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A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to
hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, andmechanical
ventilators, aswell as physicians, respiratory technicians, and specialized nurses.Wedescribe an online cumulative sumbasedmodel
named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and
informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease
epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in
charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was
thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When
it was superimposed over the H1N1 influenza outbreak census (2008–2010) taken by the National Institute of Medical Sciences and
Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory
disease epidemic outbreaks with a minimal rate of false alerts.

1. Introduction

A future severe febrile respiratory illness outbreak will affect
a large number of people; many of themwill suffer from acute
respiratory failure, demanding critical care by specialized
personnel with equipment to meet the demand of what is call
now “mass casualty mechanical ventilation.” This scenario
can appear simultaneously in distant locations without any
apparent relationship between them [1, 2], replicating itself
very fast in the region. In this scenario, the potential benefit
from using automated monitoring methods in a healthcare

network is highly promising [3, 4] specially if in addition
to monitor the variables involved it supports decisions with
“fresh” online data during the outbreak to optimize medical
supplies.

In an epidemic outbreak, the health sector needs to know
accurately and in an extremely short period of time the
outbreak location, the region or regions where it is spreading,
its propagation speed, and the humanworkforce and supplies
available and their location (Table 1) [5]. Although hospital
facilities have updated inventory lists, protocols, and agree-
ments to share specialized personnel and supplies in case of
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Table 1: OSRDI model variables.

No. Concept Description

1 Patients
Number of patients in the healthcare facility according to the following description.
Description: a patient already admitted into hospital requiring a bed, the equipment, and the attention of
specialized personnel.

2 Available beds

Number of beds in the healthcare facility according to the following description.
Description: a bed in good condition and maintenance that provides comfort, supplied with necessary clothing.
The headboard must be in contact with the wall, away from windows or doors that can obstruct hospital
personnel free transit; beds must be articulated, their height must be adjustable and easy to handle and move,
and they have to be provided with wheels; other fixtures and fittings would be a hypoallergenic waterproof
mattress breathable to water steam, side rails, pillow with pillowcase, handle to adjust height and articulate the
bed. Each bed must have a free space that has an air, oxygen, and suction outputs, as well as an easily available
electricity supply outlet. Hospital bed dimensions: 0.80–0.90m. (width) × 1.80–1.90 (length) × 0.70m. (height
without mattress). Minimal distance between beds: 1.20m.

3 Available areas

Number of physical areas available in the healthcare facility, according to the following description.
Description: an available area to place a bed with infrastructure and the necessary equipment to give permanent
assistance and clinic monitoring of vital signs to patients in critical condition. This area must have easy access to
hospital, emergency department, intensive care unit, intermediate care facilities, and have air, oxygen, and
suction outputs and an electricity supply outlet. The electrical installation must have 120V to 240V and easily
identifiable ground connections.

4 Hemodynamic
monitors

Number of usable hemodynamic monitors in the healthcare facility according to the following description.
Description: any monitor that measures patients’ hemodynamic parameters. Compulsory equipment:
continuous electrocardiograph monitor (ECG) in one or two leads (DII and V5), continuous heart rate monitor,
pulse oximeter (SpO2), noninvasive blood pressure monitors at 10min intervals.
Optional equipment: Capnographs, exhaled CO2 monitor (EtCO2), ST analysis, and invasive blood pressure
monitors.

5 Mechanical
ventilators

Number of usable ventilators in a hospital facility according to this description.
Description: any mechanical ventilator with the following modes: assist control ventilation (ACV),
synchronized intermittent mandatory ventilation (SIMV), and pressure support ventilation (PSV), with variable
control (pressure, volume, flow, or time) and dual control, PEEP with battery to store energy, and a pneumatic
compressor for adult and pediatric patients.

6 Doctors
Number of doctors in the hospital facility according to this description.
Description: doctors with postgraduate degree and/or training with patients in critical condition and/or
anesthesiology, attested by a certified university program.

7 Respiratory
technicians

Number of respiratory technicians in the hospital facility according to the following description.
Description: respiratory technicians or personnel trained to treat patients on mechanical ventilation.

8 Nurses Number of nurses in the hospital facility according to the following description.
Description: nurses or technicians trained to treat patients in critical condition and surgical emergencies.

Variable description used for OSRDI model to determine saturation index (Section 2.1), [5].

an epidemic outbreak [6], most of them do not have figures
from other hospital inventories because this information is
centralized in health sector government offices [7], making
it difficult to build possible transit scenarios of human and
material supplies in the network; precious time is thus lost,
and medical care is delayed during these emergencies [8].
From these facts, we gather that if every hospital facility
has updated information about the entire network, it will
empower them to take earlier decisions about the optimal
distribution of resources at the time that the epidemic
outbreak is detected. We believe that the demand of these
supplies is a parameter that correlates with the respiratory
epidemic outbreak itself. Accordingly, the demand of these
supplies in disasters is not unique of a respiratory epidemic
outbreak, however, the circumstances in time and space
definitely are.

To validate our idea, we developed an online
model namedOvercrowd-Severe-Respiratory-Disease-Index
(OSRDI), which was inspired by a Modified Overcrowd

Index system used tomeasure the attention in the Emergency
Department [5].The index does not need large computational
background, shares the data of each hospital facility for the
entire network, and identifies in which cumulative sum
(CUSUM) algorithm [9] there is an unusual demand of the
aforementioned supplies. With the information, the model
warns over possible respiratory epidemic outbreaks when
the number of warnings by area unit exceeds the parameters
described later. This system is not predictive; it only gives a
fast count that could improve predictive models [10, 11] as
there is a post hoc analysis of the evolution of those variables
which provides elements to understand the propagation of
the epidemic. We think that this model helps to solve the
problem of personnel and material shortages in the network
created by an epidemic outbreak, as it enables the network to
reallocate in real time physicians and supplies, particularly—
but not limited—to the Emergency Department and the
Intensive Care Unit, supporting the alert that the system
gives and optimizing time and resources in the affected areas.
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It also provides recommendations for the final distribution
and logistics of these resources, which can be considered an
additional asset over other models already known.

2. Materials and Methods

We developed an algorithm to monitor daily reported needs
ofmaterials and specialized personnel in a network of health-
care facilities. The model was evaluated using simulated
multiple outbreaks superimposed on historical baseline data
and the 2009 H1N1 influenza outbreak in México [12–16],
with figures taken from the National Institute of Medical
Sciences and Nutrition Salvador Zubiran (INNSZ) census.
Later there is a description of the model, scenario evaluation,
algorithms, and performance indicators. As said before,
the model was inspired by the Modified Overcrowd Index,
recently developed by our group [5].

2.1. Overcrowd-Severe-Respiratory-Disease-Index (OSRDI).
TheOSRDI model is a CUSUM [9] algorithm.The CUSUM-
based calculation means the calculation of a cumulative sum.
Samples from a process 𝑥

𝑛
have been assignedweights𝑤

𝑛
and

summed as follows:
𝑆
0
= ( ) ,

𝑆
𝑛+1
= max (0, 𝑆

𝑛
+ 𝑥
𝑛
− 𝑤
𝑛
) .

(1)

With this formula, the OSRDI model weights the vari-
ables described in Table 1, detecting any unusual consump-
tion of resources in the entire hospital network, generating
warning alerts in the facility where it is located and in nearby
region facilities as the algorithm builds up specific areas by
postal code. This space distribution varies depending on the
fluctuation of the network nodes.The method considers four
quotients in two different levels of information to give a
warning from the variables mentioned previously. The first
three quotients are given before the outbreak.

(1) 100 × (available beds)/(doctors + respiratory techni-
cians + nurses). This saturation rate gives the rela-
tion between available beds and doctors, respiratory
technicians and nurses. The quotient is a referential
of the attention given to patients hospitalized by
the specialized healthcare personnel. If there are no
doctors, respiratory technicians, or nurses at the time
of taking the inventory, the quotient will be calculated
as 999; being so, the range of the quotient fluctuates
between 0 and 999.

(2) 100 × (available areas)/(hemodynamic monitors +
mechanical ventilators). This saturation rate gives the
relation between available areas in the hospital facility
and the equipment. This quotient is a referential of
possible relative growth in the facility, considering
the maximum available areas where an equipped bed
can be placed with the available equipment. In case
of denominator zero because of no hemodynamic
monitors ormechanic ventilators available at the time
of taking the inventory, the quotient will be calculated
as 999.

Table 2: Main saturation stages.

No. Level Description
3 𝑥 > 200 Extremely saturated
2 100 < 𝑥 < 200 Highly saturated
1 100 Saturated
0 𝑥 < 100 Normal
Level: acceptance range for OSRDI saturation index (Section 2.1) [5].

(3) 100 × (available beds)/(hemodynamic monitors +
mechanical ventilators). This saturation rate gives the
relation between usable beds and the equipment in
the hospital. This quotient is a referential of possible
relative growth in the healthcare facility considering
the total beds usable and the equipment. If there are
no hemodynamic monitors or mechanical ventilators
at the time of taking the inventory, the quotient will
be calculated as 999.

Additionally, there is one quotient given at the outbreak
itself taken from the number of patients requiring a specialty
bed (see Table 1) and the number of available beds in the
healthcare facility.

(4) 300 × (patients)/(available beds). This saturation rate
measures the attention quality in terms of the number
of patients requiring a specialty bed and the equip-
ment for the acute respiratory failure, related to the
number of available beds. In case the denominator is
zero, meaning there are no available beds in the facil-
ity at the time of taking the inventory, the quotientwill
be calculated as 999.

The model also displays two different subindexes (A and
B).

(A) The first subindex shows the resources distribution
that a respiratory disease outbreak rapidly consumes,
taking the maximum quotient from 1, 2, and 3.

(B) The second subindex is related to the potential
respiratory disease outbreak itself. Quotient (4) is
pondered 30% if any quotient (1, 2, or 3) is greater than
90.

The model uses these two quotients taking the biggest.
For instance, if the quotient (1) has 100 as value, quotient (2)
has 165, quotient (3) has 201, and quotient (4) has 350, then
the OSRDI-A would be 201 (3: extremely saturated) and the
OSRDI-B would be 350 × 1.30 = 455 (see Table 2).

The model has four levels of alert used also by the
Modified Overcrowd Index [5] (Table 2); levels A and B
are associated with a warning message. The daily use of
the system will place in context the level of alert in the
hospital facility; the method will take the highest value from
subindexes (A and B) at the time of the alarm, in other words,
OSRDI = max (OSRDI-A, OSRDI-B).

2.2. Geographical Regions. Themodel also takes into account
the geographical area of each affiliated hospital the same
way as it does in the Modified Overcrowd Index [5]. The
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Table 3: Warning rate for an OSRDI network.

Hospitals 1 2 3 4 5 6 7 8 9 10 11 12 13
Area codes 10500 10501 10500 10503 10510 10988 10987 10985 10986 10300 10301 10303 10600
OSRDI 150 200 250 110 300 199 189 170 165 50 60 99 400
Warning rate 250 250 250 250 199 199 199 199
Example of warning system in a 13-hospital network divided by two regions. Hospitals: 13 hospitals identified by area code. Area codes: location identifiers for
the 13 hospitals. OSRDI: saturation index calculated by the model. Warning rate: saturation rate by region (Section 2.2).

geographical area is recognized as a region by the OSRDI
applying this formula |PC

𝑚
− PC
𝑖
| < 4. In this expression

the symbol | | stands for the absolute value of the expression,
where PC

𝑚
is the arithmetic mean of nearby hospital area

codes and PC
𝑖
is the area code of one specific hospital in the

network. The difference between those variables is 4 (|PC
𝑚
−

PC
𝑖
| < 4); it induces a circle with a three kilometers radius,

and therefore this algorithm is able to build regions within
this area.

The saturationwarningwill be displayed ifmore than 75%
of the hospitals in that area reach a value higher than 100. For
example, let us consider a network of 13 hospitals (Table 3)
with three regions {1, 2, 3, 4}, {6, 7, 8, 9}, and {10, 11, 12}
according to their area codes, hospitals 5 and 13 are distant
from each of the regions, and consequently they are not part
of them.

The OSRDI model defines a region if the absolute dif-
ference between two area codes is less than 4 kilometers. If
the arithmetic mean of hospital group {1, 2, 3, 4} is PC

𝑚
=

10501; and the area code of hospital 1 is PC
1
= 10500 then

|PC
𝑚
− PC
𝑖
| = |10501 − 10500| = 1 < 4.

The same applies for the second hospital where PC
𝑚
=

10501 and PC
𝑖
= 10501, then |PC

𝑚
−PC
𝑖
| = |10501−10501| =

0 < 4, and so forth until hospital 5 where |PC
𝑚
− PC
𝑖
| =

|10501 − 10510| = | − 9| = 9 > 4. OSRDI does not consider
this hospital part of the region; therefore it rejects it.

In region {1, 2, 3, 4} the level to set the warning has
been reached because the highest OSRDI value is 250 corre-
sponding to “3: Extremely Saturated,” in region {6, 7, 8, 9} the
warning is “2: Highly Saturated” as the OSRDI value is 199,
while region {10, 11, 12} remains below the warning level as
the OSRDI value is 99.

In the case of hospitals 5 and 13, the OSRDI reaches 300
and 400, respectively, which are displayed in the surveillance
system, but they do not cause any alert because the model
is adjusted to region or network but not to isolated units.
The OSRDI determines the region automatically and submits
the warning if required. The model constantly verifies the
regions built up adding or withdrawing any hospital facility
and makes the necessary adjustments.

It is advisable to initially use the model in hospitals at
the same geographical region. Although being designed for
hospital networks scattered in distant regions or states, the
initial setup would determine the level of alert in that par-
ticular region.

2.3. Retrospective Analysis. Apart from showing quotients A
and B in real time, the model keeps a historical backup of
16 quotients to enable a “time series” construction (Table 4).

This backup allows an analysis of a hospital unit as well as all
hospitals in the network. Those 16 quotients were next di-
vided in four groups for simplicity.

(i) Quotients (5-6) show a maximum demand on equip-
ment with regard to specialized personnel and avail-
able beds in the facility.

(ii) Quotients (7–9) show amaximumdemand of special-
ized personnel with regard to available beds, available
areas, and equipment in the facility.

(iii) Quotient (10) shows a maximum demand of available
beds with regards to available areas in the facility.

(iv) Quotients (11–13) show the demand of available areas
with regard to patients, available beds, and specialized
personnel in the hospital.

(v) Quotient (14–16) show the demand of patients with
regard to available areas, specialized personnel, and
equipment in the facility.

2.4. The OSRDI Screens. The model shows the following
variables when updated: patients, available beds, available
areas, equipment, specialized personnel, quotients A, B, and
time (Table 5). The field “time” shows the last time that the
data was updated. These variables appear for each hospital
connected to the model, so the user can access the data of
the entire network at any time and become aware of a possible
saturation of other hospital services.The system also provides
an audible signal, so any passive observer can also be aware
of the warning.

2.5. Scenario Evaluation. To evaluate the model we per-
formed two tests: a hospital census and an automated recre-
ation of multiple epidemic outbreak scenarios generating at
random all variables here described.

(1) We used the 2009 census derived from the observa-
tions made to the H1N1 epidemic outbreak in 2008–
2010 by INNSZ; the available beds for this purpose
represented 20% of total beds, and the figures refer
to patients admitted into the hospital with unknown
acute respiratory syndrome.

(2) The exhaustive test consists of the recreation of mul-
tiple warning alerts in a group of 13 hospitals, called
built-in self-random test (BISR), as the Modified
Overcrowd Index does [5].
For this purpose, 52,560 hospital scenarios were ran-
domly generated by the use of a random number
generator [17, 18], and the corresponding data was
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Table 4: OSRDI backup model.

No. Concept Description
1 Patients Number of patients in the healthcare facility.
2 Available beds Number of beds in the healthcare facility.
3 Available areas Number of physical available areas in the healthcare facility.
4 Hemodynamic monitors Number of usable hemodynamic monitors in the facility.
5 Mechanical ventilators Number of usable mechanical ventilators in the healthcare facility.
6 Doctors Number of doctors in the healthcare facility.
7 Respiratory technicians Number of respiratory technicians in the healthcare facility.
8 Nurses Number of nurses in the facility.
9 Quotient (1) (Available beds)/(doctors + technicians + nurses).
10 Quotient (2) (Available beds)/(hemodynamic monitors + mechanical ventilators).
11 Quotient (3) (Available areas)/(hemodynamic monitors + mechanical ventilators).
12 Quotient (4) (Patients)/(available beds).
13 Quotient (5) (Hemodynamic monitors + mechanical ventilators)/(doctors + technicians + nurses).
14 Quotient (6) (Hemodynamic monitors + mechanical ventilators)/(available beds).
15 Quotient (7) (Doctors + technicians + nurses)/(available beds).
16 Quotient (8) (Doctors + technicians + nurses)/(hemodynamic monitors + mechanical ventilators).
17 Quotient (9) (Doctors + technicians + nurses)/(available areas).
18 Quotient (10) (Available beds)/(available areas).
19 Quotient (11) (Available areas)/(patients).
20 Quotient (12) (Available areas)/(available beds).
21 Quotient (13) (Available areas)/(doctors + technicians + nurses).
22 Quotient (14) (Patients)/(available areas).
23 Quotient (15) (Patients)/(doctors + technicians + nurses).
24 Quotient (16) (Patients)/(hemodynamic monitors + mechanical ventilators).
25 Date It is the date the healthcare facility updates the data.

26
Overcrowd-Severe-
Respiratory-Disease-Index
model A

It is the OSRDI-A computation.

27
Overcrowd-Severe-
Respiratory-Disease-Index
model B

It is the OSRDI-B computation.

28 Time It is the moment the healthcare facility updates the data.
Concept: OSRDI model backup that adds up on each update done by the user (Section 2.3).

Table 5: OSRDI screen.

No. Concept Description
1 Patients Number of patients in the hospital facility.
2 Available beds Number of beds in the hospital facility.
3 Available areas Number of physical available areas in the hospital facility.
4 Hemodynamic monitors Number of usable hemodynamic monitors in the hospital facility.
5 Mechanical ventilators Number of usable mechanical ventilators in the hospital facility.
6 Doctors Number of doctors in the hospital facility.
7 Respiratory technicians Number of respiratory technicians in the hospital facility.
8 Nurses Number of nurses in the hospital facility.
9 Quotient (1) (Available beds)/(doctors + technicians + nurses).
10 Quotient (2) (Available beds)/(hemodynamic monitors + mechanical ventilators).
11 Quotient (3) (Available areas)/(hemodynamic monitors + mechanical ventilators).
12 Quotient (4) Patients/(available beds).
13 Time It is the moment the data is updated.
Concept: variables shown in the screen by OSRDI model after each update (Section 2.4).
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Table 6: Built-in self-random-test parameters.

Date Patients Available
beds

Available
areas

Hemodynamic
monitors

Mechanical
ventilators Doctors Respiratory

technicians Nurses

Jan-08 6 191 68 33 52 25 13 67
Built-in
self-random test −5% 10% 15% −10% 25% 135% −100% 2%

Random
template 5 210 78 29 65 58 0 68

Example of random percentages generated by the built-in self-random test (Section 2.5).

converted into the various variables used by the
model. These random scenarios simulated hourly
data readings for a time span of 6 years. This proce-
durewas repeated for 13 different hospitals distributed
in two regions. The BISR test generated variables for
each hospital that were inspected by the model.

Reference data (“seed”) for the BISR test was taken by
the INNSZ in January 2008 and was used as the base
for the simulated data reading, increasing or decreas-
ing the corresponding variables at random. An exam-
ple is given in Table 6where randompercentages gen-
erated by the BISR test were applied to the variables of
Table 1, then a random template was constructed that
fed the model, the same way the BISR test generated
all virtual scenarios.

For the OSRDI verification we calculated a “double
blind” test on 52,580 random transactions and count-
ed the “false negative” and “false positive” answers
produced by the system.

2.6. Performance Indicators. The model performance was
focused on multiple simulated scenarios of respiratory epi-
demic outbreaks,measuring the initial and final stages of each
outbreak produced randomly and all reconfigurations that
the model produced from the 13 hospitals. Each individual
and regional warning was registered as well as the model
average execution time.The triage results were used to assess
themodel performance and the relation response false alarm.

The model average performance is based on two main
indicators: its sensitivity, which describes the algorithm capa-
bility to detect simulated outbreaks; and the time required to
give the warning. In all cases the evaluation of the warning
signal was done first at the hospital and then at the region. A
false warning was considered as a period with no epidemic
outbreak warning.

2.7. Cut-Off Points

Quotients.TheOSRDI system is sensitive to twomeasures: (i)
the installed capacity to deal with an outbreak of the disease,
and (ii) the demand and offer of the referenced variables
with respect to patients. The first three subindexes measure
the variables: beds, equipment, and health care staff, while
the fourth subindexes weighted heavily the availability of

beds and patients who require these beds, as an indication
of the beginning of an outbreak. The design of this method
considers that a severe respiratory failure may occur with
the need of immediate hospitalization, but a second indicator
may come from an unusual demand for supply, on a specific
region.

This method assumes that a considerable number of
hospitals are added to the system to form a hospital network,
and a consequence of this is the common knowledge of
all users on the real demand of supplies involved. It is in
this sense that the imbalance between the different variables
(Table 1) is indicative, not only of a possible outbreak but also
of the shortcomings of equipment for hospitals.

Scenario Evaluation. The test was performed in the National
Institute ofMedical Sciences andNutrition Salvador Zubiran,
because the data available to us and the system depend on
the constant update of inventories and personnel, and not
the type of hospital. The testing of the automated system
envisioned the adequacy of a virtual stage that was also used
in another system [5], and it was very effective simulating
years of processing. We used a method implemented and
tested by us for the random generation of events [18], with
computers dedicated solely for the processing of these tests
(see Section 6). We did not limit the random values to
much more probable ranges (see Table 6, column respiratory
technicians), since the idea was to validate even events that
would be very unlikely.

Geographical Regions. To assign a region, after the design of
the OSRDI system was the most elaborate and difficult part,
considering that when one identifies a region on a map,
one identifies it visually. However, to set up a rule and then
automate it is radically different. In addition, the OSRDI
analytically identifies several regions at the same time and
updates them according to the addition/removal of hospitals.
We believe that if 75% of the region presents a saturation
index greater than 100, it is a symptom of a disease outbreak,
and that although increasing the number of affiliated hospi-
tals will benefit from the knowledge of the situation that the
supplies have at that moment, we do not consider that this
will add efficiency to the predictions, since the phenomenon
that seeks to predict is multifactorial. The cutoff value of
75% was selected because we have seen that most of the
Emergency Departments in a metropolitan area work with
high occupancy indicators under normal conditions.
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Table 7: INNSZ experimental data.

No. Concept Jan-08 Apr-08 Aug-08 Dec-08 Jan-09 Apr-09 Aug-09 Dec-09 Jan-10 Apr-10 Aug-10 Dec-10
1 Patients 6 7 7 4 9 118 87 10 18 20 10 10
2 Available beds 38 38 38 38 39 39 39 39 40 40 40 40
3 Available areas 68 68 68 68 68 68 68 68 68 68 68 68
4 Hemodynamic monitors 33 33 33 33 33 33 33 33 70 70 70 70
5 Mechanical ventilators 52 52 52 52 76 76 76 76 76 76 76 76
6 Doctors 25 25 25 25 27 27 27 27 29 29 29 29
7 Respiratory technicians 13 13 13 13 16 16 16 16 16 16 16 16
8 Nurses 67 70 75 71 71 72 75 82 76 72 77 73
9 OSRDI-A 80 80 80 80 62 62 62 62 46 46 46 46
10 OSRDI-B 47 55 55 31 69 907 669 76 135 150 75 75
11 OSRDI 80 80 80 80 69 907 669 76 135 150 75 75
Data used byOSRDImodel (2008–2010). Concept: variable used to determine saturation index. OSRDI-A and B. Source: National Institute ofMedical Sciences
and Nutrition Salvador Zubiran (INNSZ) in Mexico City.

Jan-08 Apr Aug Dec Jan-09 Apr Aug Dec Jan-10 Apr Aug Dec

Patients
OSRDI-A
OSRDI-B

−2

0

2

4

6

8

10
×10

2

Figure 1: OSRDI-A and OSRDI-B sensibility to patient distribution
in census taken by INNSZ in Mexico City from 2008 to 2010
(Table 7).

3. Results

Table 7 shows the variable trend registered by the INNSZ
from 2008 to 2010 (rows 1–8), as well as the OSRDI esti-
mated saturation index (row 11). The April 2009 outbreak
was detected by the model only from the unusual growth
in the number of patients as the other variables did not
change during this event.Themodel sensitivity is graphically
illustrated (Figure 1) by comparing patients’ linear trend in
the census versus the A and B indexes. The graphic shows
the model sensitivity at the strong fluctuation of the patient
variable.There is practically no change in theOSRDI-A index
while the OSRDI-B has a significant change, showing the
need to include all variables in the four quotients to generate
the outbreak warnings.

Table 8 shows the warning coincidences generated at
random by the six-year simulation in 13 hospitals compared
to the warnings generated by the model, divided into two
initial groups by the different variables (available beds, usable
areas, and specializedmedical personnel and equipment). All
variable warnings match, except the number of usable areas;
in this case, the model did not result in a warning.

Table 8: OSRDI model warnings.

Quotients Built-in self-random test OSRDI
Beds/medical personal 13 13
Available areas/equipment 8 7
Beds/equipment 5 5
Patients/beds 5 5
Built-in self-random test and OSRDI model warning matches.

3.1. Robustness. Themodel has been designed to be accessed
from any location, with an unlimited number of hospitals
and users. Its access communication port is 22 with firewall
protection against other computers. Its security system has
an automated scaled backup with reports on a daily, weekly,
and fortnightly basis. The backups are online and offline for
all hospitals in the network, and it also has a connectivity
failure detector; in case of 35% connectivity loss it will send
an alarm to the administrator. The system has fragmented
access, encrypted and distributed in several servers; some of
them are also randomly placed offline.

The OSRDI model has been designed to use minimal
computer resources and can be configured to start when
the equipment is turned on, the epidemic outbreak warning
alarm can also be audible if requested.

3.2. Availability. Tests carried out for implementation by
INNSZ show that data variable input (Table 1) should be done
by the Intensive Care Unit and the Emergency Department
and subsequently by the hospital admission area. The use of
the model only for monitoring purposes should be in the
hospital epidemiology department. The historical informa-
tion (Table 4) should be easily available but only within the
hospital network. All warning alerts must be confirmed by
the highest authority in the health sector. To avoid data input
duplication, the hospital can use patient admission records
as parameters (Table 1) [5]. At this stage a hospital can use
the model to find out the saturation index in its patient first-
contact services.
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4. Discussion

During the H1N1 Influenza epidemic outbreak, difficulties
were faced to solve the cases of respiratory distress that
hundreds of patients suffered. In some cases, proper areas
were available in the facility, but beds or hemodynamic
monitors were lacking; in others, mechanical ventilators were
at hand but not the suitable staff to use them. Considering
that in case of a disaster, resources are always limited to the
circumstances and that respiratory distress is the first failure
that people in critical condition face, it is expected that in any
severe respiratory disease outbreak the demand of this kind of
equipment, material, and staff will be dramatically increased.
Based on these facts, the computational OSRDI model was
designed to assist the healthcare system at three stages.

(i) Previous to the outbreak, inventorying the equipment
in the hospital facility so the model can recommend
the transference of basic equipment, material, and
personnel to optimize their use and to avoid shortage
of them.

(ii) During the epidemic outbreak taking record of any
unusual shortage of supplies and reporting it to the
facility.

(iii) After the event reporting the saturation level of the
hospital network. The model does not identify pos-
sible internal logistic problems in hospitals whether
public, private, or specialized; it does not discriminate
between different hospital locations. It can also be
used to give support to land or air transportation of
patients providing in advance the availability of beds
and personnel in the area before the patient arrives to
the hospital.

The OSRDI model is a fast count algorithm whose math-
ematical simplicity makes it easy to implement; however, it
is not a predictive algorithm. Some models that predict the
outbreak based on symptoms are the PDE algorithms [19]
that use partial differential nonlinear equations or the HMM
[20] algorithms based on Hidden Markov models. PDE-
based algorithms are very restrictive as the resolution of the
differential system grows in its complexity with an𝑋𝑋, factor
where “𝑋” is the number of parameters involved. The HMM
based algorithms require precise training profiles, which is a
drawback as the nonspecific nature of the symptomatology in
respiratory outbreaks makes it difficult to identify.

The algorithms aimed at the automated monitoring of
epidemic outbreaks of influenza, such as EARS algorithms
that use diagnostic and prediagnostics information.However,
it is very difficult to avoid false alarms due to the fact that the
outbreaks accuse multiple variables, so that small differences
induce changes in the fundamental values of prediction.
Although our model cannot account for the details and
internal complexity of hospital saturation, its outline can
immediately identify such scenario in time and space.

The suggestions made by the model, for instance, the
transfer of equipment, have to be finally authorized by
qualified staff; however, these suggestions can become vital
in the case of an emergency for its logistic implications. We

consider that the generalized use of the OSRDI model by
the health sector could be a valuable contribution to solve
complex situations when facing an epidemic outbreak.

5. Computational Platform

The model was written in Fortran 77 under a Unix-type
operating system (GNU) and was performed with an Intel
i686, 0.5 GB of memory, 100GB total storage memory and a
Linux Fedora 14 operative system. This platform allowed the
measurement and verification of each routine of the model.
This task is always important in modeling, but in this partic-
ular case it was more relevant as it was necessary to verify all
routines that generated random numbers implemented and
whose methodology had been previously used by us [18].

The reason to verify the generation of random numbers
does not concern the verification quality of the set of ran-
domly generated numbers but the quantity (or periodicity)
of those random numbers produced. A procedure generating
random numbers relies on a computer that has a limited
representation inwhole numbers and decimals. Hence even if
the generator can bemathematically tested to have an infinite
periodicity, it will never be so in a finite computer. Therefore,
if random number generators are not checked in a process
where the number of interactions exceeds the generator large
sequences, the generator repeats the same sequence or part
of the same sequence, consequently the randomness of the
process is lost.

6. Conclusion

The computational system named OSRDI is an effective and
practical algorithm that detects potential severe febrile respi-
ratory illness epidemic outbreaks in hospitals by measuring
few variables.This model features a high efficiency to exclude
false alarms.

Availability

The use of the OSRDI program is freely available by request
(polanco@unam.mx).
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51, pp. 361–371, 2009.

[13] J. A. Serna-Ojeda, J. A. Castanon-Gonzalez, A. E. Macias-
Hernandez et al., “Survey about responsiveness of third level
hospitals to a medical disaster: after pandemic influenza in
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