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Abstract

During cell devision, maintaining the epigenetic information encoded in histone modification

patterns is crucial for survival and identity of cells. The faithful inheritance of the histone marks

from the parental to the daughter strands is a puzzle, given that each strand gets only half of

the parental nucleosomes. Mapping DNA replication and reconstruction of modifications to

equivalent problems in communication of information, we ask how well enzymes can recover

the parental modifications, if they were ideal computing machines. Studying a parameter

regime where realistic enzymes can function, our analysis predicts that enzymes may imple-

ment a critical threshold filling algorithm which fills unmodified regions of length at most k. This

algorithm, motivated from communication theory, is derived from the maximum à posteriori

probability (MAP) decoding which identifies the most probable modification sequence based

on available observations. Simulations using our method produce modification patterns simi-

lar to what has been observed in recent experiments. We also show that our results can be

naturally extended to explain inheritance of spatially distinct antagonistic modifications.

Author summary

Chromatin is essentially the DNA that is folded and packaged with the help of proteins.

While the nucleotide sequence in the DNA codes genetic information, the packaging of

the DNA into chromatin encodes extra layer of information. This epigenetic code regu-

lates reading of the genetic code and provides identity to cells—whether the cell is a skin

cell or a brain cell, for example. In this work we examine a long standing puzzle, that is,

how the epigenetic code in the form of histone modification patterns may get inherited,

when a cell divides. Using theoretical arguments, we present an algorithm that enzymes

could be executing so that the epigenetic code can be inherited with minimal error, soon

after DNA replication.
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Introduction

Why do our bone cells behave very differently from our muscle cells or cells of other types

even though they all have the same genetic code? To explain the emergence of such diverse cell

types, one would need to note that, beyond the genetic code, there are multiple layers of infor-

mation encoded by the wrapping and folding of the DNA into chromatin with the help of

many proteins [1, 2]. Most of the DNA is wrapped around octamers of histone proteins, mak-

ing the chromatin, essentially, like a string of beads made of nucleosomes (DNA+histones) [3–

6]. Each nucleosome carries chemical modifications, like acetylations and methylations [7],

forming a pattern of histone marks along the chromatin polymer contour [2, 8–11] (see Fig 1A

top panel). This pattern encodes a crucial layer of information regulating accessibility, tran-

scription, replication and other cellular processes [11]. Even though the entire histone modifi-

cation code is not deciphered yet, we understand it in parts. For example, H3K27me3/

H3K9me3 represses reading of the local DNA region where the modification is present,

H3K9ac/H3K4me3 encodes for local gene activation and so on [7, 12, 13]. The activation and

repression of genes collectively decide the gene expression pattern and hence determine the

function and fate of a cell [10, 14–16].

While preparing to divide, cells copy their genetic code via the DNA replication process.

For DNA to be copied, the chromatin has to be unfolded and histone proteins need to be disas-

sembled [17, 18]. This would disrupt the pattern of histone modifications. Recent studies have

shown that the (H3 − H4)2 tetramer from the parent remains intact [19] and randomly gets

deposited onto either of the newly synthesized DNA strands [20–22]. That is, daughter strands

will have only some (� 50%) of its nucleosomes from the parent; the rest need to be assembled

from the pool of new histone proteins made afresh [23, 24]. Since the new nucleosomes will

not carry the histone marks present on the parental chromatin, half the parental marks are

missing in each daughter chromatin [25]. Since the histone modification patterns can decide

the state (repressed/active) of all genes and the identity of the cell itself, it is crucial that the

newly made chromatin re-establishes the pattern immediately after replication [26]. Recent

experiments show that many of the histone modification patterns—patterns in the repressed

gene regions, in particular—are “inherited” from the parental chromatin [27–31]. We know

from literature that the heterochromatin region is inherited faithfully during both mitosis and

meiosis [27, 32, 33]. It is known that there are specific enzymes to read and write histone

marks [31, 33–35]. While molecular details of some of these enzymes are known [36–38], pre-

cisely what strategies they use to re-establish the histone modification pattern after replication

are not fully understood.

Previous theoretical studies have investigated average properties of modifications and

whether long-range interactions are necessary or short-range interactions would suffice [39,

40]. Dodd et al [40] present a stochastic model and investigate the bistability similar to what is

observed in silent mating-type region in S. pombe. This model has been further extended to

discuss the likelihood of bivalency and bistability in poised chromatin [41]. Additionally, there

have also been various models exploring the maintenance of chromatin state in specific types

of cells [42–44]. Another set of models investigated establishment of stable modification pat-

terns near a nucleation site [45, 46]. The antagonism between certain modification pairs, lead-

ing to domains in the chromatin, have also been quantitatively explored [47]. Several other

studies have discussed the possible nature of the spread of the histone modifications and main-

tenance of the chromatin states [48–52]. However, all aspects of the experimentally observed

[28] high-fidelity re-establishment of the modification patterns post replication along the

genome (spatial pattern) is not explained by the existing models.
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Fig 1. Schematic description of the problem (A) Row 1 from top: chromatin as a string of nucleosomes with and

without the histone modification (star) of our interest. This can be mapped to a string of binary numbers indicating

the presence (1) or absence (0) of the modification (row 2), giving us M. Row 3: one typical realization of a daughter

chromatin D produced from M above, via a process mimicking DNA replication, where only a fraction of the

modifications (1s) will end up in the daughter chromatin, stochastically; the rest do not have the modification of

interest (0) [25]. Post replication, certain enzymes will insert modifications correcting D to a mother-like sequence M̂
(row 4). Since these are stochastic processes, we expect some errors. (B) The mother sequence (M) is modeled as a first

order Markov chain having sequence of 0s and 1s. α and β are probabilities of finding a 1 followed by a 1, and a 0

followed by a 0, respectively. 1 − α and 1 − β are probabilities of finding a 1 followed by a 0 (note arrowheads), and a 0

followed by a 1, respectively. (C) The daughter sequence D is obtained by a mother sequence M getting logically

ANDed with an independent and identically distributed (IID) binary sequence Z (noise). A mother-like sequence M̂ is

reconstructed by passing D through a decoder. The plausible ways by which enzymes could act as decoders is the

subject of this study.

https://doi.org/10.1371/journal.pcbi.1009861.g001

PLOS COMPUTATIONAL BIOLOGY Model for epigenetic inheritance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009861 February 17, 2022 3 / 22

https://doi.org/10.1371/journal.pcbi.1009861.g001
https://doi.org/10.1371/journal.pcbi.1009861


In the past, information theory has been applied to biological systems to study several

aspects of gene regulation and signalling [53–55]. The problem of loss of information in the

modification pattern during replication and its retrieval within the daughter chromatin is very

similar to data loss and error correction in telecommunication. In such systems, a transmitted

signal gets exposed to noise and consequently becomes, error-prone at the receiving end. The

decoder at the receiver detects and corrects these errors using techniques from information

and communication theory [56, 57]. This viewpoint immediately poses the following ques-

tions: Can we use known decoding algorithms from communication theory to analyze chro-

matin modification loss and retrieval? How well can the best known algorithms correct the

missing modifications and re-establish the modification patterns? What is the best possible

correction strategy enzymes could use if they were ideal computing machines? Are these algo-

rithms compatible with the biological processes that realistic cellular enzymes can conceivably

do? In this paper, we address these questions using ideas from information theory. We con-

sider one of the daughter chromatins to be a noise-corrupted signal created at the replication

fork, while the enzymes and other molecular agents help to correct this error using mathemati-

cal techniques. In this model, the inheritance of the mother’s pattern is approached using

Bayesian decoding techniques. We show that our model can reconstruct histone modification

patterns present in publicly available experimental data [28], suggesting that the model is

relevant.

Model and methods

Consider a region on a mother chromatin having N nucleosomes. We are interested in study-

ing the inheritance of one histone modification at a time. Since many of the repressive marks

are known to be inherited accurately [28] after replication, we will consider one such repres-

sive mark (e.g., H3K27me3) and its pattern along a chromatin. This pattern can be represented

by a vector M = (m1, m2, . . . mN), where mi can take values 1 or 0 indicating the presence or

absence of the modification on the ith nucleosome (see Fig 1A).

For brevity, we use the following notations:

• mj
i represents the sequence of modification values (mi, mi+1, . . ., mj) between location i and j

with j> i; Thus, M ¼ mN
1

represents the entire mother chromatin modification sequence.

• a region with k consecutive modifications present (ones) or absent (zeros) will be denoted as

1k or (0k), respectively. Extending this, the sequence (1, 0, . . ., 0, 1) representing an island of

k consecutive zeros between two ones will be denoted as (1, 0k, 1).

Models with nearest neighbor interactions (Markov model of order 1) are commonly used

to represent the genetic/epigenetic sequences and other biophysical phenomena like protein-

binding [58]. For instance, Zhang et al [39] have used a nearest neighbor interaction model to

study epigenetic memory. The modeling of experimental data by Hodges and Crabtree [45]

also assumes that each nucleosome interacts with only its nearest neighbour and that the mod-

ification is passed on to the nearest neighbour with a certain probability. Poepsel et al [59]

show that histone methyl transferase protein PRC2 simultaneously engages with two nucleo-

somes—one unmodified nucleosome and one H3K27me3-containing nucleosome—suggest-

ing a modification spreading mechanism among neighbouring nucleosomes. Many of the

existing models have the underlying assumption of nearest neighbor interactions (Markov

model of order 1). In our work, we make a similar assumption: Since modification on a nucle-

osome is very likely related to its immediate neighbors, we model the pattern M along the

mother chromatin as a binary-valued random walk, having neighbourhood interactions corre-

sponding to a first order homogeneous Markov chain. More specifically, given the
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modifications mi−1 and mi+1, the modification mi is assumed to be independent of all other

modification values. Equivalently, the conditional probability law is

Pðmijm1; . . . ;mi� 1Þ ¼ Pðmijmi� 1Þ ; i � 2; ð1Þ

where m1 is the modification on the first nucleosome of the region of our interest. This is also

similar to the 1-dimensional Ising model where the interaction energy of the ith site is coupled

only to the immediate neighboring sites [60, 61]. The state-space evolution of the Markov

chain M is as follows: given mi = 1, let α and 1 − α be the probabilities for obtaining mi+1 = 1

and mi+1 = 0 respectively. Similarly, if mi = 0, let β and 1 − β be the probabilities for having

mi+1 = 0 and mi+1 = 1 respectively. The sequence M can be seen as a random walk on the state

space shown in Fig 1B. The parameters α and β are functions of the mean contiguous length of

the modified and unmodified regions respectively and can be computed from the experimental

data. For example, when α and β values are close to 1, the pattern would often contain long

runs of either 1s (presence of modification) or 0s (absence of modification). See S1 and S2

Text.

From the mother chromatin M, the generation of a daughter chromatin having histone

modification sequence D ¼ dN
1

is modeled as follows. During replication, with probability 1

2
,

each nucleosome on a daughter chromatin is either directly inherited from its parental coun-

terpart (i.e. di = mi) or newly deposited (i.e. di = 0) from a pool of fresh histones assembled de

novo [25]. We consider both the histones in the (H3 −H4)2 tetramer to be symmetrically mod-

ified in our model based, on recent evidence that a large proportion of the histones are sym-

metrically modified [19, 62]. This process is equivalent to doing a logical AND operation of

the mother sequence M with an independent binary vector Z (noise), which is generated by

independent tosses of a fair coin. Thus, di = mi � zi, 1� i� N (see Fig 1C), where Z = (z1, z2, z3,

. . ., zN) has Independent and Identically Distributed (IID) entries. This biological process

leads to a memoryless model with the conditional probability

PðdN
1
jmN

1
Þ ¼

YN

i¼1

PðdijmiÞ: ð2Þ

Owing to the independent and random nature of the placement of the parental nucleosomes

along the newly formed daughter chromatin, the above relation is justified. In biology, the

question is, given a daughter sequence dN
1

post replication, how can a cell reconstruct a

mother-like sequence M̂ ¼ m̂N
1

? In other words, is it possible to build a decoder that would

reconstruct a M̂ from D, as depicted in Fig 1C? Ideally, a cell would want to choose a binary

sequence M̂ having the minimum deviation from M. A simple way to quantify this deviation is

to compute the fraction of errors in the reconstructed sequence as:

DðM; M̂Þ ¼
1

N

XN

i¼1

ðmi � m̂iÞ
2
: ð3Þ

Since we are comparing bitwise, this deviation metric is effectively the bit error rate (BER)

when N becomes large [63]. In communication, BER is the proportion of bits that are in error

among the total transmitted/received bits. In the present context, BER is essentially the frac-

tion of nucleosomes in a daughter sequence that differ in their histone mark from the parental

sequence. Thus the chosen M̂ should minimize the BER with respect to the actual sequence M,

while obeying the transition law in Eq (1). This is similar to data communication through an

erroneous channel. It is well known that Bayesian estimation schemes minimize the average

detection error probability at the receiver. In particular, a decoder choosing the input sequence
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having the Maximum À posteriori Probability (MAP) is optimal in minimizing the message

error probability in communication [57, 63] (see S1 Text). We call this the Sequence MAP

(SMAP) decoder, which identifies the most probable sequence M̂ ¼ ðm̂1; . . . ; m̂NÞ based on

the observations dN
1

as

ðm̂1; . . . ; m̂NÞ ¼ argmax
m1 ;...;mN

PðmN
1
jdN

1
Þ: ð4Þ

The above equation essentially says that, given a daughter sequence, the sequence that maxi-

mizes the conditional probability should be declared as the reconstructed mother-like

sequence. SMAP decoding is known to have very good BER performance and good analytical

tractability in many contexts [63]. Though SMAP decoding is not directly minimizing BER, it

nevertheless is known to have good BER performance as well.

Implementation of SMAP algorithm: To implement the SMAP algorithm, one has to

maximize the conditional probability PðMjDÞ over possible sequences of M, based on the

given daughter sequence observations D ¼ dn
1
. Applying Bayes’ rule [64], along with Eqs (1)

and (2) (see S1 Text) one gets

PðMjDÞ ¼
1

PðDÞ
YN

i¼1

Pðmijmi� 1ÞPðdijmiÞ; ð5Þ

where we took m0 = ; (empty set) for notational convenience. Since PðDÞ does not play a role

in the maximization over M, it can be ignored for our purposes. The equation says that the

reconstruction process of the mother-like sequence needs to account for two facts: the modifi-

cation status of the immediate neighbours (Pðmijmi� 1Þ) and the information embedded in the

replication process (PðdijmiÞ). Knowing Eq (5), ideal computing machines can now imple-

ment the SMAP algorithm using the idea of trellis decoding [56], which is closely related to

the well known Viterbi Algorithm in coding theory [63]. While the memory and computa-

tional power requirement for trellis decoding is high in general, we find that decoding proce-

dure for our model can be broken down to smaller sub-sequences, each corresponding to a

different run of zeros in D. In particular, SMAP decoding can be applied separately on sub-

sequences of the form (1, 0k, 1), which has k consecutive zeros in between two ones. Mathe-

matically, we can show that SMAP decoding will choose a sequence having m̂j
i according to

m̂i; . . . ; m̂j ¼ argmax Pðmi; . . . ;mjjdi ¼ 1; dj� 1

iþ1; dj ¼ 1Þ; here i and j be two positions (with

j> i) where the daughter sequence has ones (see S1 and S2 Text. Our analysis suggests that to

decide on a bit at position l where the daughter has inherited a zero, we need to only consider

the smallest daughter segment containing the position l, and flanked by ones at both ends.

Only daughter segments with at least one intermediate zero are to be considered; otherwise

there is nothing to decode. Without loss of generality, we will take D = (1, 0k, 1) for the rest of

the exposition, corresponding to a run of k zeros, and perform trellis decoding on this

sequence.

Trellis Decoding: Trellis decoding [56] is a technique that can identify the most probable

mother-like histone modification sequence, according to the theory described above. In this

study, a sequence of states of a Markov chain (here, histone modification sequence) is called a

path or a trajectory. Given the states at the start and end of a possible path, a trellis diagram

[56] can be used to find the joint probability of each path with the given observation D. Since

D has the form (1, 0k, 1), the start and end states of the trellis are ones. Fig 2 demonstrates the

trellis diagram for a run of 5 zeros (k = 5). Starting from the initial state 1 (left bottom in Fig

2), the trellis diagram assigns a conditional probability (branch metric) to each subsequent

transition (arrow), based on the transition probability law and observed daughter state. For
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transitions from state at i − 1 to i, the branch metric is Pðmi; dijmi� 1Þ, which can be evaluated

as Pðmijmi� 1ÞPðdijmiÞ, where di = 0 for 2� i� N − 1. While the sequence D is easily seen to

be generated by a hidden Markov Model (HMM), the branch probability metrics are explicitly

given inside the box of Fig 2 (also see S1 Text). Notice that we have to find Pðmi; di ¼ 0jmi� 1Þ

for (mi−1, mi) 2 {(0, 0), (0, 1), (1, 0), (1, 1)}, and Pðmi ¼ 1; di ¼ 1jmi� 1Þ for mi−1 2 {0, 1} for the

last stage (see Fig 2). The computation of the branch and path metrics and the choice of the

path with the largest path metric is performed using the Viterbi Algorithm in communication

theory [56].

Notice that each possible mother sequence can be identified as a path in the trellis, with the

labels identifying the branch metrics. Using Eq (5), the product of corresponding branch met-

rics will yield the path metric of each possible sequence, and then the path maximizing the

SMAP metric can be chosen.

Results

In this section, we will be using the ideas developed in the Model and Methods to answer how

one can reconstruct a mother-like modification sequence M̂, given the daughter chromatin

sequence D. We will discuss how well algorithms like the Sequence MAP (SMAP) decoding

will compute M̂, and whether realistic enzymes can implement this in practice.

Ideal enzymes implementing SMAP decoding

From recent experiments, it has been established that a plethora of enzymes and histone chap-

erones (including FACT, MCM2) are involved in the inheritance of the histone modifications

post replication [20, 21, 31]. Yet, how the enzyme machinery uses the parental information

and tries to reproduce the exact pattern of the histone modification, post-replication, is not

clear. In this work, we discuss how well can the communication theory-inspired algorithms

reconstruct a mother-like sequence. To test this, one can imagine some ideal enzymes —com-

puting machines— constructed to implement the SMAP algorithm in Eq (4); they will achieve

this by maximizing the conditional probability PðMjDÞ as mentioned above.

To do this, on a computer, we generated several mother sequences for different values of α
and β parameters in the Markov model. The details of how the mother sequences were gener-

ated are provided in S2 Text. We then generated several daughter sequences, for each of the

mother sequences, by flipping 1s to 0s randomly with probability 0.5; that is, di = mi � zi, with zi
representing an element in an IID binary sequence generated by an unbiased coin. Each of the

Fig 2. The trellis diagram used for illustrating how the MAP algorithm chooses the path of maximum a posteriori

probability given a daughter sequence (1, 05, 1). From each Markov state (0 or 1), there are two possible arrows to

transition to the next state. The values Pðmi; dijmi� 1Þ given in the box represent probabilities associated with each

arrow. Starting from state 1 at the left bottom, for each possible path moving along the arrows, one can compute the

path probabilities (path metrics) using Eq (5). We finally choose the path with the largest path metric. This is based on

the Viterbi algorithm in communication theory.

https://doi.org/10.1371/journal.pcbi.1009861.g002
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daughter sequences was corrected with the trellis-based SMAP decoding to generate the corre-

sponding estimate M̂; the error DðM; M̂Þ was computed (Eq (3)). The average of DðM; M̂Þ ¼
�D (averaged over many realizations) for fixed pairs of α and β, is presented as a heatmap in Fig

3. The mean deviation (�D) between mother and corrected mother-like daughter is low for very

high values of α and β—a region dominated by long islands of ones (modified nucleosomes)

separated by long islands of zeros (unmodified nucleosomes). There are other regions too

where �D is relatively small—regions that appear more red in Fig 3—like regions with high β
and low α and vice-versa. (also see S2 Text, S1 Fig). Overall, this result shows how well an ideal

computing machine that employs state of the art information theory inspired algorithms can

recover the original mother sequence. The remaining question is, can a real enzyme do as

good as this computing algorithm?

Threshold-k model: Enzymes filling unmodified islands of size at most k
maintain chromatin fidelity

Biological enzymes being equipped to do complex SMAP computations like trellis decoding

by themselves is arguably hypothetical. Nevertheless, we show that in certain biologically rele-

vant parameter regimes, the decoding rule can be simple enough for enzymes to potentially

execute. Among the known histone modification patterns, it is common to have regions

densely filled by a certain modification (e.g., H3K27me3), and other regions where the modifi-

cation is totally absent. Since α defines the probability of finding a modified nucleosome

followed by another modified nucleosome, and β defines the probability of finding an unmodi-

fied nucleosome followed by another unmodified nucleosome, regions densely filled with a

Fig 3. The average deviation between the original mother and the mother-like corrected daughter sequences (�D ¼

ensemble averaged DðM; M̂Þ) is plotted for different α and β values as a heatmap (see color bar on the side). The

error is averaged over the error of 300 mother sequences and 200 daughter sequences corresponding to each mother

sequence—that is, 60000 DðM; M̂Þ values. α represents the conditional probability of a nucleosome staying in 1

(modified state): P(mi = 1|mi−1 = 1). β represents the conditional probability of a nucleosome staying in 0 (unmodified

state): P(mi = 0|mi−1 = 0).

https://doi.org/10.1371/journal.pcbi.1009861.g003
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given modification would correspond to higher value of α; similarly, regions where the modifi-

cation is totally absent would correspond to higher values of β in our Markov model (see Fig

1B; also see S2 Text and S2 Fig). Below we show that in this regime, the SMAP algorithm sim-

plifies to tasks that the enzymes may easily carry out.

Consider an island of k unmodified nucleosomes in the daughter chromatin, giving the pat-

tern (1, 0k, 1). From the trellis diagram (Fig 2), it can be shown that, if

a

2

� �kþ1
> 1

2
ð1 � aÞb

k� 1
ð1 � bÞ, the probability of having the all-one path (1, 1k, 1) at the mother

is greater than that of (1, 0k, 1). In other words, when the function gkða; bÞ ¼ a

2

� �kþ1
� 1

2
ð1 �

aÞb
k� 1
ð1 � bÞ is positive, an all-ones path is preferred over a run of k zeros by SMAP decoding.

We can characterize the values of α and β for which the above condition holds true. The

expression gk(α, β) = 0 is easy to solve if we take k to be a real value, this yields the root k� as:

k� ¼
log
ð1 � aÞð1 � bÞ

ða2=2Þ

� �

logða=2bÞ
þ 1:

ð6Þ

Notice that the solution for k� is unique when 0< α< 1 and 0< β< 1. Since

g1ða; bÞ ¼
1

4
a2 � 1

2
ð1 � aÞð1 � bÞ, the condition g1(α, β)>0 implies that the sequence (1, 1, 1)

is preferred over (1, 0, 1). In addition, this condition will also imply that the numerator of Eq

(6) is positive. The uniqueness of k� will now have the following implications:

On a unit square region of parameters (α, β) 2 (0, 1) × (0, 1),

• When α< 2β and g1(α, β)> 0, one gets k� � 1; we find that gk(α, β) > 0 for all positive inte-

gers k� k� in Eq (6). This suggests that the SMAP algorithm will replace (1, 0k, 1) with (1,

1k, 1), if and only if k� k�.

• When α> 2β and g1(α, β)> 0, we find that gk(α, β)> 0 for any positive integer k; hence the

SMAP algorithm will replace (1, 0k, 1) with (1, 1k, 1), for any value of k.

Notice that when every path of at most k� zeros between two ones has less path metric than

the corresponding all ones path, clearly any possible path other than all ones cannot have the

maximum SMAP metric, while decoding sequences of length less than k�.
The above analysis based on trellis decoding suggests two simple ways for enzymes to work.

Enzymes of Type-I would simply modify all unmodified nucleosomes (0s) between two modi-

fied nucleosomes (1s). Such enzymes may be preferred when the modification pattern can be

modeled by parameters α and β that corresponds to region a in Fig 4A; notice that this has

large α and small β. An enzyme of Type-II would fill an unmodified nucleosome (0), if and

only if it falls in the region of unmodified region of length atmost� k�. That is, replace (1, 0k,

1) by (1, 1k, 1), if the island size is k� k�. Thus long islands of 0s are left unfilled. We call this a

threshold-k filling model, which becomes active in region b of Fig 4A. Notice that when both

α and β are close to 1, the modification is expected to have long domains (islands) with its pres-

ence, followed by islands with no modification. Biologically, this is a realistic regime for many

modifications where enzymes can do threshold-k filling.

We tested the threshold-k filling model on a computer using the following procedure. For

various values of α and β, we generated several mother sequences using the Markov model.

The daughter sequences were generated by simulating the replication process, by randomly

flipping the non-zero values using independent realizations of an unbiased coin. (See Model

and Methods and S2 Text). Each daughter sequence was corrected using the threshold-k filling

algorithm—that is, we filled all islands of 0s, having size k� kt, by 1s; here kt is taken as a vari-

able. Corresponding mean error (�D)—bit by bit difference between mother and daughter
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sequences—averaged over many realizations, was computed for a given (α, β). In Fig 4B, all

the curves correspond to (α, β) in regime b of Fig 4A (g1 > 0 and α< 2β). In this interesting

regime, the mean error has a non-monotonic behaviour with a minimum at a particular value

of kt = k�, where k� is predicted by Eq (6). Note that k� values are around 3 to 6: enzyme of

Fig 4. Behavior of our algorithms across the parameter spaces (A) Four (a, b, c, d) regions in (α, β) parameter space.

The curves shown are g1(α, β) = 0, and α − 2β = 0. In region a (g1 > 0, α> 2β), the SMAP will replace every 0 with 1. In

the region b (g1 > 0, α< 2β), enzymes can implement threshold-k filling (see text). This parameter regime is realistic,

biologically. Region c has small values of α and relatively higher values of β. As per the SMAP algorithm, this region

will not be filled with 1s. In region d, where α is very high compared to β, there is intermediate filling of 1s in the

daughter sequence. (B) The mean error (�D) when we fill all islands of 0s having size at most kt. All these curves have (α,

β) values in region b, and �D is non-monotonic having a finite optimum kt = k�. (C) �D for parameter values in region a
(red and green curves) are monotonically decreasing suggesting that the optimal kt is unbounded; hence the least error

would be when all 0s are replaced with 1s. In regimes c, d (blue and violet curves) the mean error is minimal when

nothing is filled suggesting that threshold-k filling is not suitable here. The standard errors here are smaller than the

size of the points.

https://doi.org/10.1371/journal.pcbi.1009861.g004
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Type-II can fill small unmodified islands having 3 to 6 zeros, and leave much longer unmodi-

fied islands unfilled.

In Fig 4C, the two monotonically decreasing curves belong to the parameter regime a, that

is, (g1 > 0, α> 2β). The mean error is decreasing as we increase kt, suggesting that there is no

finite k�. If the modification patterns were in this regime, the corresponding enzymes should

attempt to fill every unmodified region, however small or big that may be. The other two

curves in Fig 4C correspond to regimes c and d in Fig 4A. For both the curves, the mean error

is increasing, suggesting that the threshold-k filling algorithm is not suitable in these parameter

regimes.

Threshold-k filling model can obtain inheritance patterns similar to what is

observed experimentally

To examine the biological relevance of the findings leading to a threshold-k filling model, we

took publicly available experimental histone modification data, and compared with our simu-

lation results. The inheritance of modification H3K27me3 has been systematically studied

recently [28] by measuring modification occupancy before and after DNA replication. Since

the experimental data is population-averaged, we used a simple randomized discretization

algorithm to generate many binary sequences of the available data (see S3 Text and S3 Fig).

This discretized binary sequence is the mother sequence mi. From the mother sequence, a

daughter sequence (D ¼ fdig) is created by converting each nucleosome to an unmodified

state with a probability 0.5. This is equivalent to doing the mathematical operation di = mi � zi
as mentioned earlier. The daughter sequence D was corrected to a mother-like modification

sequence M̂ using the threshold-k algorithm for different k = kt. This was repeated several

times (100 M sequences, and 100 D for each M), and the mean error (�D) is plotted as a func-

tion of kt in Fig 5A. The results show that when kt = 5 the mean error in the corrected

H3K27me3 pattern is minimized. Note that this is very similar to the curves in Fig 4B for large

values of α and β. We independently verified that the parameters corresponding to the original

mother sequence is α� 0.81 and β� 0.815 (see S3 Text) implying that a biologically relevant

modification falls in parameter regime b. In S4 Fig, we show the discretized mother sequences,

daughter and corrected daughter sequences for a different modification (H3K4me3) whose

original data was obtained from the same study [28].

In Fig 5B we plot the population-averaged modification pattern for different values kt. Note

that islands of high and low modification occupancy regions are present in both the mother as

well as the corrected daughter sequences. This indicates that our threshold k-filling algorithm

can reproduce biologically relevant data. Thus, our information theory-inspired algorithm

predicts that there might be enzymes that simply fill short segments (4 or 5 nucleosomes) of

unmodified regions, but leave the longer unmodified regions (> 5 nucleosomes) unfilled. This

helps in maintaining the fidelity during epigenetic inheritance. The two interesting biological

questions in this context, namely (i) what are the plausible biological processes/mechanisms

that could facilitate such a threshold filling process and (ii) how enzymes know what is the

optimal threshold for filling, are discussed further in the Discussion section.

Spatially distinct antagonistic modifications

The threshold-k filling model can be naturally extended to study two (or multiple) modifica-

tions that are antagonistic, spatially distinct (the same nucleosome will not have both the mod-

ifications simultaneously), and to be acted upon by very different enzymes. Specifically, we

consider a case of a long stretch of repressive modification followed by a long stretch of activat-

ing modification in distinct neighboring regions of the chromatin. In the context of the
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bivalent/bistable state of the chromatin discussed in [41], it has to be noted that the antagonis-

tic model we consider is largely not bivalent. As per our model, for an enzyme-1 responsible

for modification-1, the nucleosomes having the second modification are not “visible” and

would appear as a long stretch of 0s. For enzyme-2, similarly the modification-1 nucleosomes

appear as a long stretch of 0s.

Fig 5. Error Correction in H3K27me3 data (A) Mean deviation (�D) between corrected daughters and corresponding

mothers, where the experimental population-averaged parental data for H3K27me3 is from [28] (see database GEO:

GSE110354). Error correction was performed using the threshold-k filling algorithm for different kt values. (B) The

population averaged histone modification occupancy for H3K27me3 is plotted for mother sequence (top), and

corrected daughter sequences corresponding to different values of kt.

https://doi.org/10.1371/journal.pcbi.1009861.g005
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We generated a sequence having two spatially distinct modifications. Since very high values

of α and β are known to produce long regions of 1s alternating with long regions of 0s, we

used this approach to generate mother sequences with long stretches of two distinct modifica-

tions—we assign them values 1 and 2 indicating the presence of modification-1 or modifica-

tion-2. These are represented by red and green colors in Fig 6. Taking this as the mother

sequence, daughter sequences were then obtained by simulating the replication procedure of

randomly flipping the non-zero values to zero using independent realizations of an unbiased

coin. Note that both 1 and 2 here are flipped to 0 indicating the fact that freshly assembled

nucleosomes will have neither of these modifications. One realization of the resulting daughter

sequence is shown in Fig 6 (middle panel). Then the following version of the threshold-k algo-

rithm was applied to each enzyme separately. Whenever there is an island of size k� kt
between two nucleosomes having modification-1, the region was filled with modification-1,

similarly for modification-2. Anything else was left unfilled. This gave us results as shown in

Fig 6. In Fig 6, it may be observed that while a typical daughter sequence has an error * 0.5,

the corrected daughter had an error less than 0.2. These are occupancies from a typical realiza-

tion (not averaged over the population) and hence the values are either 0 or 1.

It has to be noted that this is only a preliminary extension of our single modification inheri-

tance model to a pair of antagonistic modifications. In reality, the process of filling, in case of

Fig 6. Simulating antagonistic modifications: Typical realizations of the modification patterns from the study of two spatially distinct/

antagonistic modifications, spread over 500 nucleosomes. The red and green regions represent the modifications 1 and 2, respectively, and the white

regions represent absence of both modifications (value 0). Corrections were performed using the threshold-k algorithm with an optimum kt = 6.

https://doi.org/10.1371/journal.pcbi.1009861.g006
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multiple modifications may involve intermediate steps by several enzymes. This could be

explored potentially as part of a future work.

Discussion

In this work, we proposed that the problem of the daughter chromatin retrieving histone mod-

ification patterns, to achieve a mother-like chromatin state, can be mapped to a communica-

tion theory problem of receiving noisy signal and correcting it to retrieve the original signal.

Using ideas from information theory, we argued that if enzymes were ideal computing

machines, they could mimic a MAP decoding algorithm to get back a mother-like sequence.

We showed how well this algorithm would reconstruct the mother—the error can be as low as

5% in certain parameter regimes. However, the question was whether realistic enzymes can

practically do SMAP decoding. We showed that in a biologically relevant parameter regime,

MAP decoding algorithm is equivalent to a threshold-k filling algorithm. That is, the enzymes

could simply insert modifications in k-sized or shorter unmodified stretches (0s). The fact that

a detailed theory simplifies to a process that is potentially executable by enzymes makes this

result attractive. Below, we discuss some aspects of our model, predictions and future direc-

tions, in the context of the existing literature.

Our results in the context of existing models: Currently, there are different categories of

models that study various aspects of inheritance. First category belongs to computational mod-

els that study regions that are bistable. Work from Sneppen, Dodd, Ringrose, Howard and oth-

ers have been discussing aspects of bistability [40, 41, 44]. This approach, in particular, is

useful to explain many regions on stem cell chromatin, bivalent regions, specific regions like

mating type locus in yeast and so on. In this model, the region of interest switches between

two states—e.g., active and inactive—as a function of time; this would also imply that, at any

given time, there are two populations of cells in a large ensemble. In the work of Sneppen and

co-workers, “state” is quantified by finding the mean modification (over all modified/unmodi-

fied nucleosomes) in a given region and is independent of the parental chromatin state as long

as there is a sufficient number of modified nucleosomes. They do not study the precise spatial

pattern in detail. In contrast, there are regions that are stably maintained in a certain modified

state and have specific pattern of histone modifications. This leads to a second category of

models: e.g., models by Hodges and Crabtree, and others [45, 46] that study the spreading and

maintaining of histone modifications as stable modified patterns over a finite length region in

the steady state. This is achieved by introducing a nucleation site (which could be non-epige-

netic like a DNA sequence-dependent location) that acts like a source for modifications/modi-

fying enzymes. While these models explain maintenance of modifications, they require a

nucleation site and have a decaying pattern from the nucleation site.

The above two categories of models start with certain physics-based kinetic moves for

enzymes and ask what the steady state is. We take a different approach—an information/com-

munication theory based approach—and ask the following reverse question : What must

enzymes do to achieve a high-fidelity inheritance? We find that threshold-k filling is the

answer that information/communication theory provides. While we do not have kinetics in

our model, we show (in S5(A) Fig) that if the parental population of cells have two stable states

(bistable), the inherited population will also have two stable states. This can be considered as

the ensemble interpretation of bistable states [40, 41, 44]. We also show (S5(B) Fig) that if the

parental population has a stable modified state, it will also be stably inherited like in the case

discussed in [45]. See S3 Text.

Physical/Biological Relevance of the Model: We modeled the mother chromatin as a first

order Markov process. This is a reasonable model as there are just two parameters, α and β,
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which are explicitly related to the experimentally measurable properties of the modification

patterns such as the mean contiguous length of modified and unmodified regions (see S2

Text). By varying the threshold kt, as shown in Figs 4B and 5A, we can determine the optimal

configurations and obtain insights about how enzymes might work without a-priori knowl-

edge of the statistical parameters. Note that even in the large α regime (region a in Fig 4A), if

enzymes settle for threshold filling with a finite kt (e.g., 5 or 6), it becomes a pragmatic modifi-

cation correction solution as the resulting error is relatively low (see red and green curves in

Fig 4B).

It has to be noted that our model picks configurations (sequences) that maximize certain

conditional probabilities, analogous to the minimum energy (or “equilibrium”) solution in sta-

tistical physics [60, 61]. The model does not involve precise kinetic moves. There could be

multiple different kinetic events leading to the same static configuration. Hence, the predic-

tions of our model may be interpreted in terms of various known kinetic events in the field.

For example, the determination of critical threshold kt as well as the decision to fill the gaps

would involve local read-write mechanisms as well as feedback loops. The presence of a modi-

fication (1) inducing more modifications nearby, is an example of positive feedback. The deci-

sion to leave long gaps unfilled also may involve certain feedback mechanisms.

While enzymes fill the unmodified nucleosomes based on modified inherited nucleosomes,

there is a natural question: how far away can the modification spread, from a modified nucleo-

some. Our model gives an answer to this question: it can spread upto k sites from a modified

nucleosome. Even starting with nearest neighbour Markov model, there is a correlation length

emerging that is k sites long. Our threshold-k model provides a natural length-scale (of length

kt) for inter-nucleosomal interactions. Moreover, our model has the advantage that it repro-

duces a spatial pattern similar to that of the parent.

How plausible is threshold-k filling in chromatin?: What might be the biological pro-

cesses that keep a group of nucleosomes in a modified state or unmodified state is an interest-

ing question. A region can be kept unfilled as a combined effect of modification and de-

modification (de-methylation, de-acetylation etc.) events. When the rate of de-modification in

a region is much higher than the modification rate, the region can remain unfilled. Physically,

this could happen in several ways. Enzymes could cooperatively act on a small region. For

example, interesting recent experimental studies [65] suggest that enzymes that act on histone

modifications can phase separate to form a droplet around a group of nucleosomes, and may

collectively modify/demodify all the nucleosomes together. It has also been shown that chro-

matin itself can form nano-domains having size of a few nucleosomes paving way for collec-

tively maintaining a certain modification state in these groups of nucleosomes [66–68]. The

potential enzymes/complexes that could do these activities could be JmjC domain proteins,

UTX, NuRD, Fbxl10 and JARID1A [41, 69, 70]. In case of H3K27me3 in particular, experi-

mental evidence supports that EZH2 and H2AK119Ub also contribute to the modification of

the neighboring nucleosomes [26, 71]. Approaching this question from a different angle, cur-

rently, it is well-known that there exist certain correlations and anti-correlations between

modifications [14]. There are biological mechanisms which are known to maintain these cor-

related states between modifications [38]. Hence, the mechanism that may cause the absence

of a modification could also cause the presence of an opposite modification as we have dis-

cussed in the antagonistic modifications section. For example, recent experiments from [47,

72] suggest that there is mutual antagonism between H3K27 and H3K36 methylation. This

antagonism could also be one of the reasons for a long set of nucleosomes in which one modi-

fication is absent.

How enzymes know what is the optimal threshold for filling, is another interesting ques-

tion. In recent experiments, it was shown that a critical density of H3K9me3 was required for
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stable transgenerational inheritance of heterochromatin [31]. It has to be noted that our pro-

posed model in which a critical threshold of parental modifications is required for filling the

gaps of unmodified nucleosomes, is strengthened with this result. There are different families

of enzymes, and each may have evolved differently. Some enzymes may be naturally adept at

filling short regions, i.e. optimal threshold value (k�) could be hard-wired into such enzymes,

via evolution. Another possibility is that other phenomena like local looping, phase separation

etc. decide the threshold k�, by bringing unfilled nucleosomes together [73, 74]. These need to

be understood in more detail in the future. As we showed, the information theory ideas suggest

that the threshold-k filling algorithm emerges as a natural primary solution. However, further

reconstruction may involve secondary mechanisms like boundary determination (e.g. CTCF

[75]), synergistic modification between correlated modifications, and DNA methylation main-

tenance over the course of the cell-cycle [25, 38].

Inheritance over many generations: Another interesting aspect is the fidelity of inheri-

tance over many generations. Error propagation across generations will depend on how well

reconstruction happens in the very first generation. In the Figs 3 and 4, we have shown that

the error (if we compute it as bit error rate—BER) is a non-zero number. Any non-zero error

will propagate over generations. None of the published models so far, to the best of our knowl-

edge, compare the mother and daughter modifications bit by bit and compute the error, they

rather compute the mean modifications (modifications averaged over a long stretch) or the

population-averaged pattern. In this work, we consider both the mean modification/mean pat-

tern and bit by bit error (see S3 Text).

As pointed out above, we argue that threshold-k filling algorithm emerges as a natural pri-

mary solution (immediately post-replication) based on information theoretic principles. How-

ever, in addition to this, the reconstruction may involve secondary mechanisms like boundary

determination via binding of proteins like CTCF, formation of nucleosome free regions [20,

25, 76–79] and so on. In reality, all these mechanisms, together, will contribute to reconstruc-

tion and propagation of epigenetic information with minimum error.

Even in the absence of secondary mechanisms, we show that our model approximately pre-

serves the pattern of modifications across a few generations (S6 Fig). We have simulated the

case of repeated replication over 3 generations for a biologically realistic regime of α and β =

0.9 each. When the deviation (BER) is computed as against the original set of mother

sequences with the above statistical parameters, we observe that deviation is reasonably low for

up to 5 generations for kt = 6 (see S3 Text and S6 Fig). We also computed the block error—

error averaged over blocks of neighboring nucleosomes—and plotted the results in S6(A) Fig.

From the figure, one can observe that the error decreases with increasing block size. The BER

and the mean block error remain very small across generations (see S3 Text). We also show in

S6(B) Fig that the mean modification pattern is maintained across generations, using our algo-

rithm on the H3K27me3 data. The details are provided in S3 Text.

Finally, it would also be of great interest to study how the polymer nature of the chromatin

would work in tune with the results from information theory. It has to be noted that the epige-

netic code might involve an interplay between the one-dimensional histone codes and polymer

dynamics of the chromatin [80, 81]. The fact that we have two 1s at the boundaries suggests

some potential role of looping or micro phase separation in far-away regions coming together.

Electrostatic interactions among nucleosomes could also play an important role here [82–87].

For example, the charge distribution of a bunch of de novo nucleosomes can lead to a loose

clustering of k nucleosomes, thereby facilitating the threshold-k filling. Our own earlier studies

[68] hint to us that small patches of unmodified nucleosomes (newly inserted nucleosomes)

may lead to small clusters, influencing the kinetics of the modification process itself. Addition-

ally it might be interesting to analyse how the inheritance is affected in cases where there may
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be unequal distribution of the parental nucleosomes between the leading and lagging strands

[21]. These are questions that await future studies.

Supporting information

S1 Fig. Analysis of Mean Error after correction. In (A) and (C), we plot the mean error after

correction (�D) using the SMAP algorithm, as a function of α for different values of β. In (B)

and (D), we plot the mean error after correction as a function of β for different values of α. The

error bars representing SEM are are smaller than the size of the points in the plots. α represents

the conditional probability of a nucleosome staying in 1 (modified state) : P(mi = 1|mi−1 = 1). β
represents the conditional probability of a nucleosome staying in 0 (unmodified state) : P(mi =

0|mi−1 = 0). The error is averaged over a simulation of 300 mother sequences each of which

has 200 daughter sequences (a total of 60000 cases). (E) represents the variation of error after

correction for different lengths of the sequence, for α and β values of 0.9 each. (F) and (G) rep-

resent normalized mean error after correction obtained varying against kt—these plots are

similar to the Fig 4B and 4C in the manuscript but are normalized with respect to the optimum

error.

(EPS)

S2 Fig. Simulated and Binarized sequences. Binarized sequences (top panel) for H3K27me3

and H3K4me3 from HeLa cells (discretized using the algorithm mentioned in S3 Text) and

simulated sequences (bottom panel) corresponding to the same α and β. The mean length of

the modified and unmodified regions (runs) are distributed in a statistically similar manner in

both the cases, suggesting that Markov model is a reasonable starting point.

(EPS)

S3 Fig. Discretization Algorithm. The algorithm used to discretize the population-averaged

parental modification data (X) from [28] into a binary realization—equivalent of a single cell

representation indicating the presence (1) or absence (0) of the modification. In our case, X is

H3K27me3 or H3K4me3 data obtained from [28].

(EPS)

S4 Fig. H3K4me3 Experimental Verification. Mother, Daughter, and the Corrected

sequences for kt = 4, 5, 6 for the H3K4me3 values in the HeLa cells from a region of the Chr19

of the human genome. The data was obtained from [28] and is averaged over 200 binary reali-

zations of the mother, each having 100 daughters.

(EPS)

S5 Fig. Simulation in the context of existing models. The histograms of the mother and cor-

rected daughter sequences in the case where the mother sequences exhibit a bistable popula-

tion of cells (i.e), roughly half of the cells have high modification levels whereas the remaining

half of the cells have low modification levels. The replicated daughter cells after correction by

our algorithm also show a similar bistable distribution. In (B), the plots of the mean mother

and corrected daughter sequences for the case of a mother having a pattern similar to the one

observed in [45] are shown. After correction by our algorithm, the daughter sequences obtain

a pattern very similar to what is observed in the mother.

(EPS)

S6 Fig. Error across generations. (A)—The plot of the mean block error between the original

mother sequence and the corrected daughter sequences across subsequent generations for α
and β values of 0.9 each. With the optimum value of kt for this range of α and β (kt = 6), the

mean error increases minimally over subsequent replications. With increasing block size, the
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mean error decreases monotonically. When the block size is 1, the error is the Bit Error Rate

(BER). In (B), the plots of the mean mother and corrected daughter sequences for different

generations are shown. The data is obtained from [28] and is the population-averaged binar-

ized sequences of H3K27me3 ChIP-seq data in the Chr1 region.

(EPS)

S1 Text. SMAP Algorithm, Markov Process, Trellis Diagram.

(PDF)

S2 Text. Computation of Statistical Properties.

(PDF)

S3 Text. Discretization Algorithm, Experimental Data Simulation, Error across Genera-

tions.

(PDF)
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