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Abstract

Interactions of the amyloid b-protein (Ab) with neuronal cell membranes, leading to the disruption of membrane integrity,
are considered to play a key role in the development of Alzheimer’s disease. Natural mutations in Ab42, such as the Arctic
mutation (E22G) have been shown to increase Ab42 aggregation and neurotoxicity, leading to the early-onset of Alzheimer’s
disease. A correlation between the propensity of Ab42 to form protofibrils and its effect on neuronal dysfunction and
degeneration has been established. Using rational mutagenesis of the Ab42 peptide it was further revealed that the
aggregation of different Ab42 mutants in lipid membranes results in a variety of polymorphic aggregates in a mutation
dependent manner. The mutant peptides also have a variable ability to disrupt bilayer integrity. To further test the
connection between Ab42 mutation and peptide–membrane interactions, we perform molecular dynamics simulations of
membrane-inserted Ab42 variants (wild-type and E22G, D23G, E22G/D23G, K16M/K28M and K16M/E22G/D23G/K28M
mutants) as b-sheet monomers and tetramers. The effects of charged residues on transmembrane Ab42 stability and
membrane integrity are analyzed at atomistic level. We observe an increased stability for the E22G Ab42 peptide and a
decreased stability for D23G compared to wild-type Ab42, while D23G has the largest membrane-disruptive effect. These
results support the experimental observation that the altered toxicity arising from mutations in Ab is not only a result of the
altered aggregation propensity, but also originates from modified Ab interactions with neuronal membranes.
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Introduction

Alzheimer’s disease (AD) is the most common form of late-onset

dementia resulting in the progressive impairment of memory and

executive function [1]. It is associated with synaptic loss,

abnormalities in neuronal function, an increase in neuronal cell

death, and the extracellular accumulation of senile plaques

composed of the amyloid b-peptide (Ab) [2,3]. In general, Ab is

a normal product of cellular metabolism throughout life and

circulates as a soluble peptide in biological fluids. It is produced

through posttranslational processing of the amyloid precursor

protein (APP), a type-1 membrane integral glycoprotein via

sequential cleavage by b- and c-secretases [4]. Of the proteolytic

cleavage products, which typically contain 39 to 43 residues, Ab42

is recognized as the most important alloform based on its ability to

elicit neurotoxicity. It is the most prevalent alloform found in

amyloid plaques, and has the highest propensity to aggregate into

fibrils and plaques [5,6]. The ‘amyloid cascade hypothesis’

proposes that assemblies of Ab initiate a process leading to

neuronal dysfunction and cell death [7]. The most potent

neurotoxic assemblies appear to be oligomeric, rather than

fibrillar, in nature [8,9]. There is acceptable evidence suggesting

that Ab exerts its cytotoxic effect by interacting with membranes of

neurons and other cerebral cells, such as astrocytes, microglial and

cerebral endothelial cells [10,11]. A potential pathway for Ab
toxicity lies in its ability to alter biophysical membrane properties

[12–14], causing membrane disruption and permeability [15–17]

and thereby allowing the leakage of ions, particularly calcium ions

[17–20].

Familial forms of AD increase Ab production or the propensity

of Ab to aggregate [7]. Until now four genes affecting APP,

presenilin-1 (PS-1), presenilin-2 (PS-2) and apolipoprotein E have

been identified to be linked to AD. So far 19 pathogenic missense

mutations have been discovered in APP, of which seven are

located in the region encoding Ab. English (H6R) [21] and Tottori

(D7N) [22] mutants show increased fibril elongation than wild-

type (WT) Ab [23]. The Dutch mutant (E22Q) [24,25] favors Ab
production and leads to a b-sheet structure [26–29]. The Flemish

mutant (A21G) [30] forms stable oligomers with decreased fibril

formation [31], while the Arctic mutation (E22G) [32] increases

neurotoxic protofibril production [33,34]. The Italian mutant

(E22K) promotes faster aggregation of Ab40 and Ab42 [29] and the

Iowa mutant (D23N) [35] forms fibrils faster than WT Ab.

In a recent study, intact lipid bilayers were exposed to

predominantly monomeric preparations of WT or different

mutant forms of Ab40, and atomic force microscopy (AFM) was

used to monitor aggregate formation and morphology as well as
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bilayer integrity over a 12 hour period [36]. The goal of this study

was to determine how point mutations in Ab, which alter peptide

charge and hydrophobic character, influence interactions between

Ab and the lipid surface. The Arctic, Italian, Iowa and Flemish

mutations were considered. While fibril morphology did not

appear to be significantly altered when mutants were prepared

similarly and incubated under free solution conditions, aggrega-

tion in the lipid membranes resulted in a variety of polymorphic

aggregates in a mutation dependent manner. It was further found

that the ability of Ab to disrupt the structural integrity of bilayers is

notably modulated by these mutations. An enhanced bilayer

disruption was reported for the Arctic mutation. It was speculated

that, in comparison to WT Ab, the increased hydrophobic nature

of E22G Ab increases its bilayer insertion. The membrane-bound

oligomers of the Iowa mutation were extremely stable and the

bilayer developed small, discrete areas of disrupted lipid

morphology. Based on overall electrostatic and hydrophobic

properties of D23N Ab this finding could not be explained [36].

One of the aims of the current molecular simulation study is to

provide a better understanding of the experimental findings

provided in [36]. In general, theoretical approaches are a

complement to experimental studies probing the connection

between Ab42 mutations, aggregation [37,38] and Ab–membrane

interactions [39,40]. So far various computational studies of Ab
interacting with lipids have been performed to gain structural

information at an atomistic level [41–62]. Structural models and

experimental evidence support to the claim that transmembrane

Ab is an assembly of loosely associated mobile b-sheet subunits

[41–43,48]. In a recent study, Nussinov and co-workers used

molecular simulations to demonstrate that amino acid substitu-

tions help to infer which residues are essential for Ab channel

structures [46]. The current study builds on our previous work,

where we reported on the effects of lipid type and peptide

oligomerization on membrane-bound WT Ab42 using molecular

dynamics (MD) simulations on the sub-microsecond timescale

[49]. We considered helical and b-sheet conformations embedded

in zwitterionic palmitoyl-oleoyl phosphatidylcholine (POPC) and

dipalmitoyl phosphatidylcholine (DPPC), and anionic palmitoyl-

oleoyl phosphatidylglycerol (POPG) lipid bilayers. We observed

that POPC increases the stability of transmembrane Ab42.

Hydrophobic mismatch and lipid order of DPPC, and anionic

surface charges of POPG bilayers are responsible for structural

instabilities of Ab42 in these bilayers. From the considered

structures the b-sheet tetramer was found to be most stable as a

result of interpeptide interactions [48]. We performed a quanti-

tative analysis of the translocation of water in the Ab42 -bilayer

systems. We observed that this process is generally fast (within a

few nanoseconds) yet generally slower than in the absence of Ab42

in the bilayers. The rate limiting step is the permeation across the

hydrophobic core, where interactions between Ab42 and perme-

ating H2O molecules slow the translocation process. Finally, we

showed that the b-sheet tetramer allows more water molecules to

pass through the bilayer compared to monomeric Ab42 [49].

The goal of the present study is to investigate the effects of the

charged residues K16, E22, D23 and K28 on the stability of

transmembrane Ab42 in a POPC bilayer and their role on

membrane integrity. To this end, we perform mutational studies

for monomeric and tetrameric b-sheet structures of Ab42. We

choose Ab42 to be in the b state because there is mounting

evidence that amyloid oligomers adopt a b conformation in the

membrane [16,63–66]. Circular dichroism (CD) spectroscopy

indicated that Ab42 when incorporated in a lipid bilayer adopts

more b-sheet structure in comparison to the associated

peptide, which is largely unstructured [16]. Furthermore, it was

demonstrated that Ab42 incorporation into lipid bilayers causes

membrane destabilization by increasing membrane fluidity [16].

Studies on Ab40 fused into a POPC bilayer argue for damage of

bilayer integrity caused by small Ab assemblies with a large

proportion of b-sheet structure, which are embedded in the lipid

bilayer [63]. Using attenuated total reflection Fourier transform

infrared (ATR-FTIR) spectroscopy, de Planque et al. were able to

conclude that the channel-like bahavior of Ab is not caused by

helical bundles of transmembrane Ab peptides [63]. Another study

employing thioflavin T fluorescence and CD spectroscopy to

characterize Ab membrane binding and permeabilization revealed

that membrane leakage is directly correlated to Ab oligomeriza-

tion and b-sheet formation [64]. In contrast, membrane-bound a-

helical Ab40, which is only observed at high lipid-to-peptide ratios,

has a low tendency to aggregate and causes only minor membrane

leakage [64]. Other recent studies show that it seems to be a

generic feature of amyloid proteins to permeabilize membranes

when assembled into a b-sheet oligomer, thereby inflicting

cytotoxicity [15,66–68].

However, the structure of Ab in membranes is still not known.

Therefore, models based on previous experimental and simulation

results have to be designed for simulation studies investigating

membrane-bound Ab. To this end, we employ a bottom-up

approach using structures predicted to be favourable for the

membrane-inserted monomer and small oligomers as possible

subunits for larger trans-membrane Ab aggregates [48,49]. In the

current study, we consider the Arctic mutant E22G Ab42, the

‘Arctic-type’ D23G mutant [69] in order to have a direct

comparison with E22G, and the double mutant E22G/D23G.

For the investigation of the effects of the positive charges of K16

and K28 we mutate these residues to methionine leading to the

double mutant K16M/K28M Ab42. We choose methionine since,

compared to all other amino acids, it has the smallest free energy

barrier for translocation across the membrane headgroup region

in either direction [70,71]. Finally, we study the quadruple mutant

K16M/E22G/D23G/K28M where all peptide charges in the

transmembrane region are removed. Our simulation results for

WT, E22G and D23G Ab42 allow a better explanation of the

experimental findings testing the connection between Ab point

mutations and Ab -induced membrane disruption [36]. To our

knowledge, this study is the first computational one to investigate

the effects of the familial E22G mutation on Ab –membrane

interactions.

Results and Discussion

In a recent study we investigated membrane-bound WT Ab42 as

a b-sheet monomer and tetramer and as a helix [49]. The results

obtained for the b-sheet structures will serve as comparison for the

Ab42 mutants considered in the current study. The monomeric

and tetrameric transmembrane Ab42 structures, from which our

MD simulations were initiated, are shown in Fig. 1 [48].

Ab42 Monomer: Effects of Charge Removal on
Transmembrane Stability

WT and Ab42 mutants were studied as monomer in the

transmembrane b-sheet conformation in 500 ns MD simulations.

The Ab42 monomer structures collected at the end of the MD

simulations are shown in Fig. 2.

Transmembrane Ab42 forms stable b-sheets. Like WT

Ab42 [49], all of the mutants remain in the lipid bilayer during the

MD simulations. In general, the root mean square deviations

(RMSD) and root mean square fluctuations (RMSF) for the

peptide backbone atoms, which are presented in Fig. 3A and B,

Transmembrane Ab Mutants
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reveal a similar stability and fluctuation pattern for the Ab42

variants. D23G has the largest RMSD with values between 0.6

and 0.7 nm from the starting structure, while the RMSD of the

other Ab42 variants fluctuates around 0.4 nm. The RMSD and

RMSF are not sufficient to assess the structural change and

stability of transmembrane peptides. For example, both E22G and

K16M/K28M have average RMSD values of 0.40 nm, while the

conformations shown in Fig. 2 reveal that the structures are

different inside the membrane. Therefore, we consider further

observables in order to evaluate the stability of the membrane-

inserted Ab42 mutants. To quantify the peptide motion along the

membrane normal (i.e., the z-direction) inside the bilayer, we

compute the center of mass motion of residues 25–30 in the lower

Ab42 loop. The results of this analysis in Fig. 3C indicate that, after

the initial 100 ns, the position of Ab42 inside the membrane is

stable. Only for E22G and D23G a more pronounced motion

along z is observed leading to average positions of 2.960.2 nm and

3.360.2 nm, respectively. For the other four Ab42 variants the

average position inside the membrane is 2.5–2.6 nm with a

standard deviation of 0.1 nm. The origin of the motion of E22G

and D23G will be discussed below. Despite the removal of charged

residues at the lipid–water interfaces, which in principle might act

as electrostatic anchors in the transmembrane b-sheet structure of

WT Ab42, the transmembrane b-sheet has a high propensity to

stay inside the membrane. This is attributable to the many

hydrophobic amino acids between residues V24–A42, irrespective

of the backbone carbonyl and amide groups which are not H-

bonded in the b-sheet structure [49]. Between 14 and 17 out of the

26 residues between L17 and A42 are in b-conformation (Table 1

and Fig. 3D) with only minor differences in the average b-strand

content and its fluctuation between the different Ab42 variants.

These transmembrane b-sheets are thus stable what is further

supported by the final MD states and secondary structure analysis

(Figs. S1–S3 in File S1).

It should be noted, though, that is important to consider that the

force field chosen may affect the outcome of the study. The

systematic evaluation of recent force fields has shown that many of

them overly bias helical structures [72,73], while the GROMOS96

53A6 parameter set [74] employed here may overstabilize

extended configurations and understabilize helices [75]. However,

we recently demonstrated that the GROMOS96 53A6 force field

is able to reproduce the NMR shifts for Ab40 and Ab42, indicating

that the Ab structures it produces are in agreement with

experimental observations [76]. Furthermore, the GROMOS96

53A6 protein force field is compatible with a modified version of

the popular Berger force field for lipids [77]. In our previous work

[49] and also in work by Lemkul and Bevan [50–53] this

combination of protein and lipid force fields was used to study

Ab42 –membrane interactions. These studies revealed that Ab in

membranes is stable as both helix and b-sheet. The b-strand

content is enhanced by the presence of raft membranes containing

ganglioside GM1 [52] and the aggregation of Ab inside the

membrane [49,53].

Ab42 mutants display different transmembrane struc-

tures. The Ab42 mutants exhibit somewhat higher mean

RMSD values than WT Ab42. While the RMSD analysis is a

measure for the overall motion of the peptide residues, the RMSF

highlights the flexibility of individual Ab42 residues. The RMSF

results in Fig. 3B indicate that the transmembrane Ab42 peptide

(WT and mutants) is most flexible in the three turn regions, where

the first one (residues 5–11) is outside the lipid bilayer and the

other two (residues D23–G29 and G37–G38, respectively) are

located within the hydrophobic core. The degree of fluctuation is

different for each Ab42 variant and will be discussed below for

each mutant. WT and E22G/D23G Ab42 are most flexible

between residues 22 and 30. This WT result is at first sight

surprising, as it is the only monomeric b-sheet where this turn

region is occasionally stabilized by the intramolecular D23G–K28

salt bridge (Fig. S6 in File S1). However, the breakage and

formation of the salt bridge induces structural flexibility. More-

over, while the existence of the D23G–K28 salt bridge constrains

the turn it does not prevent the loss of b structure in this region,

which converts to coil-turn-coil after 400 ns of this simulation (Fig.

S1 in File S1). The instability of the WT Ab42 transmembrane b-

sheet also results from residues E22 and D23 being located in the

hydrophobic membrane core, where they can interact with the

Figure 1. Initial structures for the MD runs. (A) b-sheet monomer, (B) b-sheet tetramer. The peptide is shown in cartoon and colored based on
the physicochemical properties of the residues: blue, basic; red, acidic; white, hydrophobic; green, polar. The bilayer phosphorus atoms are shown as
van der Waals spheres in tan color. Lipid tails and water molecules are not shown for clarity.
doi:10.1371/journal.pone.0078399.g001

Transmembrane Ab Mutants
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lower headgroups thereby destabilizing the b-sheet structure in

this region.

E22G. The most stable transmembrane b-sheet is observed

for the Arctic mutant as judged by the final MD structure (Fig. 2)

and the DSSP plot (Fig. S2 in File S1). The b-sheet stability of

E22G with 1561 residues in b conformation originates from the

removal of the negatively charged E22 residue, leading to overall

charge neutrality inside the membrane. The mutation increases

the hydropathy index from 8.6 for WT Ab42 to 11.7 for E22G

using the hydropathy scale of Kyte and Doolittle [78] (Table 1).

The stability of E22G Ab42 is further supported by the RMSF

result. The larger RMSD value and motion along z compared to

WT and most other Ab42 variants result from the tilt of E22G

Ab42 inside the POPC bilayer. The reorientation occurs after

200 ns of the MD simulation and is only observed for this mutant.

It is mainly driven by electrostatic interactions between E22G

Ab42 and both headgroup regions (Fig. S7 in File S1). Such a tilt is

in agreement with the experimental observation that the human

islet amyloid polypeptide adopts an orientation of about 48u
relative to the membrane surface when interacting with a

dipalmitoylphosphoglycerol (DPPG) monolayer, which might have

a strong damage to the lipid membrane [66].

D23G. In the Arctic-type mutant [69] the salt bridge between

residues D23 and K28 cannot be formed, which removes the

distance constraint between these two residues and thus destabi-

lizes the original bend region between G25 and K28 as shown in

Fig. 2 and Fig. S2 in File S1. Instead, residues D23–A30 adopt

mainly coil conformations, resulting in a widened loop region,

which allows E22 to interact with the upper headgroups. This

interaction is accompanied by an upward movement and bending

of the peptide (Fig. 3C), while the lipids surrounding the peptide in

the upper leaflet move downwards. This can be seen from the

positions of the lipid headgroups in Fig. 2 and will be discussed in

detail in the next section. The D23G mutant shows the largest

deviation from the starting structure, with an average RMSD

value of 0.65 nm. D23G is nonetheless stable as b-sheet, as

confirmed by the secondary structure analysis yielding, on

average, 15 residues in b conformation inside the membrane.

The interactions between K28 with the headgroups in the lower

leaflet prevent the b-sheet from completely moving to the upper

membrane–water interface. The balance between the interactions

of E22–upper headgroups and K28–lower headgroups gives rise to

a stable conformation, as demonstrated by the small fluctuations

according to the RMSF analysis. However, on longer time scales

the D23G mutant may migrate to the upper membrane-water

surface, adopting a membrane-adsorbed rather than a transmem-

brane conformation.

E22G/D23G. A stable transmembrane b-sheet is regained for

the double mutant E22G/D23G due to the removal of both

negative charges from residues 22 and 23, increasing the

hydropathy index to 14.8. The elimination of the salt bridge

between residues 23 and 28 leads to an extended loop region

between residues 22 and 30 in E22G/D23G Ab42, which induces

fluctuations in both transmembrane turns and reduces the b count

to 1461 residues. The deletion of charged groups removes any

electrostatic interactions involving residues 22 and 23 with the

lower headgroup region, while the interactions between the

positive charge of K28 and the lower headgroup anchors the

transmembrane position of the double mutant E22G/D23G,

which stabilizes this configuration.

K16M/K28M. From all considered mutations the K16M/

K28M double mutation has the highest transmembrane b content

with on average 1761 residues in b conformation. The mutation

K16M allows the peptide to move more easily along the

Figure 2. Ab42 monomers in a POPC bilayer. (Left) Final structures
at t = 500 ns. The coloring explanation for the peptides and lipids is
given in Fig. 1. (Right) Time averaged water density within the bilayer.
doi:10.1371/journal.pone.0078399.g002

Transmembrane Ab Mutants
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membrane normal [70,71], enabling the peptide to move

downwards (Fig. 3C) so that the turn residues G25–N27 are

exposed to the water phase and the charged residues E22 and D23

can better interact with the membrane–water interface (see final

structure in Fig. 2). These interactions reduce the conformational

dynamics of K16M/K28M as demonstrated by the RMSF

Figure 3. Structural analysis of Ab42 monomers in a POPC bilayer. (A) Backbone root mean square deviation, (B) backbone root mean square
fluctuation, (C) center of mass motion of residues 25 to 30, (D) number of transmembrane residues in b conformation for the b-sheet monomer of
wild type and mutant Ab42 : black, WT; magenta, E22G; ochre, D23G; red, E22G/D23G; blue, K16M/K28M; green, K16M/E22G/D23G/K28M.
doi:10.1371/journal.pone.0078399.g003

Table 1. Peptide and POPC bilayer properties resulting from membrane-inserted WT and mutant Ab42.

Ab42 hyropathy b count Area per lipid [Å2] bilayer # H2O

mutant index per peptide top bottom thickness [nm] passage

peptide-free{ n/a n/a 69.360 69.360.0 3.5160.0 0

monomer WT 8.6 1462 62.661.5 63.462.0 3.5560.04 1

E22G 11.7 1561 66.161.3 66.361.2 3.5460.05 3

D23G 11.7 1561 64.161.0 69.961.1 3.5160.04 5

E22G/D23G 14.8 1461 66.761.0 66.860.9 3.5460.05 2

K16M/K28M 20.2 17+1 67.360.9 66.761.0 3.5160.04 4

K16M/E22G/D23G/K28M 26.4 1462 64.861.1 67.260.8 3.5560.05 5

tetramer WT 8.6 1561 65.361.2 62.061.0 3.4960.05 5

E22G 11.7 1561 65.461.2 65.261.6 3.4660.04 8

D23G 11.7 1461 63.262.0 69.161.4 3.4860.05 22

Provided are the hydropathy index of WT and mutant Ab42 using the hydropathy scale of Kyte and Doolittle [78], time-averaged values for the number of
transmembrane residues in b conformation per peptide, the area per lipid headgroup in the top and bottom leaflet, the P–P bilayer thickness (each quantity with
standard deviation), and the number of water molecules passing through the POPC bilayer.
{The bilayer values for the peptide-free bilayer are taken from a 100 ns MD simulation of a POPC-only bilayer [49].
doi:10.1371/journal.pone.0078399.t001

Transmembrane Ab Mutants

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e78399



analysis, enabling it to form a stable transmembrane structure.

Furthermore, the substitution of both lysine residues with

methionine raises the hydropathy index of this Ab42 mutant to

20.2, causing it to be stable in a hydrophobic environment.

K16M/E22G/D23G/K28M. The quadruple mutant is also

stable as transmembrane b-sheet. However, compared to the other

Ab42 variants it is more flexible inside the membrane. The

complete removal of charged residues inside the membrane

induces peptide flexibility in the upper leaflet, involving residues

15–19 and 37–38 (see RMSF analysis in Fig. 3B). Because of the

missing constraint from the salt bridge between residues D23 and

K28 an extended loop is formed involving residues G22–A30. The

stability of this mutant as transmembrane b-sheet can thus be

attributed to i) the inherent stability of this sheet structure, and ii)

hydrophobic interactions between the peptide (its hydropathy

index is 26.4) and the membrane core. Furthermore, the structure

of the peptide is not perturbed by charged peptide residues

positioned in the membrane core.

Ab42 Monomer: Effects of Charge Removal on Lipid
Bilayer

Area per lipid. Table 1 summarizes the effects of the Ab42

mutants on lipid bilayer properties. It shows that the insertion of

Ab42 into a POPC bilayer leads to a decrease in the area per lipid

compared to the peptide-free bilayer. This area reduction is largest

for WT Ab42 with area values of 6–7 Å2 below the value for the

pure POPC bilayer. It results from electrostatic attraction and H-

bonds between Ab42 residues and lipid headgroups. Removal of

charged Ab42 residues results in smaller reductions of the area per

lipid with most values being only 2–4 Å2 below the area of the

peptide-free POPC bilayer. Interestingly, for E22G, where peptide

charges were removed in the lower leaflet, not only the area per

lipid in the lower but also in the upper leaflet are larger compared

to WT Ab42. This result shows that the lipid packing in both

leaflets is coupled to each other. For D23G, on the other hand, the

area per lipid is reduced by about 5 Å2 in the upper leaflet and

slightly increased in the lower leaflet compared to the peptide-free

POPC bilayer. This behavior can be explained by the conforma-

tional instability of the D23G mutant inside the bilayer, which

causes the whole peptide to move upward and bend to allow E22

to interact with the upper headgroups.

Bilayer thickness. This D23G–POPC interaction also leads

to a marked reduction of the bilayer thickness around the peptide,

which is for D23G most pronounced compared to the other

mutants (Figs. S8 and S9 in File S1). For the average bilayer

thicknesses we find that they are hardly affected by embedded

Ab42 with thickness changes within 60.05 nm compared to the

peptide-free POPC bilayer (Table 1). However, Fig. S9 in File S1

reveals that the POPC bilayer thickness around Ab42 is decreased

in order to improve the hydrophobic matching between bilayer

and Ab42, whose hydrophobic width is smaller than those of the

lipids (i.e., negative hydrophobic mismatch). The POPC bilayers

have a thickness of about 2.5–3.0 nm in the neighborhood of the

Ab42 peptides, which corresponds to the hydrophobic width of the

latter for b-sheet structures. However, for the quadruple mutant

we observe only minor changes to the bilayer thickness around the

peptide, because the four mutations increase the hydrophobic

width of the b-sheet. In general, the thinner bilayer region close to

Ab42 is compensated by a slight increase in thickness of the bilayer

as the distance from Ab42 increases [49,51,79]. Because of this

compensation effect the average bilayer thicknesses of the Ab42/

POPC systems are nearly identical to the thickness of the peptide-

free bilayer.

Lipid order. An increased bilayer thickness results from

increased lipid chain order. We therefore calculated the order

parameter SCD of the palmitoyl chains separately for lipids within

0.5 nm of Ab42, and for the lipids, which are more than 0.5 nm

away from Ab42. The results of this analysis are shown in Figs. S10

and S11 in File S1. In these figures we also present SCD of the

POPC-only bilayer obtained from a 100 ns MD run of the

peptide-free POPC bilayer [49] for comparison. The lipid order is

generally decreased around the peptide as evidenced by the SCD

values, which are smaller than the one for the peptide-free bilayer,

while the lipid order is marginally increased for the lipids further

away from the peptide. The lipid order reduction around Ab42 is

strongest for E22G, D23G and K16M/K28M, while removal of

all charged residues inside the membrane leads to such a good

integration of the quadruple Ab42 mutant into the hydrophobic

membrane core that the lipid order is almost unaffected by the

peptide. Especially carbon atoms 6–15 of the palmitoyl chains are

Figure 4. Ab42 tetramers in a POPC bilayer. (Left) Final structures
at t = 500 ns. The coloring explanation for the peptides and lipids is
given in Fig. 1. (Right) Time averaged water density within the bilayer.
doi:10.1371/journal.pone.0078399.g004

Transmembrane Ab Mutants
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not disturbed by the presence of this Ab42 variant. This finding is

in agreement with our observation that this particular mutant does

not decrease the bilayer thickness around the peptide.

Water permeation. The lipid disorder around Ab42 allows

water molecules to enter the membrane hydrophobic core in the

vicinity of the peptide. The water density profiles in Fig. 2 give an

estimate for the water penetration into the membrane. The density

profiles show that the headgroup regions of both bilayer leaflets

are fully solvated. In all systems we see water penetration into the

hydrophobic core, which is more prevalent in the top leaflet than

in the bottom leaflet. This cannot be explained by the area per

lipid as this quantity is generally smaller in the top than in the

bottom leaflet. Yet one would expect that a large area per lipid

allows water molecules to enter more easily. Instead, the

interaction of the N-terminal residues 1–16 with the membrane

surface, which disturbs headgroup packing (Fig. 2), facilitates the

entry of water molecules into the membrane.

Lipid disorder is another factor, which could increase water

penetration. The highest degree of water penetration is observed

for D23G, which also shows the largest lipid disorder in the upper

leaflet. Here, the water density has vanished only at z<–1.0 nm,

while for WT Ab42 and the other mutants the water densities are

zero between –1nmv
*

zv
*

+0.5nm. Water permeation is nonethe-

less small for D23G: only 5 water molecules passed through the

membrane within 500 ns (Table 1). In case of the quadruple

mutant we also observed 5 water translocation events, while for

the other Ab42 peptides this number was even smaller with values

between 1 (WT Ab42) and 4. For the peptide-free bilayer we did

not observe any permeation event within 100 ns. We thus

conclude that membrane-insertion of Ab42 monomer leads to a

slight increase of membrane permeability [49], which gets

amplified by lipid disorder resulting from peptide–lipid interac-

tions. However, the example of K16M/E22G/D23G/K28M

shows that other factors, such as the peptide charge distribution on

both sides of the membrane, also affect water permeation through

the membrane, since the lipid order is least impaired by this

peptide.

Ab42 Tetramer: Effect of Charge Removal on
Transmembrane Stability

Our motivation for studying transmembrane b-sheet tetramers

was to test whether they are more stable than the monomeric b-

sheets and may constitute likely membrane-bound Ab structures,

which are able to induce membrane damage. We performed the

simulations for the tetramer only for WT, E22G and D23G Ab42

as these are the biologically relevant Ab42 variants. The final

structures of these 500 ns MD simulation are shown in Fig. 4. The

results for the WT Ab42 tetramer in POPC were discussed in detail

in our previous study [49].

Oligomerization increases transmembrane stability. In

all three cases we observe that, unlike in the monomeric b-sheets,

the N-terminal b-hairpins are stable in the tetramer (see final

snapshots and DSSP plots in Figs. S1, S4 and S5 in File S1). The

b-hairpins interact with each other rather than with the bilayer

surface, causing the N-terminal regions to protrude above the

membrane instead of being adsorbed to the bilayer surface, as we

observed for the b-sheet monomers. In larger Ab assemblies

composed of mobile b-sheets [43,48] the water-exposed b-hairpins

structure might act as a funnel for cations to be inserted into the

membrane [49,80]. The transmembrane tetramers are more stable

than the b-sheet monomers, when the RMSD analysis in Figs. 3A

and 5A are compared. The average RMSD values for the

tetramers are between 0.20 and 0.30 nm, while they increased to

values of 0.35–0.65 nm for the monomers. The increased stability

of the tetramers can be explained by interpeptide interactions

[48,49]. The different stabilities of E22G and D23G in relation to

WT Ab42 tetramers will be now discussed in detail.

E22G. The Arctic mutant E22G is more stable than both WT

and D23G Ab42 tetramers as the RMSD analysis (Fig. 5A) and

secondary structure plot (Fig. S4 in File S1) reveal. The b-sheet

structure in the hydrophobic core is well conserved throughout the

simulation (Fig. 5D). The number of residues in b conformation

per peptide is very similar to the b content of the E22G monomer

and the WT Ab42 tetramer (Table 1). Interestingly, the b content

for the E22G tetramer is lowest between 100 and 200 ns when the

salt bridge D23–K28 in one of the four peptides is formed (Fig. S6

in File S1). That the salt bridge does promote b conformation in

this region was already observed during the last 100 ns of the WT

monomer simulation. In general, the lower turn region involving

residues 23–29 is the most flexible part in the peptides composing

the E22G tetramer. The RMSF plot (Fig. 5B) shows that these

residues fluctuate more than in both WT and D23G tetramer.

This can be explained with the deep insertion of the turn region

into the lower headgroup region, where the peptide structure

becomes disturbed by interactions with the headgroups and water

molecules. The downward motion between 100 and 200 ns is

revealed by the analysis of the peptides center of mass motion

along z (Fig. 5C). Because of interpeptide interactions the b-sheets

inside the membrane do not tilt as was observed for the E22G

monomer.

D23G. The D23G tetramer remains stable until around

350 ns. At that time, the RMSD (Fig. 5A) increases because the

peptides start bending towards the upper membrane surface.

However, this bending is not as strong as in the D23G monomer

as interactions between the peptides counteract the attractive

forces between residue E22 and the upper headgroups. Two of the

peptides of the D23G tetramer move upwards inside the bilayer,

causing the surrounding lipids to move with them. This movement

leads to a marked reduction of the bilayer thickness around the

tetramer. The lipid headgroups of the lower leaflet are pulled

upwards by interactions with with E22 and K28 in the turn region,

leading to membrane disruption (discussed below). As for the

D23G monomer, the absence of the salt bridge between residues

23 and 28 destabilizes the turn region thereby inducing

conformational flexibility. The b content for the D23G tetramer

belongs to the lowest values among the studied systems. While the

time-averaged number of residues in b conformation is 1560 for

the D23G monomer, it declined to 1461 for the tetramer. Thus,

opposite to WT and E22G the oligomerization does not help

stabilizing the b-sheet conformation in the D23G tetramer.

Furthermore, the amount of b fluctuation has increased for the

D23G tetramer. The structural flexibility is also evident in the

RMSF (Fig. 5B), which is for most residues larger for D23

compared to both WT and E22G. Surprisingly, only the turn

region involving residues V24–K28 fluctuates less than in the

E22G tetramer despite the extended loop region in D23G Ab42.

This is attributable to the interaction of D23 in E22G Ab42 with

the lower headgroups exposing the turn regions to the water

phase, which increases its flexibility.

Ab42 Tetramer: Effects on Lipid Bilayer
Area per lipid, bilayer thickness and lipid order. The

effects on the properties of the POPC bilayer resulting from

membrane-inserted WT, E22G and D23G Ab42 tetramers are

very similar to those observed for the corresponding monomers

(Table 1). The WT tetramer has on average the largest effect on

the area per lipid. E22G leads to area reductions of about 4 Å2 per
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lipid in both leaflets, while D23G leaves the area per lipid in the

lower leaflet unaffected but reduces it by about 6 Å2 in the upper

leaflet. The average bilayer thickness is 0.02–0.05 nm smaller

compared to the peptide-free bilayer. This reduction results from

the hydrophobic mismatch between Ab42 and the membrane core,

which compresses the bilayer near the peptides (Fig. S9 in File S1).

This in turn is accompanied by a reduction in lipid tail order,

which can be seen from the analysis of SCD of the lipids within

0.5 nm of the peptides (Fig. S12 in File S1). WT and D23G

tetramers have a larger disordering effect on nearby lipids than the

E22G tetramer. The latter observation differs from the finding

that E22G monomer disorders neighboring lipids. None of the

tetramers increased (or only marginally in the case of WT) the lipid

order in the palmitoyl chains .0.5 nm away from the peptides,

which explains why the average bilayer thickness is slightly

reduced, and not increased as for the Ab42 monomers.

Water permeation. The water density profiles for the Ab42

tetramers (Fig. 4) reveal an almost continuous water channel in

case of D23G. Only at z<0 the water density has almost declined

to zero. The increased membrane permeability for D23G tetramer

is also demonstrated by the translocation of 22 water molecules

during the simulation. This number is substantially larger than the

corresponding numbers for WT and E22G tetramer (5 and 8,

respectively) and for the monomers (#5 water translocations). The

increased water flow induced by the D23G tetramer is due to the

greater disruption of membrane integrity especially in the lower

leaflet. The water density profiles for WT and E22G tetramers also

reveal an increase in the average probability of finding water

inside the membrane compared to that of the monomers. Only for

–0.5 nmv
*

zv
*

+0.5 nm this probability is zero. Noteworthy, while

the WT tetramer enables more water molecules to reside inside the

membrane compared to the E22G tetramer, it supports fewer

water permeation events. This again shows that membrane

permeability in the vicinity of membrane-inserted amyloid peptide

is a complex process, which is governed by a multitude of factors,

such as lipid type, Ab42 conformation (as it influences the number

and strength of interactions between Ab42 and permeating water

molecules), and Ab42 oligomerization [49]. As in our previous

study [49], we observe that Ab42 oligomerization is an important

event, which causes an increase in membrane permeability. Here,

we have shown that the removal of peptide charges inside the

membrane further increases the amount of water inside the

membrane and the number of permeation events.

Conclusion
Based on the evidence that the cytotoxicity in AD originates

from interactions of Ab with neuronal cell membranes disturbing

the integrity of the membrane [15–17], we performed mutational

studies to investigate the transmembrane stability of various Ab42

mutants in a b-sheet conformation [48]. Our 500 ns MD

simulations of Ab1–42 mutants in a POPC bilayer reveal a similar

or increased stability compared to WT Ab42 for all mutants except

D23G. For the monomeric b-sheet we observed the highest

stability for the Arctic mutant E22G and the double mutant

Figure 5. Structural analysis of Ab42 tetramers in a POPC bilayer. (A) Backbone root mean square deviation, (B) backbone root mean square
fluctuation, (C) center of mass motion of residues 25 to 30, (D) number of transmembrane residues in b conformation for the b-sheet tetramer of wild
type and mutant Ab42 : black, WT; magenta, E22G; ochre, D23G.
doi:10.1371/journal.pone.0078399.g005
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K16M/K28M. The removal of positive charges by mutating K16

and K28 to methionine increases the hydropathy index of this

mutant Ab42 by a factor of 2.34, which gives rise to a stable

transmembrane b-sheet. The stability of the Arctic mutant E22G

can be attributed to the removal of the negative E22 charge in

combination with D23 and K28 interacting with the headgroups

of the lower leaflet, leading to charge neutrality of the peptide

inside the membrane. While the ‘Arctic-type’ D23G mutant has

the same hydropathy index as E22G Ab42, it is not stable as

transmembrane b-sheet, since the position of E22 inside the

membrane causes the peptide to bend towards the upper

membrane surface. The less toxic WT Ab42, on the other hand,

looses some of its b structure during the MD simulation due to its

overall negative charge inside the membrane. For APP it was

experimentally shown that the Arctic mutation alters the

transmembrane localization compared to WT APP, leading to

reduced levels of Arctic APP at the cell surface making it less

available for non-amyloidogenic cleavage. As a result, the extent

and subcellular location of Ab formation is changed, as revealed

by increased Ab levels, especially at intracellular locations [81].

Our simulation results reveal that also for Ab the Arctic mutation

increases its propensity to remain buried inside the lipid bilayer.

In our previous study [49] we demonstrated that a single

transmembrane Ab42 peptide is not sufficient to explain the

experimentally observed membrane damage resulting from

membrane-bound Ab, which causes cellular ionic imbalance

[18–20]. This finding allowed us to conclude that membrane

permeabilization by membrane-bound Ab as commonly observed

experimentally [15–17] must be due to transmembrane Ab
oligomers and not monomers as some studies conjectured

[82,83]. This conclusion is supported by the results of the current

study. Based on size and biochemical considerations it is also

evident that more than single Ab peptides enter the membranes

[20,36,84]. Therefore, the water translocation arising from a

monomeric transmembrane Ab b-sheet must not be overempha-

sized, yet its structural stability is a determinant for the stability of

the corresponding transmembrane oligomer. For instance, the

E22G Ab42 mutant is very stable both as monomeric and

tetrameric transmembrane b-sheet, while D23G is least stable in

either case. On the other hand, transmembrane D23G generates

the largest amount of membrane permeation compared to the

other monomers and tetramers.

This computational finding can be compared to experimental

observations. In situ AFM experiments with Arctic Ab40 exposed

to total brain lipid extract (TBLE) bilayers showed small

membrane-bound oligomeric aggregates with large areas of bilayer

disruption [36]. These areas were seen to be populated with stable

oligomers composed of 10–15 peptides per oligomer, rather than

with fibrillar aggregates as observed for WT Ab40. The same kind

of experiments with Iowa mutant (D23N) Ab40 revealed the

formation of stable oligomeric aggregates on the TBLE surface

within 2–3 hours [36]. However, after longer exposure (10–12

hours), the bilayer structural integrity was highly disrupted in small

areas arising from D23N Ab40 oligomers inside the bilayer [36].

Our molecular simulations revealed that E22G Ab has a higher

propensity to stay inside a membrane compared to D23G, while

D23G has a greater tendency to bind to the surface. However,

when D23G Ab is inside the membrane, it has a great capacity to

disrupt membrane integrity. Assuming the mutation location D23

to be the crucial factor, the experimentally observed behavioral

differences between membrane-bound E22G and D23N could be

explained based on our simulation results. Though, given the

physicochemical differences between Gly and Asn this conclusion

still needs to be proven by further simulations. To our knowledge,

no experiment on D23G Ab in the presence of a lipid membrane

has been carried out yet. NMR studies have revealed a large

destabilizing effect of the D23G mutation on the turn region

involving residues 21–30 [69], which is in agreement to our

computational results of transmembrane D23G Ab42.

Experimental studies of Ab mutant peptides revealed that the

aggregation propensity to form (proto)fibrils is not sufficient to

explain the observed in vivo toxicity of the Ab42 peptides [85,86].

Our results on the interactions between Ab42 and a POPC bilayer,

and the effect of Ab42 mutations on bilayer properties provide

further insight into the likely toxicity mechanism caused by

membrane-inserted Ab42 oligomers. We conclude that the higher

transmembrane stability of E22G and its increased membrane

disturbing effect compared to WT Ab are possible reasons for the

increased cytotoxicity of Arctic Ab. While our current simulations

are still rather short investigating only small oligomers–-simula-

tions of larger than tetrameric oligomers on the millisecond time

scale would be needed, which are yet prohibitively long with

respect to computing time–-we are able to state that Ab42

mutations have an effect on transmembrane stability and

membrane integrity. This should be motivation enough for

experimentalists and simulation scientists to perform further

studies on these systems.

Methods

Starting Structures
The initial Ab42 structure is a b-sheet, which was obtained from

a study of the Ab42 monomer and small oligomers using a global

optimization approach and an implicit membrane model [48]. In

this structure, the more hydrophobic C-terminal region starting

from residue 17 is fully inserted into the hydrophobic membrane

core, forming an antiparallel b-sheet with two turn regions. The

first turn ranges from residue 23 to 29, and the second one

involves residues 37 and 38. In solution, the G37–G38 hinge

structure has been identified as characteristic of Ab42 distinguish-

ing it from its C-terminal truncated relative Ab40 [87]. The first

turn is prominent in many Ab structures identified from

experiment [88–91] and simulation [92–94]. While each of these

models predict a distinct turn structure, they share the key

structural features of a salt bridge between Asp23–Lys28 and the

intramolecular hydrophobic cluster between Leu17/Phe19 and

Ile32/Leu34. We decided to use our b-hairpin model as starting

structure as it also provides a structural model for the more

hydrophilic residues 1–16, which form a b-hairpin outside the

membrane [48]. The N- and C-terminals were capped to nullify

the effect of terminal residues in peptide-lipid interactions. The

coordinates of the monomeric and tetrameric starting structures

are available from the Cambridge Cluster Database [95].

Structures obtained in the current work are available from the

authors upon request.

Molecular Dynamics Simulations
All MD simulations were performed with the GROMACS 4.0

package [96]. The Ab42 peptide was described using the

GROMOS96 53A6 force field [74], and the POPC lipids were

modeled with modified Berger force field parameters for use with

the GROMOS96 53A6 force field [77]. Initial coordinates of 128

lipids for POPC bilayer equilibrated with water for 40 ns were

obtained from Kukol’s work on lipid models [77]. The Ab42

peptide was inserted into the pre-equilibrated lipid membrane

using the INFLATEGRO script [97]. Once Ab42 was inserted into

the lipid membrane, the structures were solvated with SPC water

molecules, Na+ counterions were added to balance the peptide
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charge, and 0.1 M NaCl salt added to bring the system to the a

physiological salt concentration. The simulations were carried out

in a 6.566.569.5 nm3 box. An initial equilibration under

isothermal-isochoric conditions was performed for 100 ps during

which the protein heavy atoms and phosphorous atoms of the lipid

headgroups were restrained with a force constant of 1000 kJ

mol21 nm22. Here, a weak coupling thermostat with stochastic

velocity reassignment [98] using a coupling constant of 0.1 ps was

used to regulate the temperature of the peptide, lipids, and

solvent/ions separately at 298 K. The systems were then

equilibrated under isothermal-isobaric (NPT) conditions for

30 ns. For the NPT ensemble the Nose-Hoover thermostat

[99,100] was used to regulate the temperature along with

semiisotropic Parrinello-Rahman pressure coupling [101]. The

bilayer normal z-direction and xy-plane were coupled separately

with a time constant of 5.0 ps maintaining a constant pressure of 1

bar independently in all directions. An isothermal compressibility

of 4.56105 bar21 was applied in all box dimensions. Long-range

electrostatics were calculated using the Particle Mesh-Ewald

method [102,103] in connection with periodic boundary condi-

tions. Van der Waals and Coulombic interaction cutoffs were set

to 1.2 nm and the LINCS algorithm [104] was used to constrain

all bond lengths. Following equilibration, production MD runs

were performed for 500 ns for each system. Here the parameter

settings were similar to the NPT equilibration step, except that all

restraints were removed and the time constant for pressure

coupling was set to 2.0 ps. The time step for integration was 2 fs

with coordinates and velocities saved every 20 ps for analysis.

Analysis
The structural stability (RMSD) and dynamic properties

(RMSF) of Ab42 are analyzed for backbone atoms using

GROMACS tools. To characterize the effects of the peptide on

the orientational mobility of the lipid molecules we calculated the

lipid tail order parameter SCD defined as

SCD ~ S
3 cos2 h{1

2
T, ð1Þ

where h is the angle between the C–H bond vector (in the

simulation) or the C–D bond vector (in the experiment) and the

bilayer normal. The angular brackets indicate averaging over

lipids and over time. The center of mass motion (COM) is

calculated for the turn region from residue 25 to 30 of Ab42 inside

the membrane hydrophobic core. The secondary structure of Ab42

was analyzed using the DSSP method [105] and the time-

averaged values for the number of transmembrane residues (i.e.,

between L17 and A42) in b conformation per peptide computed.

The salt bridge between D23 and K28 is considered to be formed

when the distance between the anionic carboxylate of D23 and the

cationic ammonium from K28 is ,4.5 Å. We used the grid-based

membrane analysis tool GRIDMAT-MD to quantify the extent to

which the peptide affects the lipid headgroup arrangement and

bilayer thickness [106]. For the bilayer thickness we report

phosphate-to-phosphate (P–P) distances. To measure the depth of

water molecule penetration into the hydrophobic core, water

density profiles projected onto the z-direction were calculated,

while water permeation across the membrane was quantified using

VMD [107]. Time-averaged values were calculated for the last

400 ns of the 500 ns MD simulations.

Supporting Information

File S1 Contains: Figure S1 Secondary structure analysis for

the 500 ns MD simulations of WT Ab42 as (a) b-sheet monomer

and (b) b-sheet tetramer in a POPC bilayer. Figure S2 Secondary

structure analysis for the 500 ns MD simulations of mutant Ab42

monomer as (a) E22G, (b) D23G in a POPC bilayer. Figure S3
Secondary structure analysis for the 500 ns MD simulations of

mutant Ab42 monomer as (a) E22G/D23G, (b) K16M/K28M, (c)

K16M/E22G/D23G/K28M in a POPC bilayer. Figure S4
Secondary structure analysis for the 500 ns MD simulation of

E22G Ab42 tetramer in a POPC bilayer. Figure S5 Secondary

structure analysis for the 500 ns MD simulation of D23G Ab42

tetramer in a POPC bilayer. Figure S6 Minimum distance

between the anionic carboxylate of D23 and the cationic

ammonium from K28 in the WT monomer and the E22G

tetramer. Figure S7 Peptide-lipid interactions for the E22G

monomer decomposed into Coulomb and Lennard-Jones interac-

tions. Figure S8 Bilayer phosphate-to-phosphate thickness,

averaged over the last 400 ns of the 500 ns MD simulations of

WT Ab42 as (a) b-sheet monomer and (b) b-sheet tetramer in a

POPC bilayer. Figure S9 Bilayer phosphate-to-phosphate

thickness, averaged over last 400 ns of the 500 ns MD simulations

of Ab mutants (monomers and tetramers). Figure S10 Time-

averaged order parameter SCD of the palmitoyl chain of the POPC

lipids. Results are shown for WT, E22G and D23G Ab42

monomer. Figure S11 Time-averaged order parameter SCD of

the palmitoyl chain of the POPC lipids. Results are shown for WT,

E22G/D23G, K16M/K28M and K16M/E22G/D23G/K28M

Ab42 monomer. Figure S12 Time-averaged order parameter SCD

of the palmitoyl chain of the POPC lipids. Results are shown for

WT, E22G and D23G Ab42 tetramer.
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