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Abstract: Over the last one and a half decades, copy number variation and whole-genome sequenc-
ing studies have illuminated the considerable genetic heterogeneity that underlies the etiologies of
autism spectrum disorder (ASD) and intellectual disability (ID). These investigations support the
idea that ASD may result from complex interactions between susceptibility-related genetic variants
(single nucleotide variants or copy number variants) and the environment. This review outlines the
identification and neurobiological characterization of two such genes located in Xp22.11, Patched
domain-containing 1 (PTCHD1), and its antisense lncRNA PTCHD1-AS. Animal models of Ptchd1 dis-
ruption have recapitulated a subset of clinical symptoms related to ASD as well as to ID. Furthermore,
these Ptchd1 mouse knockout studies implicate the expression of Ptchd1 in both the thalamic and the
hippocampal brain regions as being crucial for proper neurodevelopment and cognitive function.
Altered kynurenine metabolic signalling has been postulated as a disease mechanism in one of these
animal studies. Additionally, ASD patient-derived induced pluripotent stem cells (iPSCs) carrying a
copy number loss impacting the antisense non-coding RNA PTCHD1-AS have been used to generate
2D neuronal cultures. While copy number loss of PTCHD1-AS does not affect the transcription
of PTCHD1, the neurons exhibit diminished miniature excitatory postsynaptic current frequency,
supporting its role in ASD etiology. A more thorough understanding of risk factor genes, such as
PTCHD1 and PTCHD1-AS, will help to clarify the intricate genetic and biological mechanisms that
underlie ASD and ID, providing a foundation for meaningful therapeutic interventions to enhance
the quality of life of individuals who experience these conditions.

Keywords: PTCHD1; PTCHD1-AS; autism spectrum disorders; intellectual disability; neurodevelopment

1. Introduction

Autism spectrum disorders (ASD) have an estimated global prevalence of 1–2% [1].
The role of genetics in ASD is strongly supported by twin studies, which collectively
suggest heritability rates as high as 80% [2]. Furthermore, the frequency of ASD in males is
over three-fold higher than in females. One suggested cause for at least a portion of this
skewed ratio could be genetic determinants for ASD on the X chromosome [3]. With the
advent of whole genome microarrays and next-generation sequencing (NGS) technologies,
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studies began to investigate ASD on a genome-wide level. These efforts rapidly confirmed
that the etiology of ASD is multigenic and highly heterogeneous. Furthermore, many of the
putative ASD risk loci display a high degree of pleiotropy. More than 70% of individuals
with ASD have concurrent developmental, psychiatric, or behavioural conditions, including
intellectual disability (ID) (45%), attention deficit hyperactivity disorder (ADHD) (28–44%),
motor abnormalities (as high as 79%), sleep disorders (50–80%), epilepsy (8–30%), hyper-
aggression (as high as 68%), and anxiety (42–56%) [1].

The current understanding is that both ASD and ID may share many of the same
susceptibility genes and variants, as well as complex interactions between genetics and the
environment [4]. This review will describe the discovery and subsequent characterization of
the ASD and ID susceptibility gene Patched domain-containing 1 (PTCHD1) (MIM:300828),
as well as the antisense lncRNA PTCHD1-AS, which are both located on the short arm of
the X chromosome. We will focus particularly on PTCHD1 regulation in the brain and its
corresponding neurobiological function, with additional emphasis placed on Ptchd1 mouse
models of atypical behaviour and neurodevelopment.

1.1. Identification of PTCHD1 and PTCHD1-AS as ASD and ID Susceptibility Genes

In 2008, a study of 427 ASD probands identified 277 unique CNVs across the genome
that were absent in neurotypical controls. One of the elucidated CNVs consisted of a 167 Kb
deletion in Xp22.11 that, in congruence with canonical X-linked patterns of inheritance,
was transmitted from an unaffected carrier mother to both a male ASD proband and his
developmentally delayed dizygotic twin brother. This microdeletion encompassed the first
exon of PTCHD1, resulting in a null allele, as well as exons of the PTCHD1-AS ncRNA [5].

1.2. Rare PTCHD1 and PTCHD1-AS Variants

A multitude of subsequent genome-wide investigations have corroborated the initial
implication by Marshall et al. that PTCHD1 and PTCHD1-AS are susceptibility genes for
the development of ASD and ID [5]. Since the initial discovery, almost 70 additional rare
genomic variants have been identified (Figure 1; Supplementary Table S1; www.PTCHD1
-base.com, accessed on 1 August 2021). These consisted of both microdeletions, which
ranged from approximately 46 Kbp to 1.2 Mbp and encompassed portions of PTCHD1
and/or PTCHD1-AS [6–15], as well as single-nucleotide variants (SNVs) within the coding
sequence of PTCHD1. Of the SNVs that have been identified, 18 were inherited missense
variants, four were truncating variants (one of which was de novo), and one was an inherited
nonsense mutation [6,8,11,16–19]. In total, 44 inherited and two de novo deletion CNVs, as
well as 23 SNVs, have been reported in 69 unrelated probands with neurodevelopmental
disorders, 67 of which are male. Notably, these deleterious alleles were almost exclusively
maternally transmitted to males affected with an array of cognitive impairments, including
ASD, ID, and developmental delays. Entries for additional rare CNVs affecting PTCHD1
and/or PTCHD1-AS exist in clinical genomic databases, although clinical information is
sparse or absent for these individuals [8,20,21].

Where both the clinical and the genomic data from immediate family members are
available, deletion CNVs that encompassed a portion of PTCHD1-AS, but that did not
disrupt PTCHD1, showed incomplete segregation with the neurodevelopmental phenotype
53% of the time (10 of 19 families) [6,7,11,12,14], suggesting a more complex or subtle con-
tribution of PTCHD1-AS to ASD and ID. Conversely, missense variants affecting PTCHD1
demonstrated a much higher penetrance, segregating with disease at a frequency of 88%
(seven of eight families) [11]. In addition, the two microdeletions affecting PTCHD1-AS
that also ablated a portion of PTCHD1 (GOLD540 and Family B) both segregated with
disease [6,7,11,14]. In 2018, we reported on SNVs and CNVs in consanguineous popula-
tions, including a Pakistani family in which a large heterozygous upstream deletion was
identified in three affected female siblings. However, the loss CNV was determined to be
inherited from their unaffected father, and an alternative candidate mutation was identified
in an autosomal gene, SLAIN1, within a region of homozygosity-by-descent (Figure 2) [10].

www.PTCHD1-base.com
www.PTCHD1-base.com
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Likewise, it is also important to note that loss CNVs in the PTCHD1 upstream region,
including the exons of PTCHD1-AS and DDX53, are present in control population males
(gnomAD) [22], and in males in both case and control large-scale research study cohorts,
such as PGC schizophrenia (Figure 2) [23]. In contrast, loss CNVs spanning the coding
exons of PTCHD1 have, to date, not been found in male controls. We attempted to analyse
the numbers of upstream/PTCHD1-AS loss CNVs reported in ASD males compared to
those reported for male population controls. Although the methodologies for generating
data and calling the CNVs from these different sources were non-identical and thus there
were risks about drawing conclusions, our analysis suggests that any trends towards in-
creased loss CNV numbers in ASD are non-significant (Figure 2). Collectively, these data
indicate a more robust association between PTCHD1 and aberrant neurodevelopment than
appears to be evident for PTCHD1-AS. Moreover, it is worth pointing out several notable
observations here: (1) the vast majority of truncating coding mutations in PTCHD1 are
located within exon 3, and (2) loss CNVs impacting PTCHD1 involve either exon 1 (and the
upstream region), exons 1–3, exons 2 and 3, or exon 3 alone, and no CNVs remove only
exon 2 (Figure 1).
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The positions of the mouse knockout as well as the putative START for the PTCHD1_c/Ptchd1_c
alternatively spliced transcript are marked. The predicted transmembrane domains are in-
dicated in yellow. External loops 1 and 2 and putative sterol-sensing domains (SSD) 1 and
2 are predicted through structural comparison with the homologous protein NPC1. The 10
loss-of-function coding mutations shown here are (from left to right): NM_173495.2:c.2T > C;
p.Met1Thr (rs1064796945; ClinVar#424379); NM_173495.2:c.1433dupA; p.Tyr478* (ClinVar#423632);
NM_173495.2:c.1444delC; p.Leu482Tyrfs*14 (rs878854361; Chaudhry et al., 2015 [6]; Wright
et al., 2014 [24]; DECIPHER:#263331; ClinVar#209087); NM_173495.2:c.1547T > A; p.Leu516*
(ClinVar#280396); NM_173495.2:c.1689_1690delTA; p.Ile564Argfs*6 (DECIPHER:#318071; Grozeva
et al., 2015 [25]); NM_173495.2:c.1796insA;p.Asn599Lysfs*8 (Chaudhry et al., 2015 [6]; Clin-
Var#209086); NM_173495.2:c.1835_1839delTGTTGinsGAA; p.Met612Argfs*22 (ClinVar#208739);
NM_173495.2:c.1969_1972delAACA; p.Asn657Glufs*11 (ClinVar#372479); NM_173495.2:
c.1985_1986del; p.Tyr662* (Z. Stark, Victoria Clinical Genetics Service, personal communica-
tion); NM_173495.2:c.2071C > T; p.Arg691* (DECIPHER: #259242); NM_173495.2:c.2128delC;
p.Leu710Cysfs*12 (Chaudhry et al., 2014 [6]; ClinVar#209085). (B) Pathogenic copy number
variants impacting PTCHD1, using UCSC Genome Browser. Red indicates loss, and blue indicates
gain. Families B to N were reported in Chaudhry et al., 2015 [6]; others have been listed by
the DECIPHER project (www.deciphergenomics.org, accessed on 1 August 2021), or by ClinVar
(www.ncbi.nlm.nih.gov/clinvar, accessed on 1 August 2021) [20], or in Zarrei et al. [15].
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position of the loss CNV reported in three intellectual disability females from Pakistani family
PK68 (Harripaul et al., 2018) [10], in which the CNV is not inherited from their mother but from
deceased unaffected father. Genotypes for loss-of-function mutation in SLAIN1 (identified through
homozygosity-by-descent mapping and whole exome sequencing) are shown in red, and PTCHD1-
AS loss CNV in green. SLAIN1 is associated with axonal growth during neuronal development
(MIM 610491) [26]; 3. gnomAD (https://gnomad.broadinstitute.org/, accessed on 1 December 2021)
non-neuro subset controls, N = 3937 males, and 1000 Genome Project phase 3 males, N = 1054);
4. population male controls, N~367 (Uddin et al., 2014) [27]; 5. PGC controls from SCZ study,
N = 9856 (Marshall et al., 2017) [28]; Chisquare calculation with Yates’s correction (2-tailed, using
www.graphpad.com, accessed on 1 November 2021) for a) MSSNG cases versus all control groups
and b) for CNVs disrupting PTCHD1-AS exon 3 (but not PTCHD1) and for all CNVs, except those
disrupting PTCHD1, are non-significant. (a) Affected: 3 CNV: 4071 no CNV; unaffected: 6 CNV:
15,208 no CNV, p = 0.6246; (b) affected: 12 CNV: 4062 no CNV; unaffected 27 CNV: 15,187 no CNV,
p = 0.2001).

1.3. Common PTCHD1 Variants

To supplement the database of rare PTCHD1/PTCHD1-AS mutations, Torrico et al.
sought to employ tag SNP genotyping to identify common PTCHD1 variants that may
be associated with ASD and ID. A tag SNP is representative of a group of SNPs that is
inherited together due to linkage disequilibrium, and therefore, this approach can identify
PTCHD1/PTCHD1-AS haplotypes that are associated with ASD. The authors genotyped
595 individuals with ASD and concluded that the haplotype inferred by the tag SNP
rs7052177, which is located within intron 1, displayed a significant association with ASD
and ID. The rs7052177 SNP is located within a putative binding site for the transcription
factors STAT3, STAT5A, and STAT5B, which are all predicted to bind preferentially to the
rs7052177T allele, implying that this common variant may have a functional influence
on the regulation of PTCHD1. This study also identified several short duplications and
deletions, and one simple tandem repeat, within the PTCHD1 promoter regions in both the
control and the ASD cohorts. Most notable among these findings was a 27 bp duplication
within the promoter region that was present in three individuals with ASD; subsequent
luciferase analyses determined that this duplication attenuated reporter gene activity by
26% in vitro. In addition, a GCC trinucleotide repeat was detected 80 bp upstream of the
PTCHD1 transcription start site (TSS); a follow-up case-control association study confirmed
that the longest allele of this microsatellite (14 repeats) was associated with ASD [19].

1.4. Clinical Presentation of PTCHD1 and PTCHD1-AS Variants

The investigation by Chaudhry et al. also reported on clinical assessments of 23 patients
with either loss-of-function SNVs or loss CNVs disrupting the PTCHD1 gene in order to
understand better the genotype–phenotype relationship and to look for commonalities that
may be useful for clinical diagnosis [6]. In this regard, no significant growth abnormalities
were reported in the majority of these cases, although two patients (9%) had an early
failure to thrive. Four subjects (18%) had relative or absolute macrocephaly and three (13%)
had relative or absolute microcephaly. These authors also report that most participants
were non-dysmorphic, but others presented with combinations of minor facial dysmorphic
features, including a long face, a prominent forehead, puffy eyelids, a narrow face with
a small chin, pronounced upper central incisors, a depressed and narrowed nasal bridge
with a broad nasal tip and anteverted nostrils, and a thin upper lip. The most consistently
observed facial dysmorphic feature in this study was an open-mouth posture and secondary
orofacial hypotonia, which was observed in 11 of the 23 individuals (48%). Cognitively,
18 cases (78%) displayed a global developmental delay in early childhood. In addition,
nine patients (39%) had formal diagnoses of ID. Eight subjects (35%) had a diagnosis of
ASD and another two demonstrated ASD-like features but did not have formal diagnoses.
Behavioural problems, such as mood disorders and hyper-aggression, were also reported in

https://gnomad.broadinstitute.org/
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four individuals (18%). Neurologically, six participants (26%) presented with generalized
hypotonia, and two others (9%) were reported to have mild peripheral hypertonia. In
addition, five individuals (22%) had poor balance and gait abnormalities. Lastly, eight
patients (35%) possessed mild vision problems, including strabismus, jerky oculomotor
movements, cataracts, astigmatism, and myopia [6].

2. Expression Profiling of PTCHD1 and PTCHD1-AS
2.1. Gene Structure and Alternative Splicing

PTCHD1 spans almost 70 Kb on the forward strand of the short arm of the X chromo-
some and has two annotated protein-coding transcripts. The larger transcript (NM_173495.3)
is almost 13 Kb and contains three exons that encode for 888 amino acids. Alternative
splicing is evident, and a brain-specific transcript excluding the second exon has been iden-
tified (GenBank ID KR270726) and contains a 542 amino acid-encoding open reading frame
(ORF), which includes the majority of the transmembrane domains and the C-terminal
PDZ-binding domain, although it deletes entirely the first luminal domain and a portion
of the sterol-sensing domain-like module present in the 888 amino acid ORF. PTCHD1-AS
(NR_073010.2) is encoded on the reverse strand and is divergently transcribed with respect
to PTCHD1.

PTCHD1-AS appears to be spliced into at least three known splice variants (AS1,
AS2 and AS3), with at least 10 distinct exons having been identified. Several of these
exons are conserved across all PTCHD1-AS splice variants. Interestingly, the third exon
of the splice variants PTCHD1-AS2 and PTCHD1-AS3 (which is also the putative second
exon in PTCHD1-AS1) is expressed in the antisense transcripts at syntenic loci from both
mice and rats, indicating some degree of evolutionary conservation [11]. Two putative
TSSs have been identified for PTCHD1-AS, with each mapping to the first exon of either
PTCHD1-AS2 or PTCHD1-AS3 [29]. The TSSs for PTCHD1-AS3 and PTCHD1 are separated
by approximately 40 Kb, suggesting that expression of these genes may be governed by a
bi-directional promoter. ChIP-seq. data from human embryonic stem cell-derived neurons
appear to support this theory as this region was found to be enriched in histone markers
corresponding to both promoters (H3K4me3) and enhancers (H3K27ac and H3K4me1).
Notably, the putative TSS that allegedly regulates PTCHD1-AS2 is only associated with
enhancer histone markers [30].

2.2. Spatial and Temporal Expression during Neurodevelopment

Comprehensive transcriptional analyses using RT-PCR by Noor et al. revealed that
the PTCHD1 full-length (isoform a) transcript exhibits varying levels of expression in
the human brain, as well as in numerous peripheral tissues, with the highest levels of
transcription being evident in the cerebellum. A subsequent northern blot analysis revealed
that, in addition to the cerebellum, the PTCHD1 transcript was also detected in all of
the four major lobes of the brain. The authors then employed qRT-PCR to compare the
expression of PTCHD1 in multiple brain subregions, confirming the highest relative levels
of transcription in both the cerebellum and the pituitary gland. Noor et al. also used
RT-PCR to characterize the expression of PTCHD1-AS1 and PTCHD1-AS2 and reported
detectable levels of both transcripts in the cerebellum, parietal and occipital lobes, spinal
cord, and fibroblasts [11].

Studies employing RNA in situ hybridization and fluorescent in situ hybridization
(FISH) characterized the spatial expression profile of Ptchd1 in mice during embryogenesis
and postnatally. Noor et al. first reported extensive expression of the Ptchd1 transcript
throughout the developing brain during embryogenesis (E9 and E14) through RNA in
situ hybridization [11]. Furthermore, at birth (P0), Ptchd1 mRNA appears to be primarily
restricted to the thalamic reticular nucleus (TRN). Beginning in adolescence (P15), however,
Ptchd1 expression becomes detectable in the cortex, striatum, cerebellum, and dentate
gyrus of the hippocampus [31]. Consistent with these reports, Tora et al. confirmed
high relative levels of Ptchd1 expression in both the TRN and the cerebellum at P12, as



Genes 2022, 13, 527 7 of 23

well as in the dentate gyrus at P21. Interestingly, Ptchd1 transcription in the dentate
gyrus at P21 appears to be almost entirely restricted to dentate granule cells, with very
low expression observed in the pyramidal cells in other hippocampal subfields (CA1–3).
Furthermore, considerable Ptchd1 expression was observed in the dentate gyrus of adult
(P60) mice [32]. In addition to the dentate gyrus and TRN, Ptchd1 exhibits strong expression
in the anterodorsal subdivision (AD) of the thalamus in adult mice [13].

Tora et al. subsequently used qRT-PCR in order to quantitatively profile Ptchd1 expres-
sion throughout early postnatal development and into adulthood (P5–P60) in these relevant
brain subregions. These analyses revealed that Ptchd1 expression declined in the thalamus
after P5 and, conversely, increased in the cerebellum after P15; no postnatal changes in
expression were observed in the cortex, hippocampus, or striatum [32]. Ung et al. also
report variable embryonic and postnatal expression of Ptchd1 between numerous additional
brain subregions, such as the midbrain, pons, medulla, olfactory bulb, and hypothalamus,
as well as dynamic expression within these subregions between the embryonic (E13–E18)
and postnatal (P7 and P35) ages that were assessed [33].

2.3. Neuronal-Activity-Dependent Transcription

A comprehensive genome-wide study provided evidence that the transcription of
Ptchd1 can be upregulated in response to neuronal activity. In this study, Kim et al. de-
polarized primary mouse cortical neurons with potassium chloride for six hours and
subsequently performed RNA sequencing to identify activity-dependent genes. Interest-
ingly, Ptchd1 exhibited a three-fold increase in expression in response to this stimulus [34].
The activity-dependent expression of PTCHD1 was subsequently corroborated by Ross
et al., who reported an almost two-fold depolarization-induced increase in PTCHD1 ex-
pression in human induced pluripotent stem cell (iPSC)-derived cortical neurons. Notably,
the expression of PTCHD1-AS was unchanged in human iPSC-derived cortical neurons
in response to neuronal depolarization [35]. These data imply that the neuronal function
of PTCHD1, but not PTCHD1-AS, may be related to strengthening intracellular signalling
cascades within the postsynaptic density following long-term potentiation.

2.4. Putative Synapse-Localized Translation

Ascano et al. employed photoactivatable ribonucleoside-enhanced crosslinking and
immunoprecipitation (PAR-CLIP), followed by RNA sequencing, in order to detect global
targets of the RNA-binding protein Fragile X Mental Retardation Protein 1 (FMRP) in vitro.
Interestingly, the authors report a modest interaction between FMRP and the PTCHD1
transcript, with a putative 22 bp binding element identified in the 3′ untranslated region [36].
This putative interaction between PTCHD1 mRNA and FMRP suggests an additional layer
of PTCHD1 regulation in neurons, in which local synaptic translation is mediated in
response to the group 1 metabotropic glutamate receptor (mGluR)-activation of FMRP.

2.5. Functional Characterization of PTCHD1

Studying the function of the PTCHD1 protein will enable a better understanding of
the biological pathways leading to ASD and ID, as well as providing the possibility of more
accurate clinical prediction for PTCHD1 sequence variants, and in particular for missense
variants, and the first steps towards considering therapeutic strategies.

Preliminary in silico analyses indicate that PTCHD1 is predicted to be a transmem-
brane protein that encodes the 12 transmembrane helices that form two modules, similar to
the sterol-sensing domains in NPC-1, as well as a C-terminal PDZ-binding motif encoded
by the final four amino acids (Ile-Thr-Thr-Val, or ITTV; see Figure 3). In order to acquire
an initial understanding of the function of PTCHD1, Noor et al. first sought to study its
subcellular localization. The authors reported that a C-terminal PTCHD1-GFP fusion pro-
tein primarily exhibited localization to the plasma membrane in both COS7 and SK-N-SH
(human neuroblastoma) cells in vitro [11]. Ung et al. characterized the subcellular local-
ization of Ptchd1 in neuronal cells by fusing GFP to either its N-terminus (GFP-Ptchd1) or
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C-terminus (Ptchd1-GFP) and then transiently expressing these fusion proteins in primary
hippocampal neuronal cultures ex vivo. These analyses indicated that this exogenously
expressed Ptchd1-GFP exhibits a distinct pattern of membrane localization within dendritic
spines, which was further corroborated by co-labelling experiments with the post-synaptic
density protein Psd95. In addition, the authors report that a portion of the intracellular
C-terminal tail encoded by amino acids 850–873 appears to be essential for dendritic and
synaptic targeting. Interestingly, GFP-Ptchd1 displayed ubiquitous fluorescence through-
out the neuronal cells, suggesting that post-translational processing of the N-terminus of
Ptchd1 is necessary for appropriate subcellular localization [33].
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Figure 3. Alternative splicing cartoon and tissue specificity of PTCHD1. (A) Alternatively spliced
transcripts were identified through genes, mRNAs and expressed sequence tags (ESTs) from UCSC
Genome Browser (https://genome.ucsc.edu, accessed 1 February 2022) and through our own unpub-
lished transcriptional studies (deposited in GenBank by Vincent, Mittal, and Degagne, 2006). Four
main splice variants are shown, designated a-d. PTCHD1-a is the canonical three-exon form, from
gene sequence NM_173495.3 (supported by many mRNAs and ESTs) and encodes an 888 amino
acid (aa) open reading frame (ORF). Coordinates (hg19) for the exons are: 23,352,985–23,353,343;
23,397,708–23,398, 368; and 23,410,648–23,414,918. PTCHD1-b, a three-exon form, is reported as
a UCSC Gene but comes from a single cDNA sequence, from teratocarcinoma, BC062344 (from
cDNA clone IMAGE#6579014). Coordinates (hg19): 23,352,132–23,352,412; 23,353,181–23,353,343; and
23,397,708–23,399,551. This cDNA utilizes a non-canonical splice acceptor site and was not supported
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by any additional human or non-human mRNA or EST sequences in the UCSC browser (accessed
on 1 February 2022). PTCHD1-c was identified from brain tissue cDNAs (KR270726 and KP940348)
and skips the second exon. This isoform was supported by RT-PCR studies in human and mouse,
but, unlike PTCHD1-a, appears to be brain specific. Coordinates (hg19): 23,352,293–23,353,343;
and 23,410,648–23,414,918. PTCHD1-d identifies a four-exon splice variant, from a single cDNA
from whole brain (KJ535090). Coordinates (hg19): 23,352,993–23,353,343; 23,394,845–23,395,008;
23,397,708–23,398,368; and 23,410,648–23,412,298. The mRNA encodes a predicted 5′ ORF corre-
sponding to the N-terminal 124 amino acids of the full-length PTCHD1-a 888 aa ORF. However,
a larger downstream ORF is also plausible, corresponding to 665 aa from the C-terminal por-
tion of PTCHD1-a (indicated by grey boxes). PTCHD1-e identifies an upstream exon (further
upstream than PTCHD1-b). It utilizes the canonical exon 1 from PTCHD1-a; however down-
stream exon usage could not be determined (Vincent et al., unpublished). Predicted open read-
ing frames are shown, indicating number of amino acids (aa), predicted molecular size (using
https://www.bioinformatics.org/sms/prot_mw.html, accessed on 1 February 2022, and strength of
translation start site, using NetStart 1.0 (https://services.healthtech.dtu.dk/service.php?NetStart-1.0,
accessed on 1 February 2022), indicating score and whether predicted (in bold) or not. (B) Transcrip-
tion of human PTCHD1-a and PTCHD1-c in brain (upper gel) and non-CNS (middle and lower gels)
tissues by RT-PCR, using a multi-tissue panel (Origene Technologies, Rockville, MD) of first-strand
cDNAs (Vincent et al., unpublished data). PTCHD1-a was expressed in brain and non-CNS tissues,
whereas PTCHD1_C was only detected in brain. cDNA was synthesized using reverse transcrip-
tion of 1µg of RNA using Superscript IIITM Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA)
and random hexamers (100 ng) in a 20 µL reaction volume according to manufacturer’s guidelines.
PTCHD1-a was amplified using primers F: ccgcgtatcagaacgttacc, R: cccatataatccatgacctagca; PTCHD1-
c was amplified using primers F: cttgaggacgtgtttct, R: catataatccatgacctttaag; housekeeping gene (H)
HPRT was amplified using F: tggtcaggcagtataatccaaa, R: tcaagggcatatcctacaacaa. The negative control
shown was a ‘no template control’.

Although many PTCHD1 missense variants have been reported (e.g., Noor et al.)
or listed in ClinVar, and even though many of these are exceedingly rare variants, it is
not currently possible to assign consequential pathogenicity to them. In order to enable
more accurate clinical diagnoses for PTCHD1 missense variants, it is important to establish
empirical methods (rather than in silico predictions) that can identify a link between
the variants and PTCHD1 function and thus etiopathological role. With this in mind,
Halewa et al. sought to determine the likely pathogenicity of a number of reported
PTCHD1 missense variants by assessing both their protein stability and their plasma
membrane localization in vitro. In order to evaluate protein stability, wildtype and missense
PTCHD1-GFP fusion protein constructs were transiently overexpressed in HEK293T cells.
Subsequent western blotting revealed substantial decreases in the protein expression of the
missense variants Pro32Arg, Pro32Leu, Lys181Thr, Tyr213Cys, Gly300Arg, and Ala310Pro,
likely indicating conformational instability and resultant degradation. Consistent with
these findings, transient overexpression in both HEK293T and Neuro-2a cells, followed
by immunostaining, demonstrated that the same six missense variants displayed weak
localization at the plasma membrane. Interestingly, these mutations are all clustered within
either the extracellular loop (Lys181Thr and Tyr213Cys) or one of the transmembrane
domains (Pro32Arg, Pro32Leu, Gly300Arg, and Ala310Pro), implying that mutations in
these locations are particularly deleterious and are likely to be retained by the endoplasmic
reticulum and targeted for subsequent proteasomal degradation [16]. In a similar vein,
Xie et al. conducted cycloheximide chase assays following the transient overexpression of
GFP-PTCHD1 in HEK293T cells and concluded that wild type PTCHD1 exhibits a half-life of
greater than 12 h. This assay also inferred similar levels of protein stability for the Pro75Gln,
Lys181Thr, Gly303Arg, and Tyr802Cys missense variants as well as the PDZ-binding
domain deleting mutation I885*, in comparison with the marked instability of Pro32Arg
and Phe549Cys. In addition, Xie et al. stably expressed GFP-PTCHD1 missense variants
in HEK293T cells, and despite modest 5–10% attenuations in the mRNA expression of the
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Pro32Arg, Gly303Arg, and Phe549Cys transcripts, 40–80% decreases in their basal protein
expression were observed, which shows further consistency with significant increased
instability. However, in contrast with Halewa et al., Xie et al. were able to detect Lys181Thr,
both basally and following transient overexpression [37]. A summary of the functional
studies through missense variants is provided in Table 1.

PTCHD1 shares homology (21.17% amino acid identity, as determined by multiple
sequence alignment, using Clustal Omega, www.ebi.ac.uk, accessed on 1 February 2022)
with Niemann-Pick disease type C1 (NPC1), which is a multi-pass transmembrane protein
that possesses 19 residues for N-linked glycosylation [38]. Given this apparent structural
homology, Xie et al. hypothesized that disease-associated missense variants of PTCHD1
may lead to aberrant protein processing by the endoplasmic reticulum and Golgi apparatus.
Transient overexpression of GFP-PTCHD1 in HEK293T cells and subsequent treatment with
either Endoglycosidase H or the amidase PNGase F, followed by SDS-PAGE, revealed that
PTCHD1 consistently undergoes N-linked glycosylation [37]. This finding is in agreement
with in silico analyses, which predict 10 sites for N-linked glycosylation in PTCHD1 [39].
Furthermore, in addition to N-linked glycosylation with mature complex oligosaccharides,
PTCHD1 transiently exists in two putative intermediate states of N-linked glycosylation
with immature mannose-rich oligosaccharides. Xie et al. next evaluated N-linked glycan
processing in several PTCHD1 missense variants and reported that Pro75Gln, Lys181Thr,
Tyr802Cys, and Ile884* all demonstrate the presence of N-linked glycosylation with complex
oligosaccharides, at varying levels. In contrast, Pro32Arg, Gly303Arg, and Phe549Cys all
fail to achieve N-linked glycosylation with mature glycans, although the two alleged
intermediate N-linked glycosylation states were observed for Gly303Arg and Phe549Cys.
Interestingly, only one of these supposed intermediate states was observed for Pro32Arg,
indicating that this missense variant is particularly resistant to N-linked glycosylation.
Regardless, defects in N-linked glycan processing of PTCHD1 missense variants did not
appear to cause protein retention in either the endoplasmic reticulum or the Golgi apparatus,
suggesting the possibility that PTCHD1 is trafficked via an unconventional secretory
pathway [40].

In addition to NPC1, PTCHD1 exhibits sequence homology with the Patched domain-
containing proteins Patched-1 (PTCH1; 21.62% identity) and Patched-2 (PTCH2; 20.65%
identity), both of which are transmembrane receptors that negatively regulate the Hedgehog
(Hh) signalling pathway. Binding of the Hh ligand to PTCH1 inhibits its repression of the
G protein-coupled receptor, Smoothened (SMO), and initiates a signalling cascade that
ultimately leads to activation of the GLI family of transcription factors [41]. Based on its
sequence similarity, it was hypothesized that PTCHD1 may also behave similarly to Ptch1 in
the Hh-signalling pathway. To explore this, Noor et al. transiently overexpressed a reporter
vector with multimerized GLI transcription factor binding elements and either PTCH1,
PTCH2, or PTCHD1 in the Hh-responsive cell line 10T1/2 and reported that PTCH1,
PTCH2, and PTCHD1 all inhibit GLI-dependent transcription in vitro [11]. However, Ung
et al. showed that PTCHD1 was incapable of rescuing the canonical sonic hedgehog (SHH)
pathway in cells depleted of PTCH1, which would suggest PTCHD1 to function in a
separate pathway (Ung et al.). Hh-signalling has been implicated in early postnatal granule
cell proliferation in both the cerebellum [42] and the dentate gyrus [43]. Moreover, the
overproliferation of granule cell precursors leading to medulloblastoma has been reported
in mice with homozygous or heterozygous deletions in Ptch1, the mouse ortholog of
PTCH1 [44]. In this regard, Tora et al. sought to assess the consequences of Ptchd1 ablation
on these populations of granule neuron precursors using the thymidine analogue BrdU.
Unexpectedly, the authors indicate that the granule cell precursors in both the cerebellum
and the dentate gyrus do not exhibit increased proliferation in Ptchd1∆2/Y mice, which
contain a deletion of exon 2, during early postnatal development (P4), nor do the cells in
the adult dentate gyrus. Immunocytochemistry subsequently revealed that Shh-binding
to ectopically expressed Ptchd1 was undetectable in COS7 cells or mouse embryonic
fibroblasts in vitro [32]. Supporting these findings, Ung et al. report that exogenous Ptchd1
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does not repress GLI-dependent transcription in mouse embryonic fibroblasts derived from
Ptch1−/− mice [33]. Furthermore, in unpublished data from our lab, mouse embryonic
hippocampal gene transcription was compared for Ptchd1 and Hh-signalling pathway
genes Shh, Smo, and Ptch1. While the Hh pathway genes show decreasing transcription
levels after E12 to birth, Ptchd1 exhibits the opposite trajectory, with transcription increasing
steadily from E12 to P2 (Supplementary Figure S1). Collectively, these support the notion
that PTCHD1 operates in pathways other than Hh signalling.

The predicted PDZ-binding motif at the C-terminus of PTCHD1 is also present in
SEC8 (also known as EXOC4), a component of the exocyst complex, where it facilitates
interaction with the PDZ domains of the postsynaptic proteins PSD95 and SAP102 [45].
Correspondingly, Ung et al. sought to investigate if the PDZ-binding motif in Ptchd1 also
mediates a similar interaction with both Psd95 and Sap102. Affinity purification experi-
ments in synaptoneurosomal lysates from the adult mouse cortex confirmed that Ptchd1
interacts with both Psd95 and Sap102 in vitro and that this interaction is reliant on the
PDZ-binding motif [33]. In order to identify additional proteins agnostically that may be
putatively interacting with Ptchd1 in vitro, Tora et al. performed affinity purification in
adult mouse whole brain lysates, followed by liquid chromatography-mass spectrometry.
As bait, the authors used the final 43 amino acids of Ptchd1 and also a C-terminal variant
in which they deleted the PDZ-binding motif (∆PDZ). This approach identified numerous
additional proteins that preferentially interacted with the wildtype C-terminal bait frag-
ment, including novel components of the postsynaptic density (Dlg1-3, Magi1, Magi3, and
Lin7), as well as components of the retromer complex (Snx27 and Vps26b). Furthermore,
the additional retromer complex protein Vps35 was found to interact equally with both
the wildtype and the ∆PDZ C-terminal bait fragments. Subsequent western blot analyses
confirmed binding between the Ptchd1 C-terminus and both Psd95 and Vps35, with the
latter interaction being independent of the PDZ-binding motif. Lastly, endogenous Ptchd1
was reported to be enriched in the postsynaptic density, further supporting its putative
interaction with these proteins under physiological conditions [32].

Xie et al. employed a yeast two-hybrid screen to identify binding partners for the
luminal loops of PTCHD1-binding proteins in vitro. Using bait fragments consisting of the
first lumenal loop (F49-R270) and a chimera of both lumenal loops (F49-R270::Q521-S695),
these authors found consistent interactions between PTCHD1 and the SNARE-associated
protein (SNAPIN). This putative interaction was further corroborated by immunofluores-
cent studies in neuronally differentiated P19 cells, which demonstrated colocalization of
exogenous PTCHD1 and SNAPIN in dendritic projections [37]. SNAPIN is involved in
synaptic vesicle docking and fusion and is also a component of the biogenesis of lysosome-
related organelles complex 1 (BLOC-1) complex [46], suggesting that PTCHD1 may play a
role in the endosomal-lysosomal system.
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Table 1. Summary of functional analysis of missense PTCHD1 variants from Xie et al. [37] and Halewa et al. [16].

Xie et al. Halewa et al.

PTCHD1
Variant

Minor Allele
Frequency

(gnomAD)/No.
Hemizygotes

Source (ID) Inheritance
Post-

Translational
Defect

Protein
Stability
Reduced

Protein
Localization

Affected
Source Inheritance

Protein
Stability
Reduced

Impaired
Plasma

Membrane
Localization

P32R 0/0 DECIPHER:
284363 Mat + + - Lille Mat + +

P32L 0/0 Lyon Mat + +

S51N 0/0 Torrico NR - -

L73F 5.36 × 10−5/2 Mat - Noor Mat - -

P75Q 0/0 MSSNG:
AU3794302 NR + - -

I173V 3.24 × 10−4/14 Noor Mat - -

K181T 0/0 Clinvar NR + + - Karaca, 2015 [17] Mat + +

V195I 0/0 Noor Mat - -

Y213C 0/0 Paris/
Strasbourg Mat + +

G300R 0/0 Lille Mat + +

G303R 0/0 ClinVar ID
417957 NR + - -

A310P 0/0 Paris De novo + +

H359R 0/0 Noor Mat - -

A470D 0/0 Noor Mat - -

E479G 0/0 Noor Mat - -

F549C 0/0 Ptchd1-
base.com NR + + -

Q884* 0/0 No subject NA -

NR = not reported; NA = not applicable.
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2.6. PTCHD1-AS Function

As PTCHD1-AS does not encode for a protein, its contribution to the etiology of
ASD and ID is unclear. Emerging evidence suggests that lncRNAs govern the expression
of coding genes by altering chromatin status, influencing the initiation of transcription,
as well as by affecting mRNA stability post-transcriptionally [47]. To investigate this,
Ross et al. employed RNA fractionation and qRT-PCR to conclude that PTCHD1-AS was
almost entirely localized to the nucleus, where it was also found to primarily associate with
chromatin. In addition, given the proximity of the 5′ exons, the common bi-directional
promoter, and their modest sequence homology, it seems plausible that PTCHD1-AS could
be governing the expression of PTCHD1 in cis to some extent. However, data from Ross
et al. report that basal PTCHD1 transcription was unchanged in male iPSC-derived cor-
tical neurons from a patient with a 125 Kb microdeletion that encompassed exon 3 of
PTCHD1-AS (PTCHD1-AS∆3/Y). Next, in order to prematurely terminate transcription,
these authors used CRISPR/Cas9 and homology-directed repair to replace exon 3 of
PTCHD1-AS with two tandem polyadenylation sequences in iPSCs derived from an un-
affected male (PTCHD1-AS∆3-pA/Y) and subsequently observed a profound decrease in
neuronal PTCHD1 expression. These data suggest that, while PTCHD1-AS exon 3 may
not necessarily be implicated in regulating PTCHD1 expression, downstream portions of
the antisense transcript could be involved. Curiously, transcripts bearing exons 5 and
6 of PTCHD1-AS were still detected in these CRISPR-edited cortical neurons, albeit at a
reduced level, proposing the possibility of an additional TSS that is downstream of exon
3. To assess the global alterations in gene expression that are mediated by PTCHD1-AS
in trans, Ross et al. performed microarray-based analyses on cortical neurons from iPSCs
derived from the aforementioned male proband, as well as from an additional male ASD
case with a 167 Kb microdeletion that eliminates the first two exons of PTCHD1-AS2 and
PTCHD1-AS3, as well as the first exon of PTCHD1. These investigations identified a paucity
of abnormally expressed genes in cortical neurons derived from either proband, implying
that PTCHD1-AS does not significantly affect global neuronal gene expression in trans.
In addition, of the few dysregulated genes that were identified, none had any annotated
neuronal function [35].

2.7. Ptchd1 Mutant Mouse Models for Cognitive and Metabolic Phenotypes

There is a considerable accumulation of evidence to suggest that PTCHD1 is required
for normal neurodevelopment; however, its mechanistic association with the etiology of
ASD and ID remains poorly understood. To investigate this, numerous studies have used
Ptchd1 mutant (Ptchd1-/Y) mice in order to evaluate the effects of Ptchd1 on behaviour,
cognition, metabolism, gene expression, and both neuronal and synaptic structure and
function. In order to disrupt Ptchd1 in mice, multiple groups have independently gen-
erated a conditional allele by targeting exon 2 (Ptchd1∆2/Y), which encodes three of the
12 transmembrane domains and a portion of one of two predicted sterol-sensing domains.
Exon 2 consists of 661 nucleotides, and therefore, the resulting Ptchd1∆2 transcript will have
a premature truncation ahead of the final nine transmembrane domains, the sterol-sensing
domain, and the PDZ-binding motif [31–33]. However, it should be noted that the removal
of exon 2 still permits the generation of the shorter transcript encoding the 542 amino acid
ORF and other more C-terminal ORFs (Figure 3A). Our own studies of brain tissue from the
Ptchd1-/Y mice, courtesy of Guoping Feng, indicate that there is no loss of Ptchd1 transcripts;
however, while the Ptchd1-a transcript is lost, there is activation (~80-fold) of the shorter
Ptchd1-c transcript (Vincent lab, unpublished data). Whether or not this transcript (or indeed
the full-length transcript) is translated into protein has yet to be established.

In order to recapitulate clinical models where CNVs have encompassed just exon 1 or
exon 3 of PTCHD1 [5,6,9,12], exon-specific deletion mice have been generated. Murakami et al.
generated mice with an exon 1 deletion (Ptchd1∆1/Y) [48], while Ko et al. generated mice
with an exon 3 deletion (Ptchd1∆3/Y) [49]. Lastly, Roy et al. employed Cre-dependent
SpCas9 adeno-associated viruses (AAVs) to knockdown Ptchd1 (Ptchd1KD) in specific brain
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subregions in vivo [13]. The differences in the predicted effects of these knockout strategies
on Ptchd1 protein manufacture are outlined in Figure 4.

A multitude of studies investigating the behavioural and neuromotor phenotype of
male Ptchd1-/Y (i.e., Ptchd1∆1/Y, Ptchd1∆2/Y, and Ptchd1∆3/Y) mice have identified numerous
perturbations, many of which recapitulate the clinical symptoms of ASD and/or ADHD.
Ptchd1-/Y mice demonstrate spontaneous hyperactivity, as inferred from an increase in the
total distance travelled in a novel environment during an open field test (OFT) [48,49], and
elevated locomotor activity [31,33].

The Ptchd1∆1/Y mice displayed ADHD-like behavior, exhibiting difficulty in habit-
uating to new environments. Whereas control mice exhibit reduced exploration upon
repeated exposure to an OFT, this reduction is attenuated in Ptchd1∆1/Y mice. Furthermore,
the Ptchd1∆1/Y mice displayed heightened impulsivity, as determined by decreased jump
latency in the cliff avoidance test [48]. Interestingly, treatment of the Ptchd1∆1/Y mice with
the norepinephrine reuptake inhibitor Atomoxetine, which has been used to treat ADHD,
was found to reduce, but not abolish, spontaneous hyperlocomotor activity in both the OFT
and the cliff avoidance tests. Furthermore, Atomoxetine was also observed to normalize
habituation of exploration in the OFT and reduce impulsivity in the Ptchd1∆1/Y mice [48].

The Ptchd1∆2/Y mice exhibited reduced anxiety, as evident from more time spent in
the centre of the field during an OFT [33], although this phenotype was not replicated
in Ptchd1∆1/Y mice [48]. Motor function defects were also reported in Ptchd1∆2/Y mice-
Wells et al. report that Ptchd1∆2/Y mice exhibit altered gait parameters as well as signs of
hypotonia, which was inferred from decreased grip strength, as assessed by either the
hanging wire test [31] or an isometric dynamometer [33]. Ung et al. reported that Ptchd1∆2/Y

mice presented with impaired motor coordination according to a rotarod test [33], although
this was not detected by Wells et al. [31] Lastly, Wells et al. reported that Ptchd1∆2/Y mice
exhibit a fragmented sleep pattern and hyper-aggressiveness, as determined by a longer
attack duration and a shorter latency to attack during the resident intruder test, but the
sensorimotor gating function remains unaffected (prepulse inhibition of the acoustic startle
response [31]).

Cognitive assessments of male Ptchd1∆1/Y and Ptchd1∆2/Y mice reveal impairments
related to learning and memory. Both Ptchd1∆1/Y and Ptchd1∆2/Y mice display diminished
short-term working memory, which was inferred from fewer spontaneous alternations
during the Y-maze test [33,48]. The Morris water maze test did not reveal deficits in spatial
learning and memory in Ptchd1∆2/Y mice [31], although a targeted knockdown of Ptchd1 in
the anterodorsal (AD) thalamus suggested diminished spatial working memory, as inferred
from fewer correct alternations during the T-maze test. Interestingly, this deficit was only
present when the sample and choice trials were separated by a longer (60 s) interval, but a
similar performance was observed when the inter-trial duration was short (10 s). Further-
more, these AD thalamus Ptchd1KD mice also demonstrated impaired long-term memory
recall, which was evident from a significantly reduced freezing when tested 24 h after
training in a contextual fear conditioning paradigm [13]. Notably, a reduced discrimination
index on the novel object recognition test (NORT) provides evidence of weakened recogni-
tion memory in both Ptchd1∆1/Y and Ptchd1∆2/Y mice [32,33,48]. Interestingly, Atomoxetine
treatment rescued this impairment in recognition memory, as evident by less interaction
time with the familiar object on the NORT in Ptchd1∆1/Y mice [48]. Moreover, Ptchd1∆2/Y

mice demonstrated additional learning impairments, as indicated by a diminished latency
to cross during the inhibitory avoidance task [31] and decreased freezing in contextual and
cued conditioning paradigms [31,33] (similar to the AD thalamus Ptchd1KD mice).
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resulting from the Murakami et al. [48] exon 1 knockout mice, Wells et al. [31] and Ung et al. [33] exon
2 knockout mice, and the CRISPR/cas9 knockout mouse generated by Frankland and Vincent [49].
The PDZ-binding motif is indicated by a red circle. N.B. Ptchd1-c transcription is activated (>80-fold)
in the brains of the Wells et al. mice [31]. There are no predicted translation products for the
exon 1 knockout [48], as the predicted promoter is also disrupted, and no additional promoters are
predicted (genomatix.com, accessed on 2 August 2011). (B) Cartoon of PTCHD1 illustrating the
predicted topological orientation of specific regions in the membrane; putative sterol-sensing domains
(SSD) 1 and 2, luminal loops 1 and 2, medial loop (ML), N and C-termini, are shown. (C) Localization
of missense variants studied in Halewa et al. [16] and Xie [37]. A more complete list of PTCHD1
SNVs, including those identified in the MSSNG study, or reported by ClinVar, can be found on the
www.PTCHD1-base.com (accessed on 1 February 2022) website.

Interestingly, Ptchd1 disruption appears to be associated with deficits in attentional
engagement and sensory filtering. These deficits presumably contribute to learning and
memory impairments, as Ptchd1∆2/Y mice are impaired in a cognitive task in the presence
of a visual distractor, suggesting sensory-related distractibility in these mice [31]. Similarly,
Ptchd1∆2/Y mice demonstrated a markedly poorer ability to discriminate between different
auditory stimuli when provided with high levels of background noise, both in the presence
and absence of preceding visual cues [50].

The studies by Wells et al. have implicated the TRN as a key brain region in several
of the behavioural and cognitive abnormalities observed in Ptchd1∆2/Y mice. When the
deletion of Ptchd1 exon 2 was principally confined to the TRN using Somatostatin-driven

genomatix.com
www.PTCHD1-base.com
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Cre mice (Som-Cre+:Ptchd1fl/Y), hyperactivity, problems with attentional engagement, and
fragmented sleep all persisted, indicating that Ptchd1 expression in the TRN is critical for
these functions. Notably, another type of learning and memory (i.e., inhibitory avoidance
task) was found to improve, and both hyper-aggression and hypotonia were no longer
detected in these Som-Cre+:Ptchd1fl/Y mice, suggesting that Ptchd1 expression elsewhere in
the brain influences these traits [31].

Murakami et al. investigated the possible relationship between Ptchd1-mediated
metabolic dysregulation and ADHD-like behavioral phenotypes. These authors specifically
focused on the effects of Ptchd1 on the kynurenine pathway (KP), which metabolizes tryp-
tophan to generate nicotinamide adenine dinucleotide (NAD+), a coenzyme that is critical
for redox reactions in both metabolism and energy production. In 11-week-old Ptchd1∆1/Y

mice, these authors detected increased serum concentrations of kynurenine, as well as an
increased presumptive activity of the enzyme indoleamine-2,3-oxygenase1 (Ido1), the first
and rate-limiting KP enzyme. Notably, atomoxetine, a selective norepinephrine reuptake
inhibitor, typically used as a treatment for ADHD, ameliorated both the heightened activ-
ity of Ido1 and the elevated concentration of kynurenine in the serum of the Ptchd1∆1/Y

mice. In addition to the serum, elevated levels of the KP metabolites 3-hydroxykynurenine
(3-HK), anthranilic acid (AA), and 3-hydroxyanthranilic acid (3-HAA) were all detected
in the Ptchd1∆1/Y frontal cortex. Atomoxetine administraton also reduced the levels of
AA in the Ptchd1∆1/Y frontal cortex, although the concentrations of both 3-HK and 3-HAA
remained abnormally high. Interestingly, atomoxetine was observed to significantly raise
the concentration of an additional KP metabolite, kynurenic acid (KYNA), in the Ptchd1∆1/Y

frontal cortex. Collectively, these data suggest an association between the dysregulation of
tryptophan metabolism and PTCHD1-related ASD and/or ID; however, this association
has yet to be confirmed either in PTCHD1-deficient patients or in other Ptchd1 mouse
models [20].

Unexpectedly, given the PTCHD1 involvement in ASD, no social abnormalities were
apparent in either Ptchd1∆1/Y or Ptchd1∆2/Y mice as inferred from the three-chambered
social interaction assay [31,48] and the social recognition test [33]. Despite this, evidence of
possible stereotypic behaviours was reported in Ptchd1∆2/Y mice, including more frequent
rearing and increased locomotor activity in the back portion of the cage during the active
part of the circadian cycle [33], although repetitive grooming was not observed [31].

However, a preliminary study by Ko et al. suggests potential PTCHD1/Ptchd1 in-
volvement in both ASD and ID, with respect to both social abnormalities and learning
deficits in mice [49]. Based on loss CNV and nonsense mutation cases reported in PTCHD1-
related ASD patients [6], they generated Ptchd1 exon 3 truncating mutation mice using
CRISPR-Cas9 technology (Ptchd1∆3/Y). Ptchd1∆3/Y mice exhibited significant reductions in
both Ptchd1 full-length (i.e., the transcript derived from exons 1 to 3) and shorter transcripts
(i.e., the transcript derived from exons 1 and 3), and social interaction and communication
behaviors were abnormal in these mice, as inferred from the reduced male-female interac-
tion time in the three-chambered social interaction assay, the reduced emission of ultrasonic
vocalization during the social interaction, and the reduced sniffing behavior in the social
odor cue reactivity task, respectively. Furthermore, Ptchd1∆3/Y mice also exhibit impaired
learning and memory in contextual fear conditioning [49]. Given that Ptchd1∆2/Y mice
display significant enrichment of the shorter alternatively spliced form of the Ptchd1 tran-
script (Ptchd1-c) and that Ptchd1∆3/Y mice lack expression of both full-length (Ptchd1-a) and
shorter form (Ptchd1-c) transcripts, it seems plausible that the more complete phenotypic
picture in the Ptchd1∆3/Y mice (i.e., including social deficits) relates to the loss of both major
alternative transcripts (Ptchd1-a and -c). In other words, it is plausible that the increased
expression of Ptchd1-c in the Ptchd1∆2/Y mice rescues the social deficit phenotypes.

2.8. Neurodevelopmental Implications of PTCHD1 and PTCHD1-AS

Extensive efforts have sought to determine the neurophysiological mechanisms of
Ptchd1-mediated phenotypic abnormalities. Pioneering work by Wells et al. in 2016 impli-
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cated the TRN as being a critical region in the brain that underlies many of the behavioural
and cognitive abnormalities displayed in Ptchd1∆2/Y mice. In TRN neurons of Ptchd1∆2/Y

mice, whole-cell patch clamp recordings reveal a decrease in repetitive bursting. In addition,
Ptchd1∆2/Y TRN neurons exhibited a lower rate of burst firing during sleep, which translated
into an overall reduction in sleep spindles and a fragmented sleep pattern. Subsequent
analyses indicate that this lowered burst rate may be a consequence of reduced ion currents
traveling through small conductance Ca2+-activated K+ (SK) channels. Furthermore, a
two-fold lower basal concentration of intracellular Ca2+ was observed, which may also
contribute to the deficits observed in SK channels [31]. Moreover, the insufficient hyper-
polarization that results from these reduced K+ currents likely impairs the voltage-gated
recruitment of T-type Ca2+ channels [51], which may affect the excitability of the TRN. The
TRN is a GABAergic group of neurons that provides the principal source of inhibition
to the thalamic relay nuclei, and therefore, diminished TRN function could contribute to
attenuated thalamic inhibition [52]. One possible implication of reduced thalamic inhibition
is an inability to suppress unwanted sensory stimuli [53], which may help to explain the
heightened distractibility in Ptchd1∆2/Y mice [31]. Interestingly, pharmacological augmen-
tation of SK currents in Ptchd1∆2/Y mice using the agonist 1-ethyl-2-benzimidazolinone
(1-EBIO) significantly increased sensory-evoked thalamic inhibition, which mitigated their
heightened distractibility and improved cognitive performance in the presence of visual
distractors [31].

To elaborate on the apparent thalamic dysregulation and distractibility in Ptchd1∆2/Y

mice, Nakajima et al. further probed the affiliation between Ptchd1 disruption and thalamic-
mediated noise hypersensitivity by examining the auditory subnetwork of the TRN (au-
dTRN). These analyses reveal that the sound-evoked firing rates of audTRN neurons were
diminished in Ptchd1∆2/Y mice. Interestingly, the impairment in the ability of Ptchd1∆2/Y

mice to discriminate between auditory stimuli in the presence of high levels of background
noise was fully rescued by 1-EBIO supplementation, but only when anticipatory visual
cues were not provided before the auditory stimulus. Unexpectedly, when prior visual cues
were given, 1-EBIO only elicited a marginal improvement in the ability of Ptchd1∆2/Y mice
to filter out unwanted background noise. This finding suggests a deficit of executive control
over sensory filtering in Ptchd1∆2/Y mice, which may be mediated by the prefrontal cortex
(PFC). Remarkably, a synergistic approach that used the cognitive enhancer modafinil in
combination with 1-EBIO was observed to fully restore both the PFC and the audTRN
function, as well as to rescue the attenuated discrimination performance in the Ptchd1∆2/Y

mice when visual cues were provided [50].
Roy et al. subsequently used ex vivo electrophysiology to examine neuronal properties

in the Ptchd1KD AD thalamus and identified a reduction in action potential half-width and a
corresponding increase in firing frequency [13]. These authors also report that a contextual
fear-conditioning paradigm did not elicit synaptic strengthening in the Ptchd1KD AD
thalamus, as evidenced by a stagnant AMPA-to-NMDA (A/N) ratio in the AD thalamus-
retrosplenial cortex (RSC) circuit. This diminished synaptic strengthening appears to be a
consequence of the hyperexcitability of neurons in the Ptchd1KD AD thalamus. Synaptic
strengthening during learning is dependent upon a stimulus-induced increase in the
excitability of AD neurons, and the abnormally high basal excitability of Ptchd1KD AD
thalamic neurons may occlude learning-induced changes. They showed that Ptchd1KD

impairs the learning-dependent A/N ration and the c-fos expression, but pharmacological
inhibition of AD thalamic- > RSC circuits in Ptchd1KD mice rescued the A/N ratio and c-fos
levels in the RSC but not in the AD thalamus. Next, to determine the molecular mechanism
for this apparent hyperexcitability in Ptchd1KD AD thalamic neurons, Roy et al. used FISH
and elucidated that the expression of two transcripts, Cacna1a and Cacna1b, that encode for
voltage-gated P-type calcium channel subunits alpha-1A (which contain the Ca2+ pore of
Cav2.1 channels) and alpha-1B (Cav2.2 channels), respectively, were both markedly lower in
these neurons. Subsequent ex vivo electrophysiology revealed reduced Cav2.1 and Cav2.2
current amplitudes in Ptchd1KD AD thalamic neurons [13].
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In addition to the thalamus, considerable research has been devoted to another brain
subregion, the hippocampus, in an effort to comprehend the memory impairments that
have been reported in Ptchd1-/Y (exon 2 deletion) mice. In the hippocampus, Tora et al.
were unable to detect differences in the density or morphology of glutamatergic dendritic
spines in dentate granule cells in P21 and P60 Ptchd1∆2/Y mice [32]. In contrast, Ung et al.
used transmission electron microscopy to show a decrease in the density of excitatory
synapses, as well as ultrastructural attenuations in both postsynaptic density thickness and
synaptic cleft width in the hippocampal synapses of Ptchd1∆2/Y mice that were 13–15 weeks
old. Interestingly, these authors also report a significant accumulation of neurotransmitter
vesicles in Ptchd1∆2/Y synaptic boutons. Lastly, Ung et al. evaluated the morphology of
GFP-labelled Ptchd1∆2/Y primary hippocampal neuronal cells that were differentiated for
18 days ex vivo and identified decreased dendritic length and branching arborisation [33].
Functionally, whole-cell voltage clamping of P21–P24 hippocampal slices revealed a re-
duction in the excitation-to-inhibition ratio of Ptchd1∆2/Y dentate granule cells, as well as
a basal increase in the frequency of both spontaneous excitatory (sEPSC) and inhibitory
(sIPSC) potentials [32]. Despite this apparent increase in basal currents in dentate granule
cells, a substantial decrease in the frequency of evoked miniature excitatory postsynaptic
currents (mEPSCs) was observed in the surrounding Ptchd1∆2/Y CA1 pyramidal neurons.
Subsequently, the paired-pulse ratio indicates that Ptchd1∆2/Y Schaffer collateral axons, the
primary excitatory input onto CA1 pyramidal cells, have a higher probability of vesicular
release, which may mitigate the reduced frequency of mEPSCs [33].

To evaluate the effects of Ptchd1 exon 2 deletion on the hippocampal transcriptome,
Ung et al. performed RNA sequencing on hippocampal samples from P30 Ptchd1∆2/Y mice
and identified a large number of aberrantly expressed genes [33]. These authors further
used published single-cell transcriptomics data from the P21–P30 mouse hippocampus [54]
in order to perform gene set enrichment analyses to identify specific hippocampus cell
subtypes that may be particularly affected in the Ptchd1∆2/Y mice. This bioinformatic ap-
proach revealed that upregulated genes in the Ptchd1∆2/Y hippocampus were significantly
enriched in the markers of neuronal genes, in particular pyramidal neurons and interneu-
rons. Interestingly, downregulated genes in the Ptchd1∆2/Y hippocampus were significantly
enriched in the markers of glial cells, specifically astrocytes and oligodendrocytes, as well
as endothelial cells. A subsequent gene ontology enrichment analysis demonstrated that
the array of upregulated neuronal genes in the Ptchd1∆2/Y hippocampus was significantly
enriched in genes encoding synaptic proteins. Specifically, abnormal upregulation was
observed for approximately 20% of genes that encode presynaptic proteins, such as Syt1,
Bsn, Vamp3, and Syn1-3. Similarly, the expression of almost 25% of the genes encoding the
postsynaptic proteins was likewise found to be augmented, including Dlg4 (which encodes
for Psd95), as well as Camk2a, Syngap1, and Shank1-3. In addition to synaptic protein-coding
genes, the authors also report an upregulation of genes encoding proteins involved in
different aspects of nervous system development, such as axonogenesis and dendritogene-
sis. Lastly, increases in the expression of genes encoding the neuronal activity-dependent
transcription factors Npas4 and Egr1 were also discovered in the Ptchd1∆2/Y hippocampus.
Taken in aggregate, these data suggest that the absence of Ptchd1 in hippocampal neurons
may lead to the dysregulation of neuronal and synaptic structure and function [33].

In order to examine the neurophysiological function of PTCHD1 and PTCHD1-AS
in a human context, Ross et al. sought to characterize the neuronal properties of iPSCs
reprogrammed from male ASD probands with previously characterized microdeletions
in Xp22.11 [11]. No apparent alteration in the dendritic morphology was observed in
cortical neurons from iPSCs derived from either of the two aforementioned male ASD
probands (with 125 Kb (PTCHD1-AS exon 3) and 167 Kb (PTCHD1-AS exons plus exon 1 of
PTCHD1) loss CNVs). Interestingly, PTCHD1-AS∆3/Y cortical neurons appeared to display
an increased density of excitatory synapses within dendrites. Furthermore, in vitro elec-
trophysiological analyses indicated that CRISPR/cas9-edited PTCHD1-AS∆3-pA/Y cortical
neurons (in which PTCHD1-AS exon 3 has been replaced with tandem polyadenylation
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sites), as well as those derived from both the 125 Kb and 167 Kb loss CNV probands, all
exhibited marked attenuations in AMPAR-mediated mEPSC frequency, with an additional
reduction in mEPSC amplitude observed in the CRISPR-edited cortical neurons. Lastly,
cortical neurons from both probands also demonstrated a reduction in NMDA-evoked
current amplitude [35].

3. Summary and Future Research Directions

This review provides an overview and timeline of the clinical genomic investigations
that have identified PTCHD1 and PTCHD1-AS as risk factor genes for the etiology of ASD
and ID. In numerous male ASD and ID cases, inherited and de novo microdeletions in
Xp22.11 affecting all or part of PTCHD1, PTCHD1-AS, or both have been reported, as
have point mutations and indels in the PTCHD1 coding sequence that have generated
missense, nonsense, or truncating variants. Loss-of-function mutations affecting PTCHD1
appear to segregate with disease in the standard X-linked (recessive) mode of inheritance,
suggesting a strong causative relationship with the corresponding phenotypes. In contrast,
loss CNVs affecting PTCHD1-AS without disrupting PTCHD1 may show full, incomplete,
or no segregation and are present in control populations, making the association between
PTCHD1-AS and disease either complicated or possibly tenuous. Clinically, we have also
described the dysmorphic, cognitive, behavioural, and neurological features of several
patients with a variety of mutations affecting PTCHD1.

PTCHD1 is widely transcribed throughout the human brain, with the highest level of
expression being observed in the cerebellum and pituitary gland. Similarly, PTCHD1-AS1
and PTCHD1-AS2 transcripts have also been detected in several brain regions. In mice,
Ptchd1 is transcribed throughout the developing brain during embryogenesis. At birth,
Ptchd1 expression is most pronounced in the TRN but by adulthood becomes primarily
abundant in the granule cells of both the dentate gyrus and the cerebellum. Notably, the
expression of PTCHD1, but not PTCHD1-AS, has been found to be enhanced by neuronal
depolarization in vitro, inferring a possible activity-dependent function.

PTCHD1 contains 12 predicted transmembrane domains and exogenously expressed
PTCHD1 has been observed to be directed to the plasma membrane within dendritic
spines in neuronal cultures. Furthermore, this localization is apparently reliant on a
portion of the cytoplasmic C-terminal tail. Functionally, despite amino acid sequence
homology with PTCH1 and PTCH2, PTCHD1 does not appear to be involved in negatively
regulating the Shh signalling pathway. The C-terminal PDZ-binding motif of Ptchd1 can
mediate interaction with numerous components of both the retromer complex and the
postsynaptic density, suggesting a potential involvement in endosomal protein sorting
within dendritic spines.

Studies involving Ptchd1-/Y mice have revealed that these mice display behavioural,
neurological, and cognitive abnormalities, many of which recapitulate the clinical symp-
toms of ASD and/or ADHD. These aberrant traits include hyperactivity, hyper-aggression,
motor defects, hypotonia, learning, and memory impairments, as well as deficits in atten-
tional engagement and auditory sensory filtering; social deficits, however, have only been
reported for the Ptchd1 Ptchd1∆3/Y exon 3 knockout mice [49].

Neurophysiological dysregulation in the brain may underlie the perturbations in
sensory filtering in Ptchd1∆2/Y mice. In the absence of Ptchd1, reduced K+ efflux through
SK channels leads to impaired hyperpolarization, which affects the activity of T-type Ca2+

channels and subsequently reduces TRN-mediated thalamic inhibition. This reduced
thalamic inhibition impairs the ability of Ptchd1∆2/Y mice to suppress unwanted sensory
stimuli, thus leading to increased distractibility. Furthermore, both the automatic and the
executive mechanisms of auditory filtering are diminished in Ptchd1∆2/Y mice, with the
former being regulated by the audTRN and the latter being mediated by the PFC.

The AD thalamus and hippocampus may be implicated in memory deficits in the
absence of Ptchd1. Local Ptchd1 knockdown in the AD thalamus leads to neuronal hy-
perexcitability, which was facilitated by dysfunction of Cav2.1 and Cav2.2. Likewise, this



Genes 2022, 13, 527 20 of 23

hyperexcitability also attenuated learning-induced synaptic plasticity in these mice, leading
to diminished long-term memory. Similarly, Ptchd1∆2/Y hippocampal neurons displayed
altered dendritic and synaptic morphology. Moreover, the hippocampal transcriptome of
Ptchd1∆2/Y mice exhibited upregulation in genes encoding for both pre- and postsynaptic
proteins. Unsurprisingly, these structural and transcriptomic defects in the hippocampus
were functionally accompanied by a reduction in neuronal excitability.

While recent studies into the neurodevelopmental contributions of PTCHD1 and
PTCHD1-AS have increased dramatically over the past decade, there is still much to learn
about the molecular interactions and pathways involved. Studies involving Ptchd1∆2/Y

mice have clarified the role of Ptchd1 in the neurophysiological etiology of cognitive and
attentional impairments, which are both clinical characteristics of ASD and ID. However,
analyses for the Ptchd1∆2/Y mice have failed to replicate the analogous social deficits that
have been reported in ASD cases involving PTCHD1 mutations, whereas the preliminary
evidence for Ptchd1∆3/Y mice indicates a clear social deficit. It is therefore crucial to under-
stand the differences in the Ptchd1 gene product at the mRNA and protein level for the
different mouse models. Further research is also required to identify the mechanisms by
which these genes influence the broad spectrum of social abnormalities that underlie ASD,
with a special focus on the development of pharmacological and cognitive interventions
to mitigate neurophysiological dysfunction. In addition, many fundamental questions
persist regarding the specific biochemical and molecular functions of PTCHD1 within neu-
rons. Specific domains within PTCHD1, for instance the predicted sterol-sensing domains,
the two major luminal loops, and the N- and C-termini (Figure 4B), still have no clearly
identified role.

In summary, disruption of PTCHD1 is strongly associated with the etiology of both
ASD and ID in humans and in mice with behavioural and learning deficits strongly remi-
niscent of ASD and ID, and thus, it is likely to be important for normal neurodevelopment.
Further molecular and cellular and neuroanatomical characterization is essential before
tackling strategies for pharmacological interventions to ameliorate these conditions.
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