
maximum kurtosis for all ECG segments are 5.1479 and
281.4540, respectively. It is evident from the minimum value
that all measured kurtosis is higher than the value of three
predicted for Gaussian distribution and histogram skewed to
the right. Kurtosis values indicate that ECG segments have
heavy tail characteristics and are not normally distributed.
We also performed a Wilcoxon signed-rank test. Table 1
gives the “h,” “P value”, and “Stat” for the test. “h=1" in-
dicates a rejection of the null hypothesis, and “4=0" indi-
cates a failure to reject the null hypothesis at the 5%
significance level. “Stat” has information about the test
statistic. The “P values” of the statistical test for the ECG
segments versus GARCH are more than 0.05, as shown in
Table 1. This indicates that the ECG segments are statistically
similar to GARCH models. We also used the ARCH/
GARCH test suggested with Engle. Results of Engle’s test are
shown in Table 2,

“H” is the Boolean decision variable. “1” suggests a null
hypothesis rejection that there is no ARCH/GARCH effect.
“Stat” displays ARCH/GARCH test statistics, and the
“critical value” calculates the critical value of the chi-square
distribution. If the “Stat” is below the “critical value” point,
at a meaning level equal to 5%, there is no GARCH effect.
However, if “Stat” is more than “critical value,” it formally
shows clear evidence for GARCH in this time sequence. We
applied the ARCH/GARCH test to all of the ECG signals in
the databases. Because of the limited space, we demonstrate
in this section the results of some representative signals. We
should also remember that the simulated results are identical
for different ECG signals. As shown in Table 2, for all signals,
“H” is 1, and “Stat” is more than “critical value,” which
means the null hypothesis is rejected, and therefore, the ECG
signals have an ARCH/GARCH effect. Finally, visual vali-
dation is also performed between the histogram of ECG
signals and the GARCH family models. Figure 2 shows ECG
segment histograms and Gaussian distribution function with
the estimated mean and standard deviation from the data
and a corresponding GARCH model histogram.

From Figure 2, it is evident that there is high accuracy
between the histogram of ECG segments and the GARCH
model. Compared to Gaussian, the studied distribution is
sharper and has a zero peak with a heavier tail. We also plot
the cumulative distribution function (CDF) of ECG seg-
ments and the corresponding GARCH model in Figure 3.

It is evident from Figure 3 that ECG segments and the
GARCH data are from the same CDF. Considering the
results in Tables 1 and 2 and Figures 1-3, we find an ARCH/
GARCH eftect in all examined ECG segments. It should be
again reported that the results of modeling various ECG
signals are identical. However, only a few results are shown
here. Hence, we proposed GARCH family models and
demonstrated that they were a suitable representation of
ECG segments.
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FiGure 1: Histogram for an ECG segment.

TaBLE 1: Results of the Wilcoxon signed-rank test.

Signal H Stat P value
Signal 1 0 38 0.3223
Signal 2 0 41 0.1934
Signal 3 0 45 0.0840
Signal 4 0 38 0.3223
Signal 5 0 45 0.0840
Signal 6 0 37 0.3750
Signal 7 0 41 0.1934
Signal 8 0 41 0.1855
TABLE 2: Results of Engle’s test for the existence of ARCH/GARCH effects.

Signal H Stat Critical value
Signal 1 1 2.6848e+3 3.8415
Signal 2 1 3.1229+3 3.8415
Signal 3 1 3.1219¢+3 3.8415
Signal 4 1 3.2108e +3 3.8415
Signal 5 1 3.1211e+3 3.8415
Signal 6 1 2.8983e+3 3.8415
Signal 7 1 3.2584e+3 3.8415
Signal 8 1 3.265%¢ +3 3.8415
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F1GURE 2: Histograms of ECG segment, corresponding GARCH model, and Gaussian distribution of (a) an apneic segment and (b) a normal
segment.
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FI1GURE 3: Comparison of cumulative distribution function (CDF) of ECG segments (solid line) and CDF of GARCH data (dash line) for (a)
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The literature is comprehensive on the GARCH family
models. However, we limit our study to the three more
common models for compactness, namely, GARCH,
EGARCH, and GJR-GARCH. Estimating the volatility
model requires order selection and parameter estimation,
similar to the ARIMA model. Again, to find the proper order
of GARCH, EGARCH, and GJR-GARCH models, several
combinations were tested by the BIC, and the models with
the smallest amount of BIC were selected.

Results show that GARCH(1,4), GJR-GARCH(1,5), and
EGARCH(,5) have the minimum BIC for most segments.
So, we consider GARCH(1,4), GJR-GARCH(1,5), and
EGARCH(1,5) for all segments. We calculated the log-
likelihood amount of GARCH, GJR-GARCH, and EGARCH
to find the best model among the others. We also computed
log-likelihood for ARIMA-GARCH, ARIMA-GJR-GARCH,
and ARIMA-EGARCH. The model with the maximum
amount of log-likelihood was selected as a proper model.

The results are illustrated in Figure 4. As is evident from
Figure 4, GJR-GARCH and ARIMA-EGARCH have a
maximum amount of log-likelihood. Finally, in each seg-
ment, the maximum likelihood estimation (MLE) was used
to identify model coefficients. MLE is applied to both
ARIMA and GARCH models.

In the next step, we validated our proposed method on
the remaining ECG segments, which were not used in the
model estimation step. We run ARIMA and GJR-GARCH
models on the Physionet Apnea-ECG database and com-
pared the ARIMA-EGARCH model results with these
models using MSE, RMSE, MAE, and MAPE. The reason for
choosing these models is that linear models such as AR, MA,
and ARMA are coarse estimations of real-world systems and
usually have poor performance in forecasting the evolution
of nonstationary and nonlinear processes; ARIMA model is
usually used to model these patterns [31]. So, we considered
the ARIMA model as the first model for comparison. On the
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TaBLE 3: Comparison of MSEs, RMSEs, MAEs, and MAPEs from different models estimated for apnea segments.
ARIMA GJR-GARCH ARIMA-EGARCH
Ave Std Ave Std Ave Std
MSE 0.0181 0.0133 0.2032 0.7924 0.0177 0.0129
RMSE 0.1232 0.0543 0.2990 0.3378 0.1216 0.0535
MAE 0.0666 0.0282 0.0736 0.0140 0.0613 0.0255
MAPE 13.6081% 42.5486% 42.3760% 678.0458% 4.0841% 15.9423%
Ave = average, Std =standard deviation.
TaBLE 4: Comparison of MSEs, RMSEs, MAEs, and MAPEs from different models estimated for normal segments.
ARIMA GJR-GARCH ARIMA-EGARCH
Ave Std Ave Std Ave Std
MSE 0.0235 0.0131 0.6792 4.0802 0.0230 0.0128
RMSE 0.1454 0.0490 0.4477 0.6928 0.1437 0.0484
MAE 0.0810 0.0250 0.0962 0.0526 0.0754 0.0226
MAPE 16.1331% 97.8801% 18.5205% 161.6340% 4.7286% 29.5338%

Ave = average, Std =standard deviation.
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FIGURE 5: Fitting results using ARIMA, GJR-GARCH, and ARIMA-EGARCH models on a sample apneic ECG segment (blue line: ECG

data; redline: estimated data).

other hand, we showed that ECG signals were hetero-
skedastic; GARCH family models can be used to model
them. Since the log-likelihood of GJR-GARCH had maxi-
mum value, we selected GJR-GARCH as the second model.
Average and standard deviation of MSE, RMSE, MAE, and
MAPE based on the assessment criteria 11, 12, 13, and 14 for
ARIMA, GJR-GARCH, and ARIMA-EGARCH models on
apneic and normal ECG segments are presented in Tables 3
and 4, respectively.

Tables 3 and 4 demonstrate that in terms of averaged MSE,
RMSE, MAE, and MAPE, the proposed ARIMA-EGARCH
model outperforms all other models in modeling both apnea
and normal ECG signals. The lowest prediction error value
reflects the superiority of the proposed ARIMA-EGARCH
model over the ARIMA model and the GJR-GARCH model.

The graphical validation of our model on the sample test
data is illustrated in Figures 5 and 6 for sample apneic and
normal ECG segments using three different models,
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FiGure 6: Fitting results using ARIMA, GJR-GARCH, and ARIMA-EGARCH models on normal ECG data (blue line: ECG data; redline:

estimated data).

TaBLe 5: Comparison of RMSEs and MAEs from ARIMA-
EGARCH with other existing models for apnea segments.

TaBLe 6: Comparison of RMSEs and MAEs from ARIMA-
EGARCH with other existing models for normal segments.

Method RMSE MAE Method RMSE MAE
ARCH(1) [30] 0.6614 0.5876 ARCH(1) [30] 0.6482 0.5652
GARCH(1,1) [30] 0.6636 0.5808 GARCH(1,1) [30] 0.6508 0.5618
Integrated GARCH(1,1) [30] 0.6325 0.5725 Integrated GARCH(1,1) [30] 0.7133 0.5843
Student-t GARCH(1,1) [30] 0.6497 0.5625 Student-t GARCH(1,1) [30] 0.7347 0.5785
Student-t Integrated GARCH(1,1) [30] 0.6551 0.5638 Student-t Integrated GARCH(1,1) [30] 0.7212 0.5841
ARIMA(5,2,4)-EGARCH(1,5) 0.1216 0.0613 ARIMA(5,2,4)-EGARCH(1,5) 0.1437 0.0754

respectively. For better understanding, we only show the 500
first samples of each segment in figures.

Figures 5 and 6 show that the ARIMA-EGARCH model
can best model both sudden and slow transients in apneic
and normal ECG signals. Moreover, if we only consider slow
changes in the ECG signal, we can see that a linear approach
such as ARIMA cannot predict slow changes, but a nonlinear
method like GJR-GARCH can predict almost slow changes
(white noise). These findings confirm our claim that
EGARCH models improve the estimation made by ARIMA
and a combination of ARIMA and EGARCH models can
complete each other in ECG signal modeling.

4.3. Comparison with Other Models. In this section, the
performance of the selected model is compared with other
models proposed in the literature. Since the results obtained
from the same sample must be compared for meaningful
comparison, we must compare our results with the results of
models that used the Physionet Apnea-ECG. As mentioned

in the Introduction, only a few researchers used models to
detect apnea [26-28], and these articles fit models to QRS
complexes and not the entire ECG. Therefore, we can not
compare our results with them. On the other hand, these
articles used the model’s parameters to detect sleep apnea,
and they did not compare the estimated results with the
actual ECG signal. Only Hu et al. [30] proposed a mathe-
matical model for apneic and normal ECG signals. There-
fore, to show our model’s capability, we compared our
results with this article. Tables 5 and 6 compare RMSEs and
MAEs from ARIMA-EGARCH with ARCH() [30],
GARCH(1,1) [30], Student-t GARCH(1,1) [30], Integrated
GARCH(1,1) [30], and Student-t Integrated GARCH(1,1)
[30] for apneic and normal segments, respectively.

5. Discussion and Conclusion

This article describes a method for mathematical modeling
of the ECG signal. Although the forecasting of time series is a
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vast research area, it can be classified into short- and long-
term predictions. Short-term forecasting can also be split
into mathematical modeling and physiological modeling.
The mathematical-based forecasting model uses mathe-
matical representation and dynamic variations to predict the
future status of the time series of the process that underlies it.
It should be clear that no apnea detection method is pro-
vided in this article. We have shown that ECG signals are
heteroskedastic, which means the conditional variance is not
constant. In the literature, ECG volatility and hetero-
skedasticity during apnea are underestimated. Thus, we used
this characteristic to model ECG signals.

The proposed ARIMA-EGARCH can model the mean
and volatility of ECG signals in sleep apnea syndrome. This
model can cover both linear and nonlinear characteristics of
ECG signals. Using BIC, the best orders of the ARIMA and
EGARCH models were estimated. The model parameters
were approximated using the maximum likelihood esti-
mation method. Finally, some metrics, including MSE,
RMSE, MAE, and MAPE, between the actual and estimated
ECG signals were calculated. The method is validated and
compared to other methods, using recordings from the
Physionet Apnea-ECG database containing ECG segments
during sleep apnea and normal breathing. Visual quality and
objective quality of the proposed approach were achieved in
terms of MSE, RMSE, MAE, and MAPE. Since the results
obtained from the same sample must be compared for
meaningful comparison, we must compare our results with
the results of models that used the Physionet Apnea-ECG.
So, we compared our proposed model with models in [30]
(see Tables 4 and 5). As it can be inferred from Tables 4 and
5, the proposed ARIMA-EGARCH model outperforms the
other existing models for sleep apnea modeling. Experi-
mental findings show that the ARIMA-EGARCH model can
estimate both normal and apneic ECG signals. Our results
are robust for selecting performance assessment criteria.

The proposed model has some advantages. The estimated
model’s parameters can be used as features for the automatic
detection of sleep apnea [45]. Moreover, one of the current
widespread therapies in sleep apnea is continuous positive
airway pressure (CPAP) that blows constant air at a fixed
pressure. ECG model can be used in CPAP machines in
order to blow air only when apnea occurs.

Data Availability

In this study, the Physionet Apnea-ECG dataset is available
at https://www.physionet.org/physiobank/database/apnea-
ecg/ was used.
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