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Sodium Selenate Ameliorates 
Cardiac Injury Developed from 
High-Fat Diet in Mice through 
Regulation of Autophagy Activity
Shuqiang Zhang1, Jialiang Xu2, Zhisong He2, Feng Xue2, Tingbo Jiang2* & Mingzhu Xu2*

Obesity is often accompanied by dyslipidemia, high blood glucose, hypertension, atherosclerosis, and 
myocardial dysfunction. Selenate is a vital antioxidant in the cardiovascular system. The beneficial 
effects of selenate on obesity-associated cardiac dysfunction and potential molecular mechanism 
were identified in both H9C2 cells and C57BL/6J mice hearts. The cardiac histological preformation 
in C57BL/6J mice were evaluated by cross-sectional area (CSA) of cardiomyocytes and percent area 
of fibrosis in the left ventricles. The cardiac autophagy flux in H9C2 cells and C57BL/6J mice hearts 
was analyzed by Western blots and the number of autophagosomes and autolysosome in H9C2 cells. 
In the present study, we found that lipid overload caused increases in serum lipid, CSA, and percent 
area of fibrosis. We further found that lipid-induced accumulation of autophagosomes  was due to 
depressed autophagy degradation, which was not restored in the pretreatment with 3-methyladenine 
and chloroquine, whereas, it was improved by rapamycin. Moreover, we demonstrated that increased 
levels of serum lipid, CSA, percent area of fibrosis and mRNA expression related to cardiomyocytes 
hypertrophy and fibrosis were significantly reduced after selenate treatments of mice. We also found 
selenate treatment significantly down-regulated activity of the Akt pathway, which was activated 
in response to lipid-overload. Furthermore, selenate dramatically improved cardiac autophagic 
degradation which was suppressed after exposure to lipid-overload in both H9C2 cells and C57BL/6J 
mice hearts. Taken together, selenate offers therapeutic intervention in lipid-related metabolic 
disorders, and protection against cardiac remodeling, likely through regulation of the activity of 
autophagic degradation and Akt pathway.

Obesity is a high-risk factor that causes hypertension, diabetes, atherosclerosis, and other chronic diseases, all of 
which increase the rates of morbidity, mortality, and financial burden. Patients with obesity are likely to suffer 
from cardiovascular complications, such as left ventricular hypertrophy, cardiac fibrosis deposition, and atrial 
fibrillation1–3. The underlying molecular defect involved in the pathogenesis of metabolic cardiomyopathy and 
autophagic changes is not fully understood. Altered cardiac autophagy is a pivotal cause of obesity-induced dis-
ruption in cardiac structure and function1,4,5. Autophagy is a highly-conserved degradation pathway in which 
intracellular proteins and damaged organelles are delivered to and degraded in the lysosomes. Autophagy is also 
a tightly regulated and highly inducible process6. An inappropriately activated or suppressed autophagy pathway 
may result in cell injury or death. However, even if autophagy occurs in response to the same stress or under the 
same conditions, it is uncertain as to whether it will change in the same direction7, suggesting autophagy has 
distinct regulatory mechanisms. Autophagic marker Beclin-1 is an early promoter of autophagy and the conver-
sion of LC3-I to LC3-II indicates the formation of autophagosomes8. The p62 protein is degraded destined for 
the lysosome, which is inversely associated with autophagy activity9,10. It has been demonstrated that the insu-
lin/insulin-like growth factor receptor activates several signaling pathways such as phosphoinositide 3-kinase 
(PI3K)/protein kinase (Akt)/mammalian target of rapamycin (mTOR) and Akt/glycogen synthase kinase-3β 
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(GSK3β)11–14. Akt is involved in the regulation of cell proliferation, survival, and metabolism; meanwhile, it also 
mediates in cardiac hypertrophy, interstitial fibrosis, as well as cardiac autophagy11–17.

Selenium is not an antioxidant on its own, but it is incorporated as an integral component of several antioxidant 
enzymes which were involved in maintaining cell survival, modulating cellular differentiation, protecting against 
oxidative damage and metabolic disorders18. Selenium is also a vital element in the cardiovascular system, as sele-
nium deficiency has been linked to Keshan cardiomyopathy, the process of cardiac remodeling, and chronic heart 
failure, due to increased demand for antioxidant activity and/or insufficiency selenium intake19,20. Accumulating 
evidences confirmed that the recommendations for selenium might be required to increase anti-oxidative and 
anti-apoptotic effects, and contribute to protecting cardiomyocytes from hyperglycemia-induced heart damage, 
reducing cardiac remodeling, and improving cardiac dysfunction18,19,21; but also bring a benefit in the prevention 
of atherosclerosis in subjects with low selenium status22.

Sodium selenate, an oxidized form of selenium, has the profound effects on Alzheimer’s disease23, however, no 
study has investigated whether sodium selenate may be an effective dietary intervention for cardiac abnormalities 
due to hyperlipidemia exposure. Here, we evaluated therapeutic effects of sodium selenate (12 μg/mL sodium 
selenate added to the drinking water) on cardiac pathologic changes and autophagy disorders due to obesity using 
obese mouse models and cultured cells.

Materials and Methods
Cell culture, reagents, and treatments.  H9C2 cells, a myoblastic cell line derived from embryonic 
BD1X rat myocardium, were obtained from the Cell Bank of Type Culture Collection of Chinese Academy of 
Sciences (Shanghai, China) and cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented 
with 10% fetal bovine serum (FBS, Gibco) in a humidified atmosphere of 5% CO2 at 37 °C. Various concentration 
of palmitic acid (PA, P5585, Sigma) in 1% fat-free bovine serum albumin (BSA, Roche) was prepared. The cells 
were treated with 0.4 mM PA for various time points or with various concentrations of PA for 12 hrs. For vehicle 
control, H9C2 cells were incubated with 1% fat-free BSA solution. Chloroquine (CQ, C6628, Sigma), 3-methylad-
enine (3-MA, HY-19312, MCE), sodium selenate (S8295, Sigma) were dissolved in phosphate buffer saline (PBS); 
and rapamycin (Rapa, HY-10219, MCE) and LY294002 (NSC 697286, MCE) was dissolved in DMSO. All reagents 
were diluted to the indicated concentrations.

Cell viability assay.  Cell viability was determined by using Cell Counting Kit-8 (CCK-8, Dojindo Molecular 
Technologies, Inc., Japan). H9C2 cells were seeded in 96-well culture plates and treated for a considerate time. 
Then, 10 μL CCK-8 were added to each well and incubated for 70 mins. Cell viability was estimated at 450 nm by 
manufacturer’s protocol.

Cell cycle analysis.  H9C2 cells were centrifuged, suspended in 70% ethanol, and fixed overnight at 4 °C. The cell 
cycle was detected using the Cell Cycle and Apoptosis Analysis Kit (Beyotime, P0010) according to the manufacturer’s 
protocol. The distribution of cells in G0/G1, S, and G2 phases was calculated using the ModFit LTTM 32 software.

Cell apoptosis assay.  Cell apoptosis was detected by DeadEnd™ Fluorometric TUNEL System (G3250, 
Promega) according to the manufacturer’s instructions. H9C2 cells were cultured on slides and treated according 
to the experimental methodology. Then, samples were fixed, permeabilized, equilibrated, and added the mixture 
(containing Nucleotide Mix and rTdT Enzyme) for incubation at 37 °C. After the reactions were terminated, the 
sliders were detected with localized green fluorescence of apoptotic cells in a blue nuclear background by fluo-
rescence microscopy.

H9C2 cells expressing stubborn red fluorescent protein and sensitive green fluorescent pro-
tein fused to microtubuleassociated protein light chain 3 (stubRFP-sensGFP-LC3) and express-
ing GFP fused to p62 protein (GFP-p62).  In order to monitor autophagy flux of cells, we established 
a stable expression stubRFP-sensGFP-LC3 H9C2 cell line infected by directly adding lentivirus expressing 
stubRFP-sensGFP-LC3 fusion protein (GeneChem, LV-MAP1LC3B, 3905-1) at an MOI of 20 for 72 hours at 
about 70% infection efficiency. Since green fluorescence is quenched by acidic condition of lysosome, the puncta 
of green and red displays autophagosome puncta (yellow puncta, G + R+) and red puncta represents autophago-
lysosome puncta (red puncta, G − R+). The number of yellow puncta (autophagosome, G + R+) and red only 
puncta (autophagolysosome, G − R+) were detected by confocal microscopy. Similarly, we established a sta-
ble expressing GFP-p62 protein H9C2 cell line by infecting it with an adenovirus expressing GFP-p62 protein 
(Ad-GFP-p62, Beyotime, C3015) at an MOI of 30 for 24 hours with 70% infection efficiency analyzed by fluores-
cent microscopy. The area and number of green puncta were increased in cases of inhibited autophagy activity. 
After treatments, stable expressing stubRFP-sensGFP-LC3 or Ad-GFP-p62 H9C2 cells were washed with PBS, 
fixed with 4% paraformaldehyde, permeabilized, and stained with Hoechst 33342 (InvitrogenTM, USA). Images 
were acquired under a fluorescence microscope.

Animal model.  All laboratory animals were handled and maintained in accordance with the Guide for 
the Care and Use of Laboratory Animals as published by the US National Academies Press (Eighth Edition, 
update, 2011). The approved protocol for animal use was approved by the Committee on the Ethics of Animal 
Experiments of Nantong University.

Female C57BL/6J mice were purchased from Shanghai SLAC Laboratory Animal Center (Shanghai, China). 
Animals were housed under a constant room temperature at 25 ± 2 °C and 50 ± 5% humidity with a 12-hour 
daylight period and 12-hour darkness period, with free access to water. After an acclimatization period of one 
week, C57BL/6J mice were randomly divided into two weight-matched groups. Thirty mice were fed with the 
normal rodent chow diet, while the remaining 30 mice were fed with a rodent high-fat diet (HFD) with 60% 
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kcal fat (Research Diets, Inc.™, catalog number: D12492, USA) for 12 weeks. In the thirteenth week, mice fed 
with the normal rodent chow diet were randomly divided into two groups: 15 mice fed with a normal rodent 
chow diet (ND group, n = 15) and 15 mice fed with a normal rodent chow diet added sodium selenate (ND + Se 
group, n = 15). These groups remained in place for 24 weeks. Also in the thirteenth week, mice fed with a HFD 
were randomly divided into two groups: 15 mice provided with a HFD continually (HFD group, n = 15), 15 mice 
provided with a HFD added sodium selenate for the next 24 weeks (HFD + Se group, n = 15) (Fig. 1). 12 μg/mL 
sodium selenate were added to the drinking water, which were referred to the great effects of sodium selenate 
published before23.

Histological studies.  Mouse hearts were removed after sacrifice, then weighed and placed in 4% formalde-
hyde for histological study. The tissues were fixed in paraffin, sectioned into 5 μm thickness at the level of the pap-
illary muscles for each heart, and stained with Hematoxylin and eosin (H&E) and Masson’s trichrome (MT). The 
cardiomyocyte cross-sectional area (CSA) was measured in 30 cells from 10 random fields in each section stained 
with H&E. Color images were made at 400× total magnification using Leica DM2000 with Digital Camera (JD 
Smart V V3.3). Fibrotic changes were assessed by MT staining, which is defined as the percent area of myocar-
dial interstitial fibrosis as calculated by the blue fibrosis area divided by the sum of the total myocardial area in 
10 randomly-selected fields in each section. Color images were made at 200× total magnification. The analysis 
of collagen was quantitatively evaluated by image analysis software AxioVision (Zeiss, Oberkochen, Germany).

Protein extraction and Western blot analysis.  After treatments, the cells were washed, and lysed in 
RIPA lysis buffer (P0013, Beyotime, China) containing phosphatase and protease inhibitors. Heart tissue was 
homogenized in a lysis buffer (P0013B, Beyotime, China) containing phosphatase and protease inhibitors. The 
protein samples were resolved and separated by SDS-PAGE, and then transferred onto poly-vinylidene difluo-
ride (PVDF) membranes (Millipore). The membranes were incubated in a blocking buffer, followed by incuba-
tion with primary antibodies against specific proteins overnight: Akt (#9272, Cell Signaling Technology [CST], 
USA), phospho-Akt (serine473, #9271, CST, USA), p62/SQSTM1 (#5114, CST, USA), LC3 (#4108, CST, USA), 
and GAPDH (sc-25778, Santa Cruz Biotechnology, USA). The primary antibodies were diluted 1:1000 in 5% 
fat-free milk in TBS buffer overnight. The membranes were washed and incubated with Peroxidase-AffiniPure 
Goat Anti-Rabbit IgG (111-035-114, Jackson ImmunoResearch). The target-expressed protein-antibody complex 
was visualized by the PierceTM ECL Western blotting Substrate (#32106, Thermo Scientific). Images with adequate 
exposure were acquired for densitometry by using the Multi-Gauge software V3.0 from Fujifilm.

RNA extraction and quantitative real-time PCR.  Total RNA was extracted from heart tis-
sue using E.Z.N.A.® Total RAN Kit (R6834, Omega Bio-Tek, Inc.), and reverse transcribed to cDNA by 
SuperScript 1st Strand cDNA Synthesis kit (BU-304-01, Biouniquer, China). Quantitative real-time PCR 
was performed using SYBR Green I by Roche LightCycle® 96 Instrument. The expression level was normal-
ized to the levels of GAPDH transcripts. The primer sequences used for quantitative real-time PCR: ANP, 5′-3′ 
GCGGTGTCCAACACAGAT, 5′-3′ CTTCCTCAGTCTGCTCACTC; BNP, 5′-3′ TGGATCTCCTGAAGGTGCTG, 
5′-3′ TGCATCTTGAATTGCTCTGGA; β-MHC, 5′-3′ AGGCAACTGGAGGAGGAGGT, 5′-3′CAGCCTTGGCCTC 
TGTCT; Collagen-I, 5′-3′ C-CTCCTGGCAAGAATGGAGA, 5′-3′AGCTGTTCCAGGCAATCCAC; 
Collagen-III, 5′-3′ TGCTCCTGTGCTTCCTGATG, 5′-3′ GACCTGGTTGTCCTGGAAGG; GAPDH, 5′-3′ 
AGGTCGGTGTGAACGGATTTG, 5′-3′TGTAGACCATGTAGTTGAGGTCA.

Statistical methods.  All data were presented as means ± standard deviation (SD), median (range) for con-
tinuous variables. The two-way Anova with Bonferroni post-hoc test was performed for multiple-group analysis. 
All statistical tests were two-sided and significance levels were defined as P < 0.05. All statistical analyses were 
performed with the SPSS software package (Version 17.0, SPSS, and Chicago, IL, USA) and GraphPad Prism 
(Version 5.01) software.

Figure 1.  The whole course of feeding scheme.
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Results
PA inhibits the proliferation and promotes the apoptosis of H9C2 cells.  H9C2 cells are derived 
from embryonic BD1X rat myocardium and exhibit many properties of primary cardiomyocytes including mem-
brane morphology, protein expression of signaling pathways, electrophysiological properties, and hypertrophic 
response, though H9C2 cells are not able to beat. We used H9C2 cells to determine the role of PA, the major form 
of fatty acids, on cardiomyocytes viability. We treated H9C2 cells with various concentration of PA for 12 hrs or 
with 0.4 mM PA for various time points and then measured cell viability using CCK8 kit. We found that cell via-
bility decreased in a PA dose-dependent (Fig. 2A) or in a time-dependent manner (Fig. 2B). Thus, PA suppressed 
cell viability. Further, we treated H9C2 cells with 0.4 mM PA for various time points or with various concentration 
of PA for 12 hrs as described above and analyzed cell cycle distribution by Flow Cytometry. Similar to the effect 
on cell viability, we observed that the number of H9C2 cells in G1 and G2 phases was increased and decreased in 
S phase in the PA-treated group in both dose-dependent (Fig. 2C,E) and time-dependent (Fig. 2D,F) manners, 

Figure 2.  Palmitic acid inhibits H9C2 cell growth. The H9C2 cells were treated with different concentrations 
of palmitic acid (PA) for 12 hours or 0.4 mM PA at different time points. (A,B) Cell viability analyses of H9C2 
cells using CCK-8 assay. (C–F) The cell cycle of H9C2 cells were detected by flow cytometry, and were analyzed 
by percent of H9C2 cells in different phases of distribution. (G–J) The apoptotic H9C2 cells were stained by 
TUNEL and then were examined under a fluorescence microscope (200×), scan bar = 100 μm. Cell apoptosis 
were analyzed by percent of apoptotic positive cells in each image. All data are representative of 3 independent 
experiments. The data are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 when compared 
with PA 0 mM or PA 0 hour.
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suggesting that PA suppresses H9C2 cells proliferation, leading to a decrease of cell viability. In addition to cell 
proliferation, we found an obvious sub-G1 phase resulting from apoptotic H9C2 cells treated with 0.8 mM PA 
for 12 hrs (Fig. 2C) or with 0.4 mM PA for 24 hrs (Fig. 2D), suggesting that PA may also promote cell apoptosis.

To confirm the induction of apoptosis by PA, we treated H9C2 cells with PA and then analyzed apoptotic 
cells with TUNEL. We found that PA treatment significantly increased TUNEL positive cells dose-dependently 
(Fig. 2G,I) and time-dependently (Fig. 2H,J), indicating that PA treatment promotes H9C2 cells apoptosis. Thus, 
PA treatment induced the reduction of H9C2 cell viability through both suppression of cell proliferation and 
promotion of cell apoptosis.

PA influences autophagic flux in H9C2 cells by suppressing the conversion of autophagosomes 
to autophagolysosomes.  Increasing evidence has demonstrated that altered cardiac autophagy is associ-
ated with cardiac injury in patients who have obesity4,5. Autophagic flux was measured by levels of the LC3-II, 
the conversion of LC3-I to LC3-II, the number of autophagosomes and autophagolysosomes, and levels of p62 
which is inversely related to autophagic activity9,10. To study the role of PA in autophagic flux, we treated H9C2 
cells with 0.4 mM PA for 12 hrs and then analyzed the levels of LC3-II by Western blots. We found that PA sig-
nificantly induced LC3-II accumulation (Fig. 3A,D) and increased ratio of LC3-II/LC3-I (Fig. 3A,E), suggesting 
PA may affect autophagic flux by increasing autophagosome formation. To examine autophagosome turnover in 
H9C2 cells, we overexpressed stubRFP-sensGFP-LC3 in H9C2 cells virally and treated the cells with 0.4 mM PA 
for 12 hrs. We found that PA treatment increased the autophagosome accumulation (yellow puncta, G + R+) and 
decreased the autophagolysosome puncta (red puncta, G − R+) (Fig. 3J–L), suggesting PA may affect autophagic 
flux by increasing autophagosome formation but decreasing autophagolysosome, supporting that PA may initiate 
autophagosome formation or suppress the conversion of autophagosome to autophagolysosome.

Then, we influenced autophagy flux pharmacologically and determined the role of PA in autophagy in H9C2 
cells. We pre-treated H9C2 cell with lysosomal acidification inhibitor CQ (10 μM) to block the degradation of 
existing autophagosomes (downstream step of autophagy) for 2 hrs and then added 0.4 mM PA into the cells for 
12 hrs. Levels of LC3-II, LC3-I and LC3-II were analyzed by Western blots. We found that the increase in LC3-II 
accumulation in PA-treated H9C2 cells was not further enhanced by CQ addition analyzed by Western blot anal-
ysis (Fig. 3A,D,E). Moreover, the increased number of autophagosome puncta and autophagolysosome puncta 
were not increased further upon CQ pre-treatment compared with non-CQ pre-treated H9C2 cells (Fig. 3J–L).  
Thus, these data support PA treatment did not initiate the autophagosome formation in the early stage of 
autophagy.

Next, we assessed turnover of autophagy flux following incubation with PA for 12 hrs in the presence or 
absence of 10 mM 3-MA pre-treatment for 2 hrs which blocks autophagy activity. We found 3-MA significantly 
suppressed the PA-induced formation of autophagosomes (yellow puncta, G + R+) with no statistically signif-
icant difference in autophagolysosome (red puncta, G − R+) in H9C2 cells expressing stubRFP-sensGFP-LC3 
(Fig. 3J–L). The effect was further confirmed by a Western blot analysis of LC3-II expression and the ratio of 
LC3-II/LC3-I in H9C2 cells (Fig. 3B,F,G). Thus, 3-MA which blocks neo-autophagosome and autophagolyso-
some, could not ameliorate the suppressed conversion of autophagosome to autophagolysosome.

Rapamycin (Rapa) activates autophagy. We then pre-treated H9C2 cells with 0.1 μM Rapa for 2 hrs followed 
with 0.4 mM PA treatment for 12 hrs. We found that Rapa significantly increased ratio of LC3-II expression, 
LC3-II/LC3-I expression, and induces the accumulation of autophagosomes (yellow puncta, G + R+) and auto-
phagolysosome (red puncta, G − R+) in H9C2 cells compared with the control group (Fig. 3C,H–L). PA-induced 
accumulation of LC3-II and increase of LC3-II/LC3-I ratio were further increased in H9C2 cells by Rapa pre-
treatment. Thus, PA-induced accumulation of autophagosome (yellow puncta, G + R+) was further increased, 
and PA-induced decreased autophagolysosome puncta (red puncta, G − R+) was restored (Fig. 3C,H–L) by Rapa 
pre-treatment.

PA suppresses the function of autophagy on p62 degradation.  P62 is degraded by autophagic sys-
tem. To determine the role of PA in autophagy function, we treated H9C2 cells with 0.4 mM PA for 12 hrs and 
analyzed p62 expression by Western blots and accumulation of GFP-p62 in cultured cells. We found that PA 
treatment led to an increase in p62 level and an accumulation of GFP-p62 positive puncta relative to the con-
trol group in H9C2 cells expressing GFP-p62 protein (Fig. 4A,D–F). These data suggest that PA may suppress 
autophagy degradation. PA induced increase of p62 expression and accumulation of GFP-p62 puncta were not 
enhanced further or reversed by CQ pre-treatment (Fig. 4A,D–F), supporting that PA induced autophagosome 
accumulation not by initiating the autophagy, but impairing autophagosome clearance by suppressing autophago-
lysosome degradation in H9C2 cells. Moreover, increases in p62 protein and the number of GFP-p62 puncta 
fluorescence in response to PA treatment were significantly augmented further by 3-MA pre-treatment in H9C2 
cells (Fig. 4B,D,G,H), and significantly decreased by Rapa pre-treatment in H9C2 cell (Fig. 4C,D,I,J). Thus, these 
data suggest that 3-MA treatment did not improve the depressed autophagic degradation though it decreased 
autophagosome accumulation. Rapa pretreatment could attenuate lipid-impaired autophagic degradation and 
promote the autophagy flux smoothly.

Selenate supplementation attenuates high-fat diet induced hyperlipidemia and hyperglyce-
mia with slightly affecting body weight and blood glucose level.  To investigate whether selenate 
suppressed obesity-associated metabolic disorders, we fed C57BL/6J mice with a normal rodent chow diet and 
a rodent HFD supplemented with or without sodium selenate for 24 weeks. All animals’ fasting body mass, total 
cholesterol (TC), triglyceride (TG), insulin, glycated hemoglobin A1c (HbA1c) were collected and measured 
by ELISA. We found that the body mass, blood glucose, TC, TG, insulin, and HbA1c were significantly higher 
in mice fed with HFD than those fed with ND (Fig. 5A–F). Selenate supplementation mitigated hyperlipidemia 
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Figure 3.  The effect of PA on autophagic flux in H9C2 cells. (A–C) H9C2 cells were treated with 0.4 mM PA 
for 12 hours in the absence or presence of chloroquine (CQ, 10 μM), 3-methyladenine (3-MA, 10 mM) or 
rapamycin (Rapa, 1 μM) for 2 hours, and then analyzed by Western blots. (D–I) Densitometric analysis of 
LC3-II/GAPDG and LC3-II/LC3-I expression by Western blots. (J–L) H9C2 cells stably expressing stubRFP-
sensGFP-LC3 were pretreated with CQ, 3-MA or Rapa for 2 hours, followed by 0.4 mM PA for 12 hours, and 
then representative images from the confocal fluorescence (J, Scan bar = 25 μm) and the number of puncta 
(autophagosomes G + R+, and autophagolysosome G − R+) were quantified for each experiment (K,L). All 
data are representative of 3 independent experiments. The data are presented as mean ± SD (n = 3). *P < 0.05, 
**P < 0.01, ***P < 0.001 vs. Con group, #p < 0.05, ##P < 0.01, ###p < 0.001.
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(Fig. 5A,B) and slightly decreased the levels of insulin and HbA1c induced by HFD (Fig. 5C,D), suggesting a 
protective role of selenate on HFD-induced dysregulation of lipid metabolism. Moreover, we found a significant 
decrease in body mass at post-selenate treated 24 weeks and in levels of blood glucose at post-selenate treated 10 
to 20 weeks in HFD + Se group by comparison with untreated HFD group (Fig. 5E,F). These results confirm that 
selenate supplementation might attenuate HFD induced metabolic disruption.

Selenate supplementation attenuates HFD-induced hypertrophic remodeling, fibrosis accumu-
lation and myocardial dysfunction in C57BL/6J mice.  We randomly selected five mouse hearts in each 
group for evaluating cardiac histological preformation. Mice hearts were weighed and placed in 4% formaldehyde for 
histological study C57BL/6J mice. We found the CSA of cardiomyocytes was markedly increased in the HFD group 
compared to the ND group, indicating HFD-induced cardiomyocytes hypertrophy (Fig. 6A,C), this was done by quan-
titative analysis of H&E staining images. As determined by quantitative analysis of MT staining images, we found an 
elevated percent area of myocardial collagen in the HFD group compared with ND group (Fig. 6B,D), suggesting 
interstitial collagen accumulation caused by HFD exposure. Moreover, mRNA expression levels of ANP, BNP, β-MHC, 
Collagen I, and Collagen III were significantly higher in the HFD group as compared with the value in the ND group 
(Fig. 6E–I), suggesting increased mRNA expression caused by HFD exposure.

We found selenate treatment reversed cardiomyocytes’ morphology and significantly decreased the CSA 
of cardiomyocytes, compared with the HFD group (Fig. 6A,C). Selenate treatment reversed myocardial colla-
gen deposition and notably decreased the percent area of fibrosis in the left ventricles, compared with the HFD 

Figure 4.  The effect of PA on autophagic degradation in H9C2 cells. (A–C) H9C2 cells were treated with 
0.4 mM PA for 12 hours in the absence or presence of chloroquine (CQ, 10 μM), 3-methyladenine (3-MA, 
10 mM) or rapamycin (Rapa, 1 μM) for 2 hours, then the cell lysates were then analyzed by Western blots. (E,G 
and I) Densitometric analysis of p62 expression by Western blots. (D,F,H and J) H9C2 cells stably expressing 
GFP-p62 were pretreated with CQ, 3-MA, or Rapa for 2 hours, followed by 0.4 mM PA for 12 hours. Then 
representative images from the confocal fluorescence (D, Scan bar = 25 μm) and quantitative analysis of the 
number of GFP-p62 puncta were calculated for each experiment. Each group of data is representative of 3 
independent experiments. The data are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. 
Con group, #p < 0.05, ##p < 0.01, ###p < 0.001.
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group (Fig. 6B,D). Moreover, we found selenate addition by oral gavage remarkably suppressed HFD-induced 
relative increased mRNA levels of ANP, BNP, β-MHC, Collagen-I and Collagen-III. These findings suggest 
that HFD-induced cardiac hypertrophy and cardiac fibrosis accumulation could be attenuated by selenate 
administration.

Selenate supplementation was protective against HFD-mediated cardiac autophagic degra-
dation inhibition and reversed Akt phosphorylation induced by HFD in C57BL/6J mice.  We 
have demonstrated that PA-induced suppression in autophagic degradation and cell growth could be improved 
by Rapa due to improved autophagic degradation. In order to test cardiac autophagic changes in C57BL/6J mice, 
we measured protein markers of autophagic activity by Western blots, and found that HFD led to an increase in 
levels of LC3-II/LC3-I, and notably induced accumulation of LC3-II and cardiac p62 expression without signif-
icantly affecting expression of Beclin-1. This was observed through comparison with the ND group, and it sug-
gests that cardiac autophagic degradation was broken off by HFD in mice (Fig. 7A,C–F). Then, we attempted to 
evaluate the effects of selenate supplementation on altered autophagic activity by analyzing the levels of LC3-II/
LC3-I and p62 in C57BL/6J mice hearts of four groups. We found selenate supplementations significantly inhib-
ited HFD-induced accumulation of LC3-II, level of LC3-II/LC3-I, and it markedly reversed p62 expression in 
response to HFD, demonstrating HFD-induced obstructed autophagic degradation and accumulated LC3-II were 
restored partially after selenate treatment. Instead, selenate addition did not affect Beclin-1 compared to that in 
the ND group (Fig. 7A,C–F).

It has been long been assumed that Akt and it’s cascades signaling are involved in the regulation of cell 
proliferation, survival, and metabolism. Akt signaling pathway mediates cardiac hypertrophy and interstitial 
fibrosis, as well as cardiac autophagy11–17. To further examine mechanisms of selenate in protecting against 
hyperlipidemia-induced cardiomyopathy, we performed the same experiments in C57BL/6J mice and noted a 
regulatory role of Akt signaling cascades by Western blots. We observed Akt activity was activated in HFD group 
compared to ND group, as markedly representive increased level of phospho-Akt at Ser473 by Western blots. As 
expected, the presence of selenate supplementation actively inhibited HFD-induced phosphorylation of Akt at 
Ser473 normalized with total Akt by Western blots (Fig. 7B,G). Taken together, selenate play a critical role in the 
process of regulation activity of Akt pathway after HFD exposure.

Selenate ameliorates PA-mediated autophagy impairment and Akt activity in H9C2 cells.  To 
determine the molecular signaling pathway that regulates autophagy in H9C2 cells, we analyzed Akt activity by 
Western blots, which plays an important role in autophagy. We treated the H9C2 cells with LY294002, the inhibi-
tor of PI3K, which further decrease the phosphorylation and activity of Akt. We found a remarkable LC3-II accu-
mulation and a decrease of p62 expression when phosphorylation levels of Akt at Ser473 was decreased measured 

Figure 5.  HFD-induced metabolic disorders was partially recovered by selenate administration in C57BL/6J 
mice. (A–D) Levels of total cholesterol (TC), triglyceride (TG), insulin, glycated hemoglobin A1c (HbA1c) in 4 
groups of mice. (E) Level of body mass at different length time post-selenate administration in 4 groups in mice. 
(F) Level of blood glucose at different length time post-selenate administration in 4 groups of mice. The data 
are presented as mean ± SD (n = 15). *P < 0.05, **P < 0.01, ***P < 0.001 when versus ND group. #p < 0.05, 
##p < 0.01, ###p < 0.001 HFD + Se versus HFD group.
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by Western blots in the LY294002 treated H9C2 cells compared to the control treated cells (Fig. 8A–F). The data 
suggest that the inhibition of Akt phosphorylation after LY294002 exposure initiates autophagic degradation.

To further elucidate whether selenate protections against hyperlipidemia-induced cardiac injury, we treated 
H9C2 cells with 0.5 μM selenate before exposure to PA. We found that selenate pretreatment significantly 
decreased PA- induced LC3-II accumulation in H9C2 cells (Fig. 8H,J,K). Moreover, selenate pretreatment could 
attenuate PA-induced accumulation of p62 protein by densitometric analysis of Western blot and decrease num-
ber of GFP-p62 puncta by quantitative analysis of number of GFP-p62 puncta (Fig. 8H,L–N). These data suggest 
that selenate ameliorates PA-induced autophagy impairment and maintain autophagy influx in status of cardio-
myocytes. To learn the molecular mechanism involved in the attenuation of PA-induced autophagy impairment 
by selenate, we analyzed Akt activity by Western blots in above PA and selenate-treated H9C2 cells. We found 
that phosphorylation levels of Akt at Ser473 were increased in the cells treated with 0.4 mM PA compared to 
the control treated cells, suggesting the activation of Akt signaling in H9C2 cells by PA. Selenate pretreatment 
attenuated PA-induced increase of phospho-Akt (Fig. 8G,I). Furthermore, selenate pretreatment improved sig-
nificantly reduction of H9C2 cell viability induced by PA (Fig. 8O,P). Taken together, these findings suggest that 
selenate ameliorates PA induced autophagy impairment and reduction of cell viability in H9C2 cells, which is 
associated with regulation of the process of autophagic degradation and regulation activity of Akt pathway after 
lipid exposure.

Figure 6.  Selenate therapy mitigated HFD-induced cardiac hypertrophy and myocardial fibrosis in C57BL/6J 
mouse hearts. (A) Representative images of H&E staining with original magnification (×400) exhibiting cross-
sectional area (CSA) of cardiomyocytes in each group (n = 5). (B) Representative images of Masson’s trichrome 
(MT) staining exhibiting myocardial fibrosis at magnification ×200 in left ventricles in four groups (n = 4). 
(C) Quantitative analysis of CSA with measurements of 30 cardiomyocytes in each section from 4 groups. (D) 
Quantitative analysis of percent area of myocardial interstitial fibrosis with normalizing blue MT staining area 
to total myocardial area from 10 randomly-selected fields in each section from four groups. (E–I) Changes in 
relative mRNA levels of ANP, BNP, β-MHC, collagen-I, and collagen-III in myocardium from four groups of 
mice (n = 6). The data are presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 when versus ND group. 
#p < 0.05, ##p < 0.01, ###p < 0.001 HFD + Se vs. HFD group.
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Discussion
Obesity has become one of the most prevalent metabolic diseases all over the world. In patients with obesity, 
the crucial causes of morbidity and mortality are cardiovascular disorders. So far, the effective treatments for 
obesity-induced cardiac structure remodeling and dysfunction are not identified. In this study, we demonstrated 
that long-term HFD would lead to hyperlipidemia, enhance blood glucose/HbA1c, and induce hypertrophic 
cardiomyocytes and cardiac fibrosis deposition in C57BL/6J mice. We also found diet containing selenate dra-
matically ameliorated lipid metabolism, reversed HFD-induced hypertrophic cardiomyocytes and cardiac 
fibrosis accumulation. In addition to these findings, it was observed that selenate supplementation amelio-
rated HFD-induced cardiac autophagic degradation inhibition and reversed HFD-activated phosphorylation 
of Akt. It is possible to conclude that selenate administration contributes mainly with a cardio-protective role 
in obesity-related cardiac abnormalities by regulating cardiac autophagic degradation and Akt pathways. These 
results confirm that selenate plays an important role in ameliorating hyperlipidemia, myocardial hypertrophy, 
cardiac fibrosis deposition, and ultimately prevention of heart remodeling in mice.

The process of autophagy is mainly activated in response to external stressor, and is characterized by the for-
mation of autophagosomes; subsequently, autophagosomes target and fuse with lysosome to degrade engulfed 
damaged proteins or organelles in order to maintain intracellular homeostasis, differentiation, and survival24. 
Previous studies have showed that changed autophagy is correlated with regulating HFD/PA-associated cardiac 
hypertrophy, cardiac and intracellular Ca2+ derangements4,5,25, especially autophagy is inhibited in metabolic 
cardiomyopathy26. Moreover, the activation of autophagy in the heart has contributed to ameliorate hypertrophic 
cardiomyopathy, alleviate cardiac dysfunction and myocardial injury27–30. Furthermore, there is evidence indi-
cated that selenium compounds can exert both stimulating and inhibitory effects on autophagy, as well as play 
both ameliorative or adverse effects on oxidative stress and the maintenance of health, depending on the environ-
mental stress, diseases, cell lines, selected selenium compounds, and the presence of applied concentration31–34. 
Accordingly, we postulate cardio-protective effects of selenate are closely connected with autophagy changes. In 
our study, we found inhibited autophagic degradation under high-lipid conditions, and treatment of selenate in 
an applied concentration successfully rescued HFD-induced suppressed autophagic degradation in mice. Thus, 
selenate limited HFD-induced cardiac remodeling and cardiac injury probably through modulating relatively 
levels of autophagy.

Figure 7.  Selenate rescued cardiac autophagic degradation inhibition and Akt signaling when exposed to HFD 
in cardiac tissue of C57BL/6J mice. (A,B) Representative Western blot analysis of autophagic markers and Akt 
pathway in heart tissue of per group of C57BL/6J mice. (C–G) The column figures of Beclin-1, LC3- II, and p62 
normalized by GAPDH; the ratios of LC3-II/LC3-I, phospho-Akt normalized by total Akt from the Western 
blots. The data are presented as mean ± SD (n = 6 - 7). *P < 0.05, **P < 0.01, ***P < 0.001 vs. ND group, 
#p < 0.05, ##P < 0.01, ###p < 0.001 HFD+Se vs. HFD group.
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The exact mechanism that regulates autophagy and cardiac remodeling remains to be explained. It has been 
shown that the Akt is essential for controlling cardiac autophagy and autophagy-related apoptosis in the heart 
tissue3,4,29,30. Moreover, activated Akt promotes cardiac hypertrophy under pressure overload or β-adrenergic 
receptor stimuli in transgenic mice13. Alternatively, in cardiomyocytes, prolonged Akt activation results in patho-
logical hypertrophy with an increase in interstitial fibrosis17. It also has been indicated that selenium compound 
could inhibit Akt phosphorylation and its down effectors which is involved in modulating autophagy34. In our 
study, we found increased phosphorylation of Akt after lipid overload, whereas it was dramatically decreased after 
selenate supplement, accompanied by altered CSA of cardiomyocytes and cardiac fibrosis in C57BL/6J mice, as 
well as H9C2 cells viability. In addition, we provided important information that regulation of phosphorylation 
in Akt pathway accompanied by fluctuations of p62 expression. These results suggest that the Akt pathway plays 
an essential role in mediating HFD-associated cardiac structure changes and disrupted autophagic degradation, 
which provide further evidence that the ameliorative effects of selenate on cardiac remodeling are through regu-
lating Akt pathway and autophagic degradation, providing a molecular mechanisms of explanation for autophagy, 
and a potential causative relationship between the two.

Nonetheless, a few unresolved issues remain. First, although we have established HFD-induced cardiac injury 
by histologic data, we did not present data of echocardiological measurements. Then, we did not measure GPX1 
activity or expression in myocardium. Last, it is not explained in detail why inhibition of cardiac autophagy 
appears to be the reason of HFD-induced cardiac injury. It will be of interest to provide more data that auto-
phagy inhibition contributes to HFD-induced myocardial injury or autophagy restoration reduces the cardiac 
impairments.

In summary, our data turn out that selenate treatment ameliorates hyperlipidemia, and attenuates cardiomyo-
cytes hypertrophy and deposition of fibrosis, together with improved cardiac function. The selenate’s benefits are 
closely related to the regulating activity of Akt signaling pathway and cardiac autophagic degradation. Treatment 
with selenate or in combination with other therapy might be an attractive option against obesity-induced meta-
bolic disorders and cardiac injury.

Data availability
All data generated or analyzed in the current study are included in this published article.

Received: 30 July 2019; Accepted: 19 November 2019;
Published: xx xx xxxx

Figure 8.  Selenate reversed cardiac autophagic degradation inhibition and regulated the activity of Akt when 
exposed to PA in H9C2 cells. (A–F) H9C2 cells were treated with 10 μM LY294002 for 12 hours. Representative 
Western blots images and of densitometric analysis of the relative levels of pS473-Akt, LC3-II, p62 and the 
ratio LC3-II to LC3-I expression in H9C2 cells. (G–L) H9C2 cells were treated with 0.4 mM PA for 12 hours in 
the absence or presence of 0.5 μM of the selenate (Se) for 12 hours. Representative Western blots images and 
densitometric analysis of phospho-Akt, Akt, LC3-II, LC3-II/LC3-I and p62 expression in H9C2 cells. (M,N) 
H9C2 cells stably expressing GFP-p62 were pretreated with Se for 12 hours, followed by 0.4 mM PA for 12 hours, 
and then representative images from the confocal fluorescence (M, Scan bar = 25 μm) and quantitative analysis 
of number of GFP-p62 puncta. (O,P) H9C2 cells were treated with 0.4 mM PA for 12 hours in the absence or 
presence of 0.5 μM of Se for 12 hours. Cell viability analyses of H9C2 cells using CCK-8 assay. The experiments 
were repeated for 3 times. All data are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. 
Con group, #p < 0.05, ##P < 0.01, ###p < 0.001.
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