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The synergistic interaction 
of thermal stress coupled 
with overstocking strongly 
modulates the transcriptomic 
activity and immune capacity 
of rainbow trout (Oncorhynchus 
mykiss)
Alexander Rebl1, Tomáš Korytář2, Andreas Borchel3, Ralf Bochert4, Joanna Ewa Strzelczyk5, 
Tom Goldammer1,6 & Marieke Verleih1*

The objective of the present study is to identify and evaluate informative indicators for the welfare 
of rainbow trout exposed to (A) a water temperature of 27 °C and (B) a stocking density of 100 kg/
m3 combined with a temperature of 27 °C. The spleen-somatic and condition index, haematocrit and 
the concentrations of haemoglobin, plasma cortisol and glucose revealed non-significant differences 
between the two stress groups and the reference group 8 days after the onset of the experiments. 
The transcript abundance of almost 1,500 genes was modulated at least twofold in in the spleen 
of rainbow trout exposed to a critical temperature alone or a critical temperature combined with 
crowding as compared to the reference fish. The number of differentially expressed genes was four 
times higher in trout that were simultaneously challenged with high temperature and crowding, 
compared to trout challenged with high temperature alone. Based on these sets of differentially 
expressed genes, we identified unique and common tissue- and stress type-specific pathways. 
Furthermore, our subsequent immunologic analyses revealed reduced bactericidal and inflammatory 
activity and a significantly altered blood-cell composition in challenged versus non-challenged 
rainbow trout. Altogether, our data demonstrate that heat and overstocking exert synergistic effects 
on the rainbow trout’s physiology, especially on the immune system.

Stressors in aquaculture cover a broad and diverse range of abiotic and biotic factors including inappropriate 
temperature, oxygen content, salinity, pH value, high doses of ultraviolet light, inorganic and organic substances, 
conspecific competition and predators. The co-occurrence of multiple stressors in aquaculture facilities1–3 has 
various physiologic consequences for the farmed fish ranging from moderate alterations at the molecular level 
to increased disease susceptibility, behavioural disorders or even mortalities3–5. It is well established that adverse 
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environments involving multiple stressors provoke a status of immunosuppression6–8 related to severe conse-
quences for aquaculture industry9–12. In essence, steroid hormones and neuroamines transfer the stress signals 
and impair a variety of immune functions13–15, including the reduced viability, proliferation and migration of 
immune-cell populations16, limited phagocytic activity and decreased production of pro-inflammatory mediators 
and antibodies17–19. These exogenously induced disturbances of the fishes’ homeostasis are reflected in various 
physiological alterations such as changed concentrations of plasma proteins or the altered expression of specific 
genes.

For decades, numerous scientific studies have been concerned with the recording and assessment of stress-
induced species-specific responses to find objective criteria that allow for the evaluation of an anthropogenic 
husbandry environment and development of guidelines for managing aquaculture facilities. Most of those studies 
focussed on the identification of potential biomarker genes and signalling pathways related to one particular 
stressor. In this regard, Oncorhynchus spp., which includes both Pacific salmon and trout, is one of the most 
investigated fish genera20. Particularly, the rainbow trout is not only a model species for immunological and toxi-
cological studies but has been exposed, for instance, to a variety of challenging temperatures. While the thermal 
preference of this genus is well below 20 °C21, the experiments included ice-cold temperatures22, moderately 
challenging temperatures of 18–23 °C23–27 and critical temperatures of 25–28  °C28–30. Concerning crowding, 
different stocking densities up to 120 kg/m3 were investigated over different periods31–36. Taken together, the 
resulting data sets document that individual challenge factors produce distinct and only slightly overlapping 
molecular signatures. Although multiple studies37–41 addressed the impact of simultaneously changing environ-
mental conditions on the physiology of bony fish, only a few studies integrated a broader and complementing 
panel of phenotypic, plasma- and transcript-based parameters. As transcriptomic analyses detect the entirety 
of modulated gene expressions and affected signalling pathways, they help to understand whether concurrent 
stressors evoke additive, synergistic or even antagonistic effects at the molecular level.

The present study addresses the question whether the combination of critical temperature and overstock-
ing evokes a stress response in rainbow trout. Our major goal was to identify novel potential biomarkers and 
induced functional pathways which provide sufficient information to identify improper husbandry conditions 
of rainbow trout. Using separate experimental approaches in our previous studies, we investigated the impact of 
adverse temperature23,27 and different stocking densities36 on rainbow trout. This current study followed a similar 
experimental design, but we exposed rainbow trout simultaneously to a critical water temperature and crowding. 
A water temperature of 27 °C was chosen as the primary challenge factor. In the summer months of recent years, 
this temperature was repeatedly measured in the German coastal regions along the Baltic Sea where rainbow 
trout are bred for commercial and research purposes (Suppl. Fig. 1). The increase in water temperature is likely a 
consequence of global warming. An increased stocking density of 100 kg/m3 was selected as the secondary chal-
lenge factor. This stocking density represents the upper limit for the conventional production of rainbow trout of 
respective age and weight as recommended by the Food and Agriculture Organisation of the United Nations42. 
Our previous investigations on the impact of crowding on rainbow trout revealed that a stocking density of 
120 kg/m3 significantly modulated the transcriptome of stress-relevant organs36 in comparison with those of trout 
kept at an uncrowded density33 of 30 kg/m3, which corresponds approximately to the density recommended for 
the organic aquaculture of trout (Commission Regulation (EC) No 710/2009 of 5 August 2009, Appendix XIIIa).

To investigate how a challenge-induced response influences the immune system, we focused on the major 
immune organs: the spleen, head kidney and peripheral blood leukocytes. The spleen was selected for tran-
scriptomic analysis as it is a major secondary lymphoid organ that represents the “meeting point” for pathogens 
and immune cells and is thus characterised by a generally remarkable magnitude of responses43–45. The head 
kidney plays a central role in the haematopoiesis of fish, also as a major reservoir of myeloid cells, which act as 
first responders upon pathogenic invasion46–48. The head kidney’s ability to eliminate pathogens and orchestrate 
inflammatory responses has previously been studied under various conditions (diets and exposure to stressors 
and pathogens) as a reference for the immunocompetence and was investigated here in vitro after stimulation 
with the model pathogen Aeromonas salmonicida. Furthermore, we studied the composition of major subpopula-
tions of circulatory leukocytes, which reflect the physiological and pathological stress-induced changes.

Results
Characterisation of the response to heat and crowding based on condition indices and blood 
parameters.  Using a multi-parametric approach on rainbow trout cultivated in recirculating aquaculture 
system (RAS) tanks, we assessed the effects of a critical temperature (gradual temperature increase up to 27 °C; 
hereafter referred to as the thermal-challenge group B) compared to the combined effects of critical temperature 
and crowding (gradual temperature increase up to 27 °C at a stocking density of 100 kg/m3; hereafter referred to 
as combined-challenge group C) (Fig. 1). We determined the condition score, spleen-somatic index and haema-
tocrit (Fig. 2A–C) and recorded the traditional and relatively fast detectable parameters of haemoglobin, cortisol 
and glucose concentration in the blood of rainbow trout (Fig. 2D–F) under challenging versus control condi-
tions. Each of these tests revealed non-significant differences between the challenge groups B and C and the 
reference group A.

Gene‑expression profiling in the spleen of trout exposed to critical temperature.  We detected 
a strong influence of both challenging conditions on the gene expression in the spleen. In total, the transcript 
abundance of almost 1,500 genes was modulated at least twofold for rainbow trout exposed to a high tem-
perature alone or a high temperature combined with crowding as compared to the reference fish (Fig. 3A; Gene 
Expression Omnibus (GEO) accession code: GSE129271).
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Gradual thermal rise to a temperature of 27 °C (thermal-challenge group B) caused the different regulation 
of 831 features in the spleen—i.e., 521 upregulated and 310 downregulated features (Fig. 3A)—relative to the 
reference group A, which was kept at 16 °C. Accordingly, approximately two-thirds (62.7%) of the entire set of 
differentially expressed (DE) genes in the spleen of rainbow trout exposed to high temperature was upregulated. 
These DE genes were assigned to 140 canonical pathways using the ingenuity pathway (IPA) programme. The 

Figure 1.   Schematic representation of the challenge experiment conducted on 368 rainbow trout. The total 
number of trout per experimental tank is indicated. In the reference tanks A1 and A2, the water temperature 
(16 °C) and the stocking density (30 kg/m3) were kept constant at the optimal range throughout the 8-day 
experiment. The thermal-challenge sub-experiment (labelled in red here and in the following figures) was 
performed in the tanks B1 and B2, where the water temperature was gradually increased to 27 °C while 
maintaining a stocking density of 30 kg/m3. The combined-challenge sub-experiment (labelled in blue) in tanks 
C1 and C2 exposed rainbow trout to a high stocking density of 100 kg/m3 while gradually increasing the water 
temperature to 27 °C. Blood samples, spleen and head kidney samples of seven trout from each tank were taken 
by the end of the experiment and used for the analysis as indicated below the scheme.

Figure 2.   Condition indices and blood parameters. Box and whisker plots illustrating (A) condition factor, 
(B) spleen-somatic index, (C) haematocrit [%], (D) haemoglobin [g/dl], (E) cortisol concentration [ng/ml] and 
(F) glucose concentrations [nmol/µl] in plasma of 14 individuals from the experimental tanks as listed along 
the abscissa (cf. Figure 1). Individual measuring points are indicated by black dots; error bars indicate standard 
deviation.
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Figure 3.   Classification of differently expressed genes. (A) Venn diagram illustrating the absolute number, 
the percentage and the number of up- (↑) and down-regulated (↓) DE features in the spleen of rainbow 
trout exposed to high temperature (red), or high temperature combined with crowding (blue) relative to the 
expression values obtained for the reference group. The overlap (purple) depicts the proportion of DE genes 
shared by both challenge groups. The diagram was calculated based on Agilent ID lists; the five most up- and 
downregulated genes in the respective lists are shown below the Venn diagram. (B) A pathway analysis of those 
genes differentially expressed after thermal challenge (left side of table) and after combined challenge (right 
side). The pathways were sorted according to the biofunction categories “stress response”, “innate immunity”, 
“adaptive immunity” and “metabolic processes”; the 5 most strongly affected pathways are listed. The colour 
code below the table indicates the z-score values. The total number of affected pathways was assigned to seven 
categories, which are shown in the two separate pie charts for (C1) temperature stress alone or (C2) combined 
temperature/crowding stress.
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three most highly temperature-affected pathways were assigned to the biofunction category “stress response”. 
These were (1) the nuclear factor erythroid 2–related factor (2NRF2)-mediated oxidative stress response (involv-
ing 27 DE genes), (2) unfolded protein response (14 DE genes) and (3) protein ubiquitination pathway (23 DE 
genes) (Fig. 3B).

Almost a quarter of the temperature-affected pathways (23.6%; n = 33) were attributed to the „innate immune 
system “ (Fig. 3C1). A similarly high proportion was assigned to the category „metabolic processes “ (22.9%; 
n = 32), whereas the number of pathways associated with the „adaptive immune system “ (13.6%; n = 19) and 
“stress response” (12.9%; n = 18) was significantly lower.

Gene‑expression profiling in the spleen of trout exposed to a high temperature combined with 
crowding.  The combination of high temperature and crowding (combined-challenge group C) resulted in 
1,343 DE genes in the spleen of challenged trout as compared to reference group A. In comparison with the 
expression data from the thermal-challenge group B versus group A, the upregulated genes increased in the 
combined-challenge group C by 37.4% to 716 DE genes, and the downregulated genes increased by 102.3% 
to 627 DE genes. Consequently, the ratio of up- and downregulated features after the combined challenge—
accounting for 56.6% and 43.4%, respectively—revealed more balance than what was observed with high tem-
perature alone.

The list of genes differentially expressed in response to the combined challenge was assigned to 213 canonical 
signalling pathways. As with the temperature-affected pathways, the NRF2-mediated oxidative stress response 
(involving 35 DE genes) and the unfolded protein response (19 DE genes) were the two major pathways affected by 
the combined challenge. More than a quarter of the pathways affected by high temperature and crowding (26.3%, 
n = 56) were attributed to the category “cell function, proliferation and differentiation” (Fig. 3C2). Approximately 
a fifth of all affected pathways were related to “innate immunity” (21.6%, n = 46). In comparison, the combined 
challenge modulated a significantly lower number of pathways associated with the “adaptive immune system” 
(13.1%; n = 28) and “stress response” (11.7%; n = 25).

Identification of common and unique splenic pathways modulated by high temperature alone 
or by the combined temperature/crowding challenge.  The two DE gene lists derived from the ther-
mal- and combined-challenge sub-experiments share 679 common genes (Fig. 3A). Of these, the greater propor-
tion of 406 genes (59.8%) was upregulated. Noteworthy, 10.1% of these upregulated features (n = 41) belong to 
the family of heat-shock protein (HSP)-encoding genes. These include the HSP90/HSPC, HSP70/HSPA, HSP40/
DNAJ and HSP47/SERPINH1 members. These HSP-encoding genes were also the most strongly upregulated fea-
tures, while cold-inducible mRNA binding protein (CIRBP) was the most strongly downregulated gene (< -14-
fold) in both gene sets (Fig. 3A). Moreover, 6.2% of the downregulated genes (n = 17) were associated with the 
heavy or light chain of the different immunoglobulin types in trout.

Accordingly, the analysis of the pathways induced by the thermal challenge and the combined challenge 
revealed that the typical “stress pathways” that are dependent on HSPs (the unfolded protein response, the NRF2-
mediated oxidative stress response and the protein-ubiquitination pathway) and immunoglobulins (primary 
immunodeficiency signalling), were significantly affected by both experimental conditions (Fig. 3B). In addition 
to the biofunction cluster “stress response”, the categories “innate immunity” (production of nitric oxide and 
reactive oxygen species, CXCL8 signalling, IL12-signalling and production in macrophages), “adaptive immunity” 
(Th1- and Th2-activation pathway, IL7-signalling pathway) and “metabolic processes” (glycolysis/gluconeogenesis, 
glutathione-redox reactions, vitamin-C transport) contain pathways which were highly affected both by high tem-
perature alone and by the combined challenge (Fig. 3B). In essence, the high proportion of commonly regulated 
genes is well reflected by a high degree of shared pathways, which indicates the various physiological aspects of 
a response to adverse water temperatures (Fig. 3C1) and the combination of adverse temperatures and stocking 
densities (Fig. 3C2). Nevertheless, it should be noted that the number of pathways belonging to the category „cell 
function, proliferation and differentiation “ has more than doubled in the combined-challenge dataset (n = 56, 
Fig. 3C2) compared with the thermal-challenge dataset (n = 25, Fig. 3C1).

The comparison of both DE-gene lists also revealed clusters of DE genes which were uniquely regulated 
either after thermal or after combined challenge (Fig. 3A). Critical temperature alone regulated 152 unique 
features (i.e., those genes not included in the DE gene list of the combined-challenge group), 115 (75.7%) of 
which were upregulated. In comparison, the combined challenge altered the expression of more than a fourfold 
number of unique genes (n = 664) with about a similar amount of up regulated features (n = 310) was there were 
downregulated features (n = 354).

The exclusive thermal-challenge DE genes were involved in 140 pathways, while the exclusive combined-
challenge DE genes were involved in 213 pathways (Fig. 4A). Both pathway sets overlapped by 52% with 120 
shared pathways, majorly the unfolded protein response, the NRF2-mediated oxidative stress response or eNOS 
signalling (Fig. 4B, central pie chart). In the thermal-challenge group, only 20 pathways were uniquely modu-
lated, including the activated melatonin-signalling pathway and four downregulated pathways (Fig. 4B, left pie 
chart). Remarkably, almost half of these temperature-affected pathways were related to metabolism (n = 9). In 
the combined-challenge group, 93 pathways were uniquely modulated, a third of which were predicted to be 
upregulated (n = 31) and a fifth of which was predicted to be downregulated (n = 19). Most of these combined-
challenge-affected pathways were related to cellular functions (n = 34) and innate immunity (n = 19). Compared 
to the thermal-challenge dataset, the proportion of metabolic pathways was significantly decreased (from 45 to 
11%) in the combined-challenge dataset, while the proportion of cellular functions increased (from 15 to 37%). 
Moreover, DNA-replication and gene-expression pathways (5%, n = 5) were affected by the combined challenge, 
but not by high temperature alone.
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Impact of combined challenge on the growth of bacteria in trout serum.  A common test for 
assessing immune capacity is to record the growth of bacteria in blood plasma49,50. In the plasma of rainbow 
trout exposed to high water temperature (group B) or high temperature combined with crowding (group C), we 
counted 7.8 to 27.5 times more A. salmonicida after 24-h incubation compared to the bacterial growth in the 
plasma of reference trout (group A) (Fig. 5).

Impact of combined challenge on the composition of peripheral blood leukocytes.  Since leu-
kocyte profiles are considered informative stress indicators51, we analysed the cell composition of peripheral 
blood leukocytes in the combined-challenge group (group C) relative to the reference fish (group A). To evalu-
ate the proportion of thrombocytes, IgM-positive B cells, T cells and myeloid cells, we used a previously estab-
lished flow-cytometry protocol52. While the proportion of myeloid cells remained at a similar level (Fig. 6A), the 
proportion of IgM-positive B cells decreased from 41.8% in the control group to only 2.4% in the combined- 
challenge group (Fig. 6B). Similarly, the proportion of T cells dropped from 4.4% (group A) to 1.0% (group 
C) (Fig. 6C), simultaneously with the proportion of thrombocytes decreasing from 25.1% (group A) to 15.4% 
(group C) (Fig. 6D).

Expression profiling of immune‑relevant genes in stimulated head‑kidney cells from chal-
lenged versus non‑challenged trout.  Finally, we determined the impact of previous exposure to criti-
cal temperature and crowding on immune responses in vitro. To this end, we isolated head-kidney cells from 
trout of groups A (reference) and C (combined challenge), stimulated these leucocyte-enriched cultures with A. 
salmonicida and profiled the expression of the inflammation-related genes TNF, IL1B, CXCL8, IL6, TGFB1 and 
MHCIIB.

In the head-kidney cells of control group A, the expression of the immune marker genes TNF, IL1B, CXCL8 
and IL6 (Fig. 7A–D) increased significantly in response to live A. salmonicida while the expression of TGFB1 
and MCHCIIB slightly decreased (Fig. 7E,F). A transcriptional response to the stimulation with inactivated A. 
salmonicida was also detectable but less pronounced. The stimulation of head-kidney cells from group C with 
inactivated A. salmonicida did not modulate the transcript levels of the investigated cytokines (Fig. 7, blue bars). 
In contrast, the stimulation with A. salmonicida increased the expression of IL1B, CXCL8 and IL6, although to 
a lower extent as observed for control group A.

Figure 4.   Classification of canonical pathways. (A) Venn diagrams illustrating the absolute number, the 
percentage and the number of activated (↑) and repressed (↓) pathways in the spleen of rainbow trout exposed 
to high temperature (red), or high temperature combined with crowding (blue) based on the 816 DE genes 
which are unique for one of the challenges. The pathways were sorted according to the same seven biofunction 
categories introduced in Fig. 3C. The pie charts depict the categorised pathways (B1) exclusively affected by 
thermal challenge, (B2) commonly affected by thermal and combined challenge and (B3) exclusively affected 
by combined challenge. The five most strongly affected pathways are listed with their z-score values below the 
charts.
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Discussion
The persistent challenge of rainbow trout in the present study is reflected by distinct expres-
sion profiles, but not by altered condition indices and blood parameter levels.  The rapid and 
reliable detection of an informative set of (salmonid-specific) bioindicators allows conclusions on the nature and 
severity of a multifactorial stress burden and thus significantly improve animal-welfare concepts and the health 
of farmed fish in aquaculture facilities. The objective of the present study was to discover novel animal-based 
biomarkers and evaluate well-known existing ones based on transcriptome profiling and to derive inferences 
about the onset of suggestive pathways. The combination of different techniques, which allow quantifying mul-
tiple parameters with relevance to distinct stress responses, is established as a promising approach to assess the 
individual welfare status53.

The present study was based on the recording of primary (cortisol level), secondary (glucose level, haema-
tocrit, leukocyte count, gene expression) and tertiary (condition factor, spleen-somatic index, cellular immune 
competence) stress indicators. Notwithstanding our expectations, the levels of the analysed non-transcript-based 
parameters were non-significantly different between the reference (A) and challenge groups (B, C), which might 
indicate similar physiological states of the animals investigated. The body-score values, in particular, were in the 
physiological range54–56. In stark contrast, the microarray analysis and subsequent experiments with primary cell 
cultures from control and challenged fish indicate extensive physiological reactions following the experimental 
challenge. This apparent contradiction is likely to have arisen from the sampling time point chosen. The duration 

Figure 5.   Quantification of the A. salmonicida titre in serum isolated from rainbow trout from the 
experimental tanks as listed along the abscissa (cf. Figure 1). Graphs represent the mean values of five fish + SD 
(error bars).

Figure 6.   Quantification of the proportion of (A) myeloid cells, (B) IgM-positive B cells, (C) T cells and (D) 
thrombocytes relative to the total amount of blood leukocytes. The cell-sorting procedures were performed 
with leukocytes from non-challenged rainbow trout (grey bars) and rainbow trout exposed to the combined 
challenge (blue bars). Graphs represent the mean values of 10 fish (five fish per tank) ± SD (error bars). P values 
are indicated.
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of our experiment ranged between “short-term” and “long-term” and might correspond to a state well after the 
acute response to the disturbed homeostasis but presumably before the desensitisation to (a) stressor(s) associated 
with the adaptation processes. The plasma cortisol level, for instance, is undoubtedly an informative indicator 
of acute stress but in rare cases for chronic stress57. The same applies to the glucose concentration58. The blood 
glucose concentrations of all animals examined here were slightly above normal59 and most likely reflect our ad-
libitum feeding regime. Whereas glucose levels should therefore not be overestimated as an indicator of stress in 
the present study, the measured cortisol concentrations indicate a general activation of the hypothalamus–pitui-
tary–interrenal axis, commonly known as the stress axis. Although strikingly different cortisol levels have been 
reported in Oncorhynchus spp. under pre-stress conditions (< 2 – > 500 ng/ml)5, a concentration below 10 ng/ml 
is generally considered physiological60, and a concentration above 40 ng/ml indicates stress58,60. In the present 
study, the elevated cortisol concentrations likely do not mirror the exposure to adverse temperature and stocking 
density but rather the acute stress of the sampling procedure including netting, transfer and anaesthesia61–63, 
accompanied by significant inter-individual variabilities. However, the transcription of genes involved in acute 
stress responses takes a significantly longer period of time64 than is required to catch and anaesthetise fish. For 
this reason, the quantification of transcript levels is supposed to be the more suitable technique in the present 
study to assess the long-term responses to adverse environmental conditions. If another, uncontrolled factor 
elevated the cortisol concentration in control and challenged trout, we cannot exclude that this unknown factor 
also influenced the expression profiles of the three treatment groups and weakened the expression differences.

Regarding the critical temperature of 27 °C and the no less-critical stocking density of 100 kg/m3, it would 
be expected that several functional pathways are induced, which are related to the heat shock, increased energy 
demand and altered immune defence. The questions remain (1) whether the clear transcriptional responses 
observed on day eight after the onset of the heat challenge and the heat-crowding challenge, respectively, attenu-
ate or augment over a further extended challenge period and (2) to what extent the presently recorded transcript 
levels are representative for the long-term exposition to these challenge factors. We can only speculate that the 
persistent challenge with such an extreme water temperature and the inconvenient stocking conditions will 
increasingly display various tertiary indicators on the whole-body performance, which would indicate serious 
detrimental effects and elevated mortality of the rainbow trout.

Critical temperature and crowding interact synergistically.  Our transcriptomic analyses of the 
rainbow trout spleen revealed that the combination of high temperature (27  °C) and high stocking density 
(100 kg/m3) results in an increased number of DE genes by 162% compared with high temperature (27 °C) alone. 
Of these, the proportion of upregulated genes was 1.3- to 1.7-fold greater than the proportion of downregulated 

Figure 7.   Expression profiling of (A) TNF, (B) IL1B, (C) CXCL8, (D) IL6, (E) TGFB1, and (F) MHCIIB in 
stimulated head-kidney cells isolated from five non-challenged fish (grey bars) or fish exposed to combined 
challenge (blue bars). Bars represent the mean copy number + SD (n = 8; four fish per tank) normalised 
to the reference gene EEF1A1. Cells from both challenge groups remained untreated (non-textured bars) 
or they were stimulated with inactivated (i.As; hatched bars) or viable A. salmonicida (As; spotted bars). 
Significant differences in expression relative to the transcript level in the control group are indicated by 
asterisks (*, p < .05; ***, p < .001).
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genes. It is hardly surprising that almost half of the overall regulated genes were present in both sets, as the two 
challenge groups have been exposed to high temperatures, which are known as major stressors for poikilother-
mic fish. Nevertheless, we identified two sets of uniquely regulated genes that characterise the response to either 
high temperature alone or high temperature combined with crowding. Remarkably, the number of DE genes 
unique to the combined challenge is more than four times higher than the number of DE genes unique to the 
thermal challenge. This suggests a synergistic interaction of the two challenge factors, especially since our previ-
ous study on stocking density in rainbow trout36 under similar experimental conditions provided only between 
one (kidney) and a maximum of 249 (liver) regulated genes, depending on the analysed tissue. The synergistic 
effect of high temperature and overstocking on the rainbow trout’s physiology is well in line with a meta-analysis 
by Crain and colleagues, who concluded from 171 studies that multiple stressors generally interact synergisti-
cally in marine systems3. In this context, the question arises as to which threshold value the stressors must exceed 
to produce synergistic effects and—in the present case—if the combination of a lower water temperature and/or 
lower stocking density would have generated additive instead of synergistic effects.

The signature of thermal stress is conserved across teleost fishes.  A considerable number 
of studies have already profiled the transcriptional changes of different organs of salmonids leaving their 
thermopreferendum23,24,27,28,30,65–69. We69 and others24 have recently reviewed our own and external transcrip-
tome studies to identify biomarkers of salmonid fish, which indicate a stress response to inconvenient tem-
peratures. Both studies agree that mainly SERPINH1/HSP47, HSPA1A/HSP70 and HSP90AA1/HSP90 have 
enormous potential as “robust thermally-responsive biomarkers” following many other reports on these three 
heat-shock proteins23,25,27–30,65–68,70–74. In contrast to the regulation of HSPs, CIRBP is strongly downregulated 
in salmonid fish upon heat stress23,24,27,69, while members of the FK506-binding protein family show distinct 
expression profiles with FKBP5 being upregulated and FKBP10 being downregulated24,69. Five of these six bio-
marker genes (SERPINH1, HSPA1A, HSP90AA1, CIRBP, FKBP10) were significantly regulated by both the ther-
mal challenge and the combined challenge, while FKBP5 emerged exclusively after combined challenge.

Based on the published DE gene sets responding to heat stress in salmonids, numerous indicative func-
tional pathways were identified. Interestingly, we found that the NRF2-mediated oxidative stress response and 
the unfolded protein response were the dominant pathways to responding to critical temperature. The combined 
challenge in the present study and both pathways were also highly affected after gradual and acute heat stress in 
different tissues of maraena whitefish69. Only 20 pathways were uniquely regulated in response to a high tempera-
ture, i.e., they are not present in the list of genes that were differentially regulated in response to the combined 
challenge. Of these, only melatonin signalling was predicted to be positively regulated. This pathway has been 
described to improve the oxidative status of fish cells, for instance after the activation of reactive oxygen species75.

The signature of crowding is subtly contained in the identified gene lists and pathways upreg-
ulated upon combined challenge.  Far less is known about those genes characteristically regulated by 
overstocking in (salmonid) fish. Remarkably, comparative analyses showed that rainbow trout, which have 
been domesticated for decades in intensive aquaculture, respond considerably less sensitively to crowding than 
the salmonid maraena whitefish (Coregonus maraena), which was only recently introduced in aquaculture9,36. 
Hypoxia-inducible factor 1-alpha (HIF1α) signalling was the only pathway found to be activated in the liver of 
rainbow trout exposed to a high stocking density of 120  kg/m3,36. After the combined challenge in the cur-
rent study, we also identified this pathway regulated in the spleen. Two other pathways, the protein ubiquitina-
tion pathway and PI3K/AKT signalling, were repressed in the liver of rainbow trout exposed to a high stocking 
density36. It is worth noting that in the present study, we found these pathways with an undefined or slightly posi-
tive z-score (which corresponds to a slight activation) in trout challenged with a high temperature and crowding. 
In the combined challenge, 93 pathways were uniquely regulated. Of these, significantly more pathways were 
activated than suppressed, and a third of these genes are associated with innate immunity (oncostatin-M signal-
ling, NF-κB signalling, STAT3 pathway, toll-like receptor signalling) or adaptive immunity (FcγRIIB signalling in B 
cells, NUR77 signalling in T cells).

Critical temperature combined with crowding impacts a number of immunological pathways 
and translates to substantial changes in the immune capacity of rainbow trout.  Various stress-
ors have been reported to threaten the health of farmed fish in aquaculture. For this reason, it is particularly 
interesting to investigate the crosstalk between the immune system and stress responses in farmed fish. In our 
previous study on maraena whitefish, we demonstrated that a high stocking density of 100  kg/m3 increased 
a considerable number of immune-relevant genes9. A quarter of all upregulated genes in the liver and a fifth 
of all upregulated genes in the kidney of challenged maraena whitefish were related to immunological pro-
cesses including complement cascade, acute-phase response signalling, chemokine signalling, B-cell-receptor sig-
nalling and leukocyte-extravasation signalling. This set of immune pathways is intriguingly similar to the set of 
induced immune pathways in the liver of large yellow croaker (Larimichthys crocea) exposed high stocking-
density conditions76. The respective pathways belong to the innate immune system (complement and coagulation 
cascades, toll-like receptor signalling and chemokine signalling) and the adaptive immunity (T-cell, B-cell receptor 
signalling and leukocyte-migration pathway).

In our current study, we also observed notable changes in the expression of genes involved in various innate 
and adaptive immune pathways. However, the transcriptional changes caused by the gradual increase of the water 
temperature mainly activated innate-immune mechanisms such as CXCL8 signalling and production of nitric 
oxide and reactive oxygen species, apparently to bring the organism into a “watch out” position in anticipation 
of an increased pathogen pressure. Notwithstanding, we found a decreased bactericidal activity in the plasma 
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of challenged trout compared with non-challenged trout. The complement system is an important immune 
complex tasked with the elimination of bacteria77,78, and we can only assume that several transcripts encod-
ing complement components were downregulated in the liver (the main site of complement synthesis but not 
considered in this study).

The analysis of the splenic transcriptome clearly revealed that the exposure to combined challenge modulates 
both arms of the immunity. High water temperature combined with crowding induced several pathways of the 
innate immunity (CXCL8 signalling, production of nitric oxide and reactive oxygen species and micropinocytosis 
signalling), while several pathways of the adaptive immunity were downregulated. Of particular importance is not 
only the decreased expression of genes involved in the B-cell-receptor signalling, but also the negative regulation 
of the IL7-signalling pathway, which contributes to early T-cell development and to mature T-cell maintenance. 
This was confirmed by the altered composition of peripheral blood leukocytes, chiefly by a reduction of B cells, 
T cells and thrombocytes in fish exposed to combined challenge compared to non-challenged fish. This is well 
in line with a large number of studies that identified a common pattern of lymphopenia and neutrophilia in the 
circulation of various fish species exposed to different types of stress9,79,80. Overall, the number of phenotypi-
cally identifiable cells from challenged rainbow trout was reduced from about 80% to 25% but unfortunately, 
the available tools did not allow additional information on the nature of the remaining 75% peripheral blood 
leukocytes from challenged fish to be obtained.

Previously, we had shown with maraena whitefish that adverse environmental conditions do not only influ-
ence the transcriptomic programmes in lymphoid organs and the composition of circulating leukocytes but 
also negatively impact the organism’s ability to react towards pathogens9. Using this established protocol, we 
demonstrate here that the primary culture of head-kidney cells from rainbow trout exposed to the combined 
challenge showed a dramatically reduced ability to induce the expression of IL1B, CXCL8, TNF and IL6 upon 
stimulation with both viable and inactivated A. salmonicida. The extent of this downregulation becomes even 
more evident in comparison to the less pronounced changes induced by crowding alone in maraena whitefish. 
Taken together, our immunologic analyses confirm the conclusions drawn from our transcriptomic data, which 
suggest that critical temperature and crowding together have a synergistic effect, especially on the immune 
capacity of challenged fish. Although rainbow trout were not exposed to pathogens in the present experiment, 
we assume that an increase in opportunistic pathogens would lead to severe infections and increased death rates 
of acutely stressed trout. This hypothesis should be verified in future experiments.

Conclusions
It has been established that temperature and crowding stress have different molecular signatures, which reflect 
different mechanisms of adaptation. So far, very few data sets have been interpreted concerning the question of 
how different adaptation mechanisms to simultaneous stressors influence each other. The present study dem-
onstrates that critical temperature combined with crowding activates synergistically a cluster of compensatory 
responses including cell-signalling, immune and metabolic pathways. Besides, we document that a high tem-
perature combined with overstocking impair the bactericidal and inflammatory activity, significantly alter the 
blood-cell composition and exert thus a profound impact on the fish’s immune system. Stress does not only 
compromise the health and general well-being of fish but also reduces the profits of a fish farm.

Our study suggests, once again, to carefully select the parameters for monitoring the response of the fish to 
one or multiple potential stressors, which are effective over longer periods. High-throughput methods such as 
RNA-sequencing or microarray analysis allow stress-specific signatures of certain tissues and even cells to be 
recorded. Although the transcriptome analyses might add valuable information into the physiological events 
involved in restoring homeostasis, these methods are usually cost-intensive. This study suggests some transcrip-
tomics-based rainbow trout-specific biomarkers that may be relevant for indicating compromised well-being, 
although they need to be evaluated in an aquaculture practice. Robust parameters resulting from this evaluation 
can be quantified in a range of specimens through simple and cost-effective methods such as quantitative real-
time PCR and extend the available spectrum of welfare biomarkers.

Materials and methods
Experimental design and sampling.  Rainbow trout at the age of ~ 10 months were randomly distributed 
over six experimental 309-l tanks integrated into a RAS. The experimental procedures are illustrated in Fig. 1. 
The stocking density in four of the six experimental tanks (A1, A2, B1, B2) has been set to 30 kg/m3 (corre-
sponding to 38 or 39 trout each weighing 9.5 kg), while the stocking density in the other two tanks (C1, C2) was 
100 kg/m3 (corresponding to 96 or 119 trout weighing 35 kg). Two of the tanks with 30 kg of trout per cubic 
metre (A1, A2) served as control tanks and were kept at a constant temperature of 16 °C for the duration of the 
experiment (Fig. 1, reference). The water temperature in the other tanks (B1, B2, C1, C2) was elevated by 2 °C 
every day for 5 days, gradually going from 16 to 26 °C. On day six, the temperature was increased by 1 °C, and on 
day seven, the tanks were kept at 27 °C for 24 h. The water temperature and other relevant parameters including 
NH4

+, NO2
−, NO3

− (in each case far below critical values), pH (between 7.3 and 8.5) and dissolved O2 were con-
stantly recorded. Trout were fed ad libitum commercial dry pellets by automatic feeders. Throughout the experi-
ment, no technical problems were registered. Further husbandry conditions are detailed in reference36. Eight 
days after the start of the experiment, seven rainbow trout per tank (A1, A2, B1, B2, C1, C2) were randomly 
sampled using hand nets. The fish were quickly transferred to a bucket of water and sedated using an overdose 
of phenoxyethanol. The handling of fish before blood and tissue sampling was conducted in compliance with 
the terms of directive 2010/63/EU on the protection of animals used for scientific purposes. The experimental 
protocol was approved by the Ministry of Education, Youth and Sports, Prague, Czech Republic (approval ID: 
MSMT-18301/2018–2).
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The rainbow trout had reached an average length of 26.2 ± 1.3 cm (mean ± standard deviation, STD) and an 
average weight of 230.2 ± 35.9 g at the end of the experiment. Blood was taken from the caudal vein of every 
trout killed using 1-ml plastic syringes filled with 500 µl 0.5 M ethylenediaminetetraacetic acid (EDTA, pH 
8.0) solution as anticoagulant. The spleens of the fish were isolated, snap-frozen in liquid nitrogen and stored 
at − 80 °C until nucleic acid extraction. Head-kidney tissue was homogenised, passed through a 100-µm strainer 
and washed with cold Dulbecco’s Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific). The resulting 
cell suspension was loaded on a Percoll gradient (density 1.08 g/ml) and centrifuged for 20 min at 800×g. Fol-
lowing centrifugation, cells at the interphase were collected, washed twice in DMEM and resuspended to a final 
concentration of 5 × 106 cells/ml.

Blood‑parameter analyses.  Caudal blood samples from 42 fish were thoroughly mixed with ethylenedi-
aminetetraacetic acid (EDTA) and processed in the haematological counter ABX Pentra 60 (HoribaABX Diag-
nostics) within 3 h after collection to determine the individual haematocrit and haemoglobin levels.

The residual blood samples were centrifuged (4 °C, 1,700×g), and the supernatant was kept on ice until analy-
sis of blood plasma parameters. Cortisol concentrations were determined using a Cortisol ELISA assay (DRG 
Instruments GmbH) and plasma-glucose concentrations were measured using a colorimetric assay (Glucose 
Assay Kit II; BioVision). Both analyses were performed according to the manufacturer’s instructions using a 
Beckman Coulter DTX 800/880 Series Multimode Detector (Beckman Coulter), which measured the absorb-
ance at 450 nm.

Bacteria growth serum.  For the bacterial growth assay, the individual blood samples of trout were incu-
bated in reaction tubes for up to 1 h. After centrifugation (1,700×g, 10 min), 100 µl of serum from each fish 
was inoculated with 2 × 105 bacteria Aeromonas salmonicida ssp. salmonicida wild-type strain JF2267. Sera with 
bacteria were incubated 24 h at 18 °C. After incubation, the bacteria culture from each well was transferred to 
1.5-ml tubes and centrifuged at 7,500 rpm for 10 min. The supernatant was discarded, and the total DNA was 
isolated from a pellet using a QIAamp DNA Blood Mini Kit (Qiagen) according to the manufacturer’s protocol.

Flow cytometry.  The composition of peripheral blood leukocytes was analysed using the protocol estab-
lished previously52. Briefly, 2 µl of heparinised blood was stained with the set of monoclonal antibodies (MAb) 
recognising thrombocytes (MAb 42–APC-Cy7)81, myeloid cells (MAb 21–RPE)52, IgM-heavy chain (MAb 1.14–
PerCp) and T cells (MAb D30–FITC). The samples were measured on FACS Canto II and analysed by DIVA 
software (BD Biosciences).

In vitro stimulation experiment.  To investigate the effect of the combined challenge on the immune 
capacity of rainbow trout, a stimulation experiment with A. salmonicida (JF 2267) was performed. The bacteria 
were kept viable or inactivated in 1.5% paraformaldehyde (PFA) for 1 h and diluted to a final concentration 
of 5 × 107 cells/ml in sterile phosphate-buffered saline (PBS). Isolated head-kidney cells of eight fish from the 
reference group A and the combined-challenge group C each were stimulated with 100 µl PBS, 1 × 106 viable or 
PFA-inactivated bacterium. After 12 h incubation (CO2, 15 °C), stimulated samples were collected and stored in 
700 μl RLT buffer until RNA preparation.

RNA preparation.  TRIzol reagent (Invitrogen) in combination with the RNeasy Mini Kit (Qiagen) and 
the RNase-free DNase Set (Qiagen) was used to extract high-quality RNA from the above-listed tissues. The 
concentration and purity of the RNA was determined using the NanoDrop 1000 Spectrophotometer (NanoDrop 
Technologies/Thermo Fisher Scientific); RNA integrity was evaluated using the Agilent 2100 Bioanalyzer (Agi-
lent Technologies) revealing values for RNA integrity ranging from 8.9 to 10.

Array hybridisation.  For microarray-based gene-expression analysis, we pooled equal shares of seven indi-
vidual RNA samples isolated from the spleen in six separate specimens according to treatment and tank (A1, B1, 
C1; A2, B2, C2). These six RNA pools were converted to Cy3-labelled cRNA and hybridised with 8 × 60 K Agi-
lent-049158 Salmon Oligo Microarrays (Agilent Technologies; GEO platform: GPL21057) following the Agilent 
60-mer oligo microarray processing protocol, as described in our previous paper36. The fluorescence signals of 
the hybridised Agilent microarrays were scanned with a G2505C Microarray Scanner System (Agilent Technolo-
gies) at a resolution of 3 µm.

For all hybridisations, two technical replicates were included representing exactly the same samples but 
applied to independent arrays. The reliability of the microarray-predicted data has previously been proven in 
various quantitative PCR studies of our group9,23,69,82,83.

Quantitative real‑time PCR analysis.  Quantitative real-time PCR was performed using the LightCy-
cler96 Real-Time PCR System (Roche) and SensiFAST SYBR No-ROX One-Step Kit (Bioline). RNA samples 
from the in vitro-stimulation experiment were reverse-transcribed using the Super Script II kit (Thermo Fisher 
Scientific) and a cDNA equivalent of 75 ng total RNA was analysed for copy-number analysis. Gene-specific 
primers for the immune-related genes CXCL8, IL1B, TGFB1, TNF84, IL685, and MHCIIB (sense, 5′-AGT​ACA​
CAC​CCA​AGT​CTG​GAGA-3′; anti-sense, 5′-AGT​CCT​GCT​AAT​GCT​AAG​ATGGT-3′) were used.

The number of bacteria was quantified on the CFX96 Touch Detection System (Bio-Rad) using SensiFAST 
SYBR one-step kit (Bioline) according to the protocol. As target gene, DNA gyrase (subunit B) was used (NCBI 
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gene ID: 4994747; sense, 5′-TCA​TCA​TGA​CTG​TGC​TGC​AC-3′; antisense, 5′-ATG​GTC​AGC​AAC​AGC​TTG​
T-3′)86.

Cycling conditions were as follows: 10 min pre-incubation; 15 s denaturation at 95 °C, 10 s annealing decreas-
ing from 60 °C, 20 s elongation at 72 °C, and 5 s quantification at 75 °C. To assess the quality of individual PCR 
products, a melting-curve analysis was performed.

Data analyses.  Statistical analyses of body-score indices (condition factor, spleen-somatic index, haemato-
crit) and plasma parameters were performed in GraphPad Prism 8.4.2 (GraphPad Software, Inc., San Diego, CA) 
with a significance level of 0.05. Because all data were normally distributed (Kolmogorov–Smirnov, p > 0.05), 
parametric t tests were used.

The Agilent Feature Extraction Software (FES) 10.7.3.1 was used to read and process the microarray-image 
files with standard settings. The FES corrected the background using a two-sided Student t test. The features 
that passed this quality control were further analysed with the limma package of the R-Version 3.1.1/Biocon-
ductor-Suite87). Our customised scripts are available on request. Following quantile normalisation, pairwise 
comparisons between the treatments (reference vs. thermal challenge or combined thermal/crowding challenge) 
were employed to compare transcript abundances under the different treatment conditions. To control the false 
discovery rate, p values were adjusted88. Only genes with a corrected p value (q-value) of < 0.05, and an absolute 
fold change of > 2.0 were considered DE genes and included in further data processing.

Comparisons of gene expression across the different treatment conditions were performed using Venn 
Diagrams89. DE genes were re-annotated using the basic local alignment search tool (BLAST). We considered 
only transcripts with unique BLAST results (coverage and sequence identity of > 85% and E-value < 1 × 10−4). 
Only 2.5% of all DE genes could not be annotated. A functional analysis was performed using the Ingenuity 
programme (Ingenuity Pathway Analyses/Qiagen) to evaluate global functional networks and canonical pathways 
of interacting genes and other functional groups.

Benjamini–Hochberg multiple testing was performed and p values > 0.05 were considered as a cut-off score. 
The output lists were carefully reviewed, and all those pathways and functions were deleted which were either 
associated with a mammalian disease or occurred in a tissue other than analysed. All relevant pathways are 
indicated in the following sections by italic face. Additionally, we assigned the canonical pathways to the biofunc-
tions “stress response”, “innate immunity”, “adaptive immunity”, “cell function, proliferation and differentiation”, 
“DNA replication and gene expression”, “coagulation, fibrinolysis and angiogenesis” and “metabolic processes”. If 
certain pathways were assigned to more than one biofunction, we still only assigned them to one main category. 
The z-scoring system was used to evaluate whether a particular pathway was activated (z > 1) or repressed (z < 1).

The number of transcripts determined via quantitative PCR was calculated based on transcript-specific stand-
ard curves. To this end, the Cq values of PCR products, having been amplified by the aforementioned primer 
pairs, were determined in serial tenfold dilutions starting from 1 × 102 to 1 × 108 copies. Based on these Cq values, 
a calibration line was created, which allowed for the calculation of the copy numbers according to the formula 
copy number = 10(Cq value − intercept)/(slope). The obtained values were normalised to the reference gene encoding the 
translation elongation factor EEF1A190.

In an analogous manner, the number of A. salmonicida in the serum of rainbow trout was determined. The 
number of cells per ml was calculated based on a calibration line. This has been generated based on the Cq values 
of the gyrB transcripts determined for 1 × 104–1 × 109 colonies.

Data availability
The full complement of microarray data generated and analysed during the current study was deposited in the 
NCBI GEO, https​://www.ncbi.nlm.nih.gov/geo/; accession: GSE129271).
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