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Abstract

Soil pH is a critical soil quality index and controls soil microbial activities, soil nutrient avail-

ability, and plant roots growth and development. The current study aims to evaluate various

pedotransfer functions for predicting soil pH using different geochemical indices (CaO,

ratios of Al2O3, Fe2O3, TiO2, SiO2, MgO, and K2O to CaO) in forest soils. Various models

including empirical functions (quadratic, cubic, sigmoid, logarithmic) and artificial neural net-

work with these geochemical indices were assessed by independent testing set. Mean bias

error (MBE), root mean square error (RMSE), mean absolute percentage error (MAPE),

mean absolute error (MAE), coefficient of determination (R2), t-statistics (t-stat), and

Akaike’s Information Criterion (AIC) were applied to evaluate the model performances. Addi-

tionally, a new indicator (global performance indictor, GPI) was originally introduced in this

study and was used to rank these models. According to GPI, the sigmoid functions and

ANNs performed better than others. On average, they could explain above 70% of the vari-

ability in soil pH. Both model structure and dataset shape impact on model performance.

The best input was CaO for ANNs, sigmoid, and logarithmic functions. The ratios of K2O to

CaO and Al2O3 to CaO were the best inputs for quadratic and cubic equations, respectively.

Introduction

Soil pH indicates soil acidity and alkalinity. Generally, slightly acidic soils are optimal for

macro- and micro-nutrients availability [1]. Soil pH impacts on soil nutrients and plant

growth and development [2]. It is a critical element for understanding soil nutrient availability

and weathering as well as relationships between soil and biota. The relationship between soil

pH and base saturation has been well studied. Some researchers observed a curvilinear rela-

tionship between soil pH and Ca saturation [3, 4]. Others reported a linear relationship

between them [5, 6].

Soil CaO has been applied to predict soil pH with other geochemical elements. For example,

Lukens et al. used ratios of Fe2O3, TiO2, and Al2O3 to CaO to predict soil pH with sigmoid

functions [7]. The models produced similar prediction accuracy with coefficient of determina-

tion changing between 0.7 and 0.74, root mean square error between 0.83 and 0.88. Nordt and

Driese found that bulk soil CaO + MgO could be used to predict soil pH in Vertisol [8]. The
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prediction of soil pH using bulk soil elemental oxides is also an issue in pedotransfer functions.

Soil CaO, is one source of Ca2+ supply to soil solution, we believe that itself could be used to

estimate soil pH. However, studies on this topic were limited.

The objectives of the current study were to (1) evaluate various pedotransfer functions for

predicating soil pH using several geochemical indices and (2) investigate the usefulness of soil

CaO to predict soil pH. To do this, five models with different geochemical indices were com-

pared and tested. Specifically, artificial neural networks were evaluated with respect to the

non-linear relationship between soil pH and the geochemical indices. Model performances

were evaluated by an independent validation set.

Materials and methods

Study site

The study area covering 13326 km2 is located in the core region of the Three Gorges Reservoir

of China (Fig 1). It has a humid subtropical monsoon climate with a mean annual precipitation

of 1267 mm and a mean annual temperature of 16.02˚C. The elevation varies between 175 and

2033 m with a mean of 643 m. The slope changes between 0.45˚ and 52.96˚ with a mean of

17.83˚.

Data

A total of 1163 samples were collected from forest soils in the study area (Fig 1), where the

major bedrock lithologies are carbonate rocks and sandstone and soil type is Combisols [9].

The study did not involve private land, protected land, endangered or protected species. No

specific permissions were required for these locations/activities. In order to ensure an even dis-

tribution of selected sites, systematic sampling using a regular grid was applied in this work

[10]. Surface soils at 0–20 cm depth were collected at a density of 1 sample/km2. For each sam-

pling site, 3 to 5 subsamples collected within 50 m of the site were mixed to represent the sam-

ple. All the sampling locations were recorded by Global Positioning System (GPS). Standard

measurements were performed on the soil samples. Prior to laboratory analysis, samples were

Fig 1. Maps of study area location and sample sites.

https://doi.org/10.1371/journal.pone.0223764.g001
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air-dried and passed through a 2 mm soil sieve. Soil pH was determined in a soil-to-water

ratio of 1:2.5 with a glass electrode. The elements (Al2O3, Fe2O3, TiO2, SiO2, K2O, Mg2O, and

CaO) were measured by Inductively Coupled Plasma-Optical Emission Spectrometry

(ICP-OES) method [10].

Ratios of Al2O3, Fe2O3, TiO2, SiO2, MgO, and K2O to CaO (hereafter AlCa, FeCa, TiCa,

SiCa, MgCa, and KCa) and CaO were used to develop the pedotransfer functions to predict

soil pH in forest soils [7]. These geochemical indices were calculated by

G ¼
X

X þ CaO
� 100 ð1Þ

where X represents Al2O3, Fe2O3, TiO2, SiO2, MgO, and K2O.

All data were divided into calibration and validation sets for each dataset. Approximately 2/

3 of the data were used to develop (or train) the models. The remaining 1/3 of the data were

used to validate the models.

Models

Both empirical functions (quadratic, cubic, sigmoid, and logarithmic) and artificial neural net-

work were tested in this work. The expressions of these empirical functions are given in

Table 1. For sigmoid function, parameter k and p are the minimum and range of the response,

respectively.

The artificial neural networks (ANNs) that are inspired by biological neural network are

also frequently used tools for various fields [11–13]. ANNs can deal with both linear and non-

linear relationships between variables [11, 12]. In the current study, ANNs with three layers

(an input, a hidden, and an output layers) were tested and trained with scale conjugate gradi-

ent back propagation algorithm (Fig 2). The output of a node is,

yj ¼ fð
Pn

i¼1
xi � wij � bjÞ ð2Þ

where f is an activation function, y is the output of a node j, xi is an input of the vector of

inputs, wij is the weight connected the input xi to the node j, and bj is a bias associated with the

node j. The parameters (weight and bias) are determined during the training stage based on a

set of input data and targets. The tangent and linear activation functions were used in the hid-

den layer and output layer, respectively [14–17].

The numbers of neurons in the hidden layer between 2 and 20 were tried. To train the

ANNs, three datasets were created randomly based on the calibration dataset for training

(70%), validating (15%), and testing (15%). The ANNs with the lowest value of root mean

square error (RMSE) and the highest value of coefficient of determination (R2) were selected

to predict soil pH using the geochemical indices. Number of parameters was calculated by

Table 1. Empirical models used in the current study.

Name Ab. Equation

Quadratic Q y = b0+b1x+b2x2

Cubic C y = b0+b1x+b2x2+b3x3

Sigmoida Sig y ¼ k þ p

1þ x
b0

� �� b1

Logarithmic Log y = b0+b1ln(x)

ak and p are the minimum and range of the response, respectively.

https://doi.org/10.1371/journal.pone.0223764.t001
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[18],

N ¼ ðNi þ 1Þ � Nh þ ðNh þ 1Þ � No ð3Þ

where Ni, Nh, No, and 1 are number of node in the input, hidden, output layers and bias,

respectively.

Performance evaluation

Model performances could be evaluated by comparing predicted and measured data based on

a set of statistical error indicators. In this work, mean bias error (MBE), root mean square

error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and

coefficient of determination (R2), t-statistics (t-stat), and Akaike’s Information Criterion

(AIC) [19] were employed to assess the model performances based on the independent valida-

tion set.

MBE ¼
1

n
Pn

i¼1
ðyi � ŷiÞ ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � ŷiÞ

2

n

s

ð5Þ

MAPE ¼
1

n
Pn

i¼1
j
yi � ŷi
yi
j ð6Þ

MAE ¼
1

n
Pn

i¼1
jyi � ŷij ð7Þ

R2 ¼ 1 �

Pn
i¼1
ðyi � �yÞ2

Pn
i¼1
ðyi � ŷiÞ

2
ð8Þ

Fig 2. ANN structure.

https://doi.org/10.1371/journal.pone.0223764.g002
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t � stat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � 1ÞMBE2

RMSE2 � MBE2

r

ð9Þ

AIC ¼ ln
Pn

i¼1
ðyi � ŷiÞ
n

� �

þ
2ðkþ 1Þ

n
ð10Þ

where n is the number of observations, yi, and ŷi are the measured and estimated soil pH of the

ith soil sample, respectively, �y is the mean value of the measured soil pH, k is the number of

parameters. MBE shows overall under- or over-estimation tendency. A negative value of MBE

indicates an overestimation of the model, and a positive one indicates an underestimation of

the model. The most accurate model has an MBE value closed to zero, lower values of RMSE,

MAPE, MAE, t-stat, AIC, and a higher value of R2.

Each statistical error indicator has its specific strength and weakness. For example, RMSE is

not a better indicator than MBE for evaluating average model performance [20]. However,

MBE could not give the correct performance when the model has overestimations and under-

estimations at the same time. Therefore, to find out the best model based on the above-men-

tioned indicators, a new Global Performance Indicator (GPI) was introduced in this work.

Each indicator should be scaled on a scale of 0–1 with 0 being the best and 1 representing the

worst. For the indicators that have negative or positive values, their absolute values are used in

GPI. For the indicators that the lower the better (e.g., RMSE and MAPE etc.), the minimum is

scaled to 0 and maximum to 1 (Eq 11). For the indicators that the higher the better (e.g., R2),

the maximum is scaled to 0 and minimum to 1 (Eq 12). For the ith model, the GPI was defined

as,

I ¼
P � Pmin

Pmax � Pmin
ð11Þ

I ¼
Pmax � P
Pmax � Pmin

ð12Þ

GPIi ¼
Pm

j¼1
Iij ð13Þ

Where P is the performance indicator. Pmax and Pmin are the maximum and minimum of P for

the corresponding indicators of the evaluated models. Iij is the scaled value of indicator j for

the ith model and m is the number of performance indicators. Models with GPI closer to zero

perform better.

Statistical analysis

A one-way analysis of variance (ANOVA) was used to test the difference in variables between

calibration and validation sets. Pearson’s correlation coefficients were calculated to determine

the strength of correlations between soil pH and geochemical indices. The analyses of descrip-

tive statistics were performed in SPSS v13.0. Model development and validation were done by

MATLAB v9.0.
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Results

Data overview

On average, the soils were neutral. Soil pH varies between 4.34 and 8.7 with a mean of 7.16

(Table 2). CaO mainly ranged between 0 and 30% (mean = 2.63%), Al2O3 between 12 and 15%

(mean = 14.4%), Fe2O3 between 3 and 6% (mean = 5.2%), TiO2 between 0.5 and 0.8% (mean =

0.75%), SiO2 between 50 and 70% (mean = 62.9%), MgO between 0 and 2% (mean = 1.9%),

K2O between 2.2 and 2.7% (mean = 2.5%) (Fig 3). In terms of coefficient of variation (CV%),

soil pH showed low variability (< 25%). Among the geochemical indices, SiCa and AlCa

Table 2. Descriptive statistics of soil pH and geochemical indices (N = 1163).

Min Max Median Mean Std. Dev CV%

pH 4.34 8.7 7.46 7.16 1.09 15.22

CaO (%) 0.08 29.98 1.10 2.63 4.05 153.77

AlCa (%) 24.62 99.54 93.09 87.55 13.59 15.52

FeCa (%) 10.09 98.53 82.67 75.48 19.05 25.24

TiCa (%) 1.35 91.00 39.71 39.57 21.32 53.86

SiCa (%) 48.65 99.87 98.31 95.71 6.93 7.24

MgCa (%) 4.46 92.26 61.57 55.87 17.23 30.84

KCa (%) 5.73 95.99 70.33 63.4 21.35 33.67

https://doi.org/10.1371/journal.pone.0223764.t002

Fig 3. Histogram plots for the geochemical elements.

https://doi.org/10.1371/journal.pone.0223764.g003
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presented low variability (< 25%), FeCa, TiCa, MgCa, KCa showed medium variability (25% -

75%) and CaO presented high variability (> 75%).

Soil pH showed significant correlation with these geochemical indices (Table 3 and Fig 4).

Differences in soil pH and geochemical indices between calibration and validation sets

were given in Table 4. Results of ANOVA indicated that there was no significant difference in

these variables between calibration and validation sets.

Model calibration

The coefficients of determination (R2) of the developed models based on the calibration set are

given in Table 5. The ANNs with 18, 7, 11, 7, 14, 19, and 15 hidden nodes were applied to esti-

mate soil pH using CaO, AlCa, FeCa, SiCa, TiCa, MgCa, KCa, and respectively (Fig 5). On

average, ANN produced the highest value of R2 (0.73), followed by sigmoid (R2 = 0.7) and

cubic (R2 = 0.63) equations. The values of R2 ranged between 0.21 (p< 0.01, logarithmic equa-

tion with SiCa) and 0.77 (p< 0.01, ANN with SiCa).

Table 3. Pearson’s correlation coefficients between soil pH and geochemical indices (p<0.01).

CaO (%) AlCa (%) FeCa (%) TiCa (%) SiCa (%) MgCa (%) KCa (%)

0.5 -0.61 -0.68 -0.83 -0.49 -0.71 -0.76

https://doi.org/10.1371/journal.pone.0223764.t003

Fig 4. Relationships between soil pH and the geochemical indices.

https://doi.org/10.1371/journal.pone.0223764.g004
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Model performance

Performances of the models were evaluated based on the validation set and the statistical error

indicators were shown in Table 6. On average, all models except sigmoid functions presented

underestimation tendency according to MBE. In terms of MAPE, models gave good estima-

tion of soil pH (mean MAPE = 7.4%). ANN and sigmoid models could explain above 70% of

the variability in soil pH (R2 = 0.73 and 0.71, respectively). Logarithmic model performed

worst with the highest values of MBE, RMSE, MAPE, MAE, AIC, and the lowest values of R2.

ANN gave the best estimations of soil pH according to RMSE, MAPE, MAE, t-stat, and R2. Sig-

moid model performed best based on AIC and MBE. The geochemical indices gave varied pre-

diction performances with models. For example, SiCa produced the highest R2 in ANNs, KCa

in quadratic and cubic functions, CaO in logarithmic and sigmoid models. Lukens et al. [7]

predicted soil pH by AlCa, FeCa, and TiCa using sigmoid models. They reported that TiCa

and FeCa gave slightly better performances than AlCa. In the current work, CaO, AlCa, SiCa,

and KCa produced better predictions of soil pH than FeCa and TiCa using sigmoid functions

based on R2.

Models gave different prediction accuracy indicated by different statistical error indicators.

For example, ANN with SiCa was the best one in terms of RMSE, MAPE, MAE, and R2. Sig-

moid function with TiCa performed best based on MBE and t-stat. Cubic with KCa was the

best according to AIC.

Because the used statistical error indicators did not always give the consistent results, the

GPI was introduced and calculated by combining these indicators. The ranking of the models

according to each accuracy indicator and GPI was reported in Table 6. On average, the results

of GPI indicated that sigmoid model, ANN, and cubic were ranked 1st, 2nd, and 3rd. The

model performance indicated by GPI was acceptable and better, because it combined all the

performance tests. GPIs were also calculated within each model. The geochemical indices gave

different performance for the evaluated models. CaO ranked 1st in ANNs, sigmoid and loga-

rithmic functions. KCa ranked 1st in quadratic models. Therefore, CaO and KCa were the best

inputs to predict soil pH for both ANNs and the empirical equations over the study site. Scatter

Table 4. Differences in soil pH and geochemical indices between calibration and validation sets (N = 877 and 286 for calibration (Cal) and validation (Val) sets,

respectively.).

Item Min Max Median Mean Std.Dev F p value

pH Cal 4.52 8.6 7.41 7.14 1.09 0.954 0.329

Val 4.34 8.7 7.57 7.21 1.08

CaO(%) Cal 0.11 29.98 1.10 2.62 4.04 0.014 0.904

Val 0.08 24.74 1.11 2.66 4.08

AlCa(%) Cal 24.62 99.03 93.18 87.57 13.67 0.008 0.929

Val 31.14 99.54 93.07 87.48 13.38

FeCa(%) Cal 10.09 97.46 82.67 75.55 19.12 0.048 0.827

Val 13.79 98.53 82.67 75.26 18.85

TiCa(%) Cal 1.35 85.70 39.71 39.65 21.25 0.050 0.823

Val 1.82 91.00 39.7 39.33 21.54

SiCa(%) Cal 48.65 99.87 98.31 95.72 6.90 0.015 0.902

Val 57.80 99.87 98.3 95.66 7.00

MgCa(%) Cal 4.46 91.72 61.73 56.03 0.58 0.284 0.594

Val 6.83 92.26 61.07 55.4 1.05

KCa(%) Cal 5.73 94.31 70.2 63.52 0.72 0.105 0.746

Val 7.08 95.99 70.66 63.04 1.27

https://doi.org/10.1371/journal.pone.0223764.t004
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plots of the observed and predicted soil pH by ANN with CaO and sigmoid with CaO were

given in Fig 6. Statistics of validation results were listed in Table 7. The maximum pH values

were underestimated while the minimums were overestimated for both models. There was no

significant difference in soil pH between observations and predictions for the two models.

Discussion

On average, ANNs performed better than cubic, quadratic, and logarithmic functions. Among

the empirical approaches, sigmoid function was the best one. Model structure results in the

differences between them [21]. ANN constructs a network connected with weighted nodes

Table 5. Model calibration (N = 877, p<0.01).

Input Function b0 b1 b2 b3 R2

CaO Quadratic 6.4103 0.4148 -0.0156 0.43

Cubic 6.0427 0.8099 -0.0684 0.0016 0.56

Sigmoid 0.6823 1.3914 0.74

Logarithmic 6.9224 0.7888 0.64

ANN 0.76

AlCa Quadratic 1.281 0.2493 -0.002 0.59

Cubic 24.0871 -0.8736 0.0151 -0.00008 0.71

Sigmoid 94.9733 31.04 0.73

Logarithmic 20.2979 -2.9535 0.3

ANN 0.77

FeCa Quadratic 6.3399 0.1023 -0.0011 0.65

Cubic 9.7379 -0.1244 0.0031 -0.00002 0.69

Sigmoid 87.0113 10.6616 0.67

Logarithmic 14.689 -1.7664 0.34

ANN 0.7

TiCa Quadratic 8.6033 -0.0276 -0.00018 0.69

Cubic 8.2332 0.02226 -0.00167 0.000012 0.7

Sigmoid 51.1643 2.465 0.7

Logarithmic 10.4478 -0.9595 0.51

ANN 0.72

SiCa Quadratic -22.1396 0.8114 -0.0053 0.42

Cubic -2.4129 0 0.0055 -0.000046 0.45

Sigmoid 98.8379 120.5882 0.73

Logarithmic 34.5359 -6.0105 0.21

ANN 0.77a

MgCa Quadratic 7.6946 0.0516 -0.001 0.6

Cubic 7.4604 0.0718 -0.0015 3.352E-6 0.6

Sigmoid 67.2264 5.7029 0.6

Logarithmic 13.2347 -1.5416 0.37

ANN 0.61

KCa Quadratic 7.4643 0.0595 -0.0009 0.73

Cubic 8.1355 0.0045 0.0003 -7.469E-6 0.73

Sigmoid 77.0693 7.1629 0.73

Logarithmic 12.8597 -1.4093 0.41

ANN 0.76

aBox in grey denoted the highest value of R2.

https://doi.org/10.1371/journal.pone.0223764.t005
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that were trained by certain algorithms. Compared with other models, the main advantages of

ANNs are: 1) they are non-parametric techniques and do not need any model assumptions; 2)

ANNs have no assumption on data distribution. Generally, ANN is often criticized for its com-

plex network structure that makes the results difficult to interpret [22]. The indicator, AIC,

based on an “information-theoretical approach” has been widely used for model selection [23–

25]. In this case, ANNs produced higher values of AIC than others, due to the larger number

of model parameters. Besides, data set shape also impacts on model performance, especially

for the empirical functions. The rank order of them are sigmoid > cubic > quadratic > loga-

rithmic functions. The best input was CaO for ANNs, sigmoid and logarithmic functions. The

ratios of K2O to CaO and Al2O3 to CaO were the best inputs for quadratic and cubic equations,

respectively.

CaO and the ratios of elemental oxides to CaO could be used to predict soil pH, because

Ca2+ is the main driver affecting soil pH [7]. The sigmoid functions indicated the geochemical

indices have different rates of change in soil pH. This was also given by the scatter plots (Fig

4). The oxides that were more abundant than CaO had higher values of growth rate and inflec-

tion point (e.g., SiO2, Al2O3, Fe2O3) and vice versa (e.g., TiO2, MgO, K2O). Lukens et al.

(2018) stated that samples collected from calcareous soils could have a relatively large values of

FeCa or AlCa and compressed intervals at higher index values, where pH decreases as a func-

tion of Ca loss and Fe or Al gain. This could also explain the relationships between soil pH and

the ratios of elemental oxides to CaO over the current study site.

Fig 5. Root mean square error (RMSE) and coefficient of determination (R2) for ANNs with different numbers of hidden nodes (The black box indicates the

lowest value of RMSE or highest value of R2).

https://doi.org/10.1371/journal.pone.0223764.g005
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Soil pH is a key parameter for understanding soil weathering and relationships between soil

nutrient availability and environmental factors. Weathering indices that incorporate Ca in

some form could track soil pH. A recent study reported that soil pH values are closely correlated

with water balance (mean annual precipitation–mean annual potential evapotranspiration) at

Table 6. Model performance (N = 286).

Fun. Input MBE RMSE MAPE MAE R2 AIC t-stat GPI Rank

ANN AlCa 0.014 0.514 0.054 0.371 0.78 -0.446 0.472 1.01 2

FeCa 0.007 0.587 0.064 0.439 0.71 -0.226 0.207 2.84 5

SiCa 0.024 0.508 0.054 0.365 0.78 -0.455 0.794 1.21 3

TiCa 0.039 0.565 0.061 0.414 0.73 -0.195 1.165 3.3 6

MgCa 0.034 0.679 0.075 0.507 0.61 -0.362 0.847 5.52 7

KCa 0.069 0.534 0.057 0.393 0.76 -0.925 2.218 2.6 4

CaO 0.014 0.512 0.054 0.367 0.78 -0.557 0.476 0.81 1

Q AlCa 0.047 0.698 0.085 0.589 0.59 -0.692 1.132 3.08 4

FeCa 0.04 0.638 0.074 0.514 0.65 -0.87 1.059 1.55 2

SiCa 0.068 0.825 0.104 0.71 0.42 -0.356 1.389 6.48 7

TiCa 0.061 0.591 0.065 0.446 0.71 -1.024 1.743 2.33 3

MgCa 0.058 0.694 0.077 0.527 0.5 -0.702 1.412 3.72 5

KCa 0.052 0.556 0.061 0.42 0.74 -1.147 1.579 1.19 1

CaO 0.066 0.815 0.102 0.7 0.44 -0.389 1.377 6.19 6

C AlCa 0.036 0.579 0.067 0.465 0.72 -1.056 1.043 1.21 1

FeCa 0.046 0.595 0.065 0.447 0.7 -1.004 1.308 2.23 3

SiCa 0.051 0.721 0.089 0.61 0.56 -0.619 1.206 6 7

TiCa 0.051 0.584 0.063 0.431 0.71 -1.04 1.484 2.42 4

MgCa 0.056 0.694 0.077 0.529 0.59 -0.695 1.37 5.26 5

KCa 0.054 0.543 0.058 0.403 0.75 -1.185 1.689 1.9 2

CaO 0.048 0.71 0.088 0.601 0.57 -0.658 1.151 5.49 6

Log AlCa 0.072 0.919 0.117 0.797 0.28 -0.148 1.326 5.88 6

FeCa 0.07 0.885 0.112 0.765 0.34 -0.223 1.343 5.33 5

SiCa 0.068 0.976 0.125 0.85 0.19 -0.027 1.179 6.32 7

TiCa 0.063 0.769 0.095 0.654 0.5 -0.505 1.4 3.43 3

MgCa 0.046 0.861 0.108 0.736 0.61 -0.278 0.903 2.75 2

KCa 0.059 0.845 0.106 0.726 0.4 -0.317 1.175 4.01 4

CaO 0.056 0.642 0.076 0.53 0.65 -0.873 1.486 1.38 1

Sig AlCa -0.065 0.557 0.063 0.435 0.75 -1.135 1.988 2.68 4

FeCa -0.043 0.625 0.072 0.494 0.68 -0.904 1.161 4.06 6

SiCa -0.072 0.55 0.062 0.429 0.76 -1.159 2.239 2.69 5

TiCa 0.003 0.593 0.066 0.453 0.7 -1.012 0.085 1.89 3

MgCa -0.005 0.701 0.079 0.541 0.59 -0.677 0.125 5.05 7

KCa -0.027 0.564 0.062 0.429 0.74 -1.11 0.8 1.67 2

CaO 0.033 0.533 0.057 0.397 0.76 -1.231 1.045 0.88 1

Mean Q 0.056 0.688 0.081 0.558 0.58 -0.740 1.384 4.16 4

Cubic 0.049 0.632 0.072 0.498 0.66 -0.894 1.322 2.79 3

Log 0.062 0.842 0.106 0.723 0.42 -0.339 1.259 6.75 5

Sig -0.025 0.589 0.066 0.454 0.71 -1.033 1.063 0.82 1

ANN 0.029 0.557 0.060 0.408 0.73 -0.452 0.883 0.93 2

Overall mean 0.034 0.629 0.074 0.507 0.59 -0.566 1.184

Box in grey presented the best performance suggested by the corresponding error indicator.

https://doi.org/10.1371/journal.pone.0223764.t006
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global scale [26]. The pedotransfer functions and geochemical proxies compared and evaluated

in the current study could be used to estimate significantly environmental components in the

past time [7].

Conclusions

Various pedotransfer functions with different geochemical indices were applied to estimate

soil pH in forest soils. The predicted data were compared to the measurements of an individual

validation dataset. In order to do so, 7 statistical indicators have been applied to test models

performances. Moreover, a new accuracy factor, named Global Performance Indicator (GPI),

was originally introduced in this study and was used to rank the proposed models. The rank

order was sigmoid > artificial neural network > cubic > quadratic > logarithmic. Soil CaO

could be used to predict soil pH with ANNs, sigmoid and logarithmic functions. KCa and

AlCa were the best inputs for quadratic and cubic equations, respectively.

Supporting information

S1 File. Data.

(CSV)

Fig 6. Scatter plot of the observed and predicted soil pH by (a) artificial neural network with CaO and (b) sigmoid with CaO. The red dash line is the 1:1 line.

https://doi.org/10.1371/journal.pone.0223764.g006

Table 7. Statistics of validation results (N = 286).

pH Min Max Median Mean Std.Dev F p value

Observation 4.34 8.7 7.57 7.21 1.08

Predicted by ANN with CaO 4.87 8.36 7.35 7.2 0.98 0.028 0.868

Predicted by sigmoid with CaO 4.72 8.57 7.22 7.18 1 0.143 0.706

https://doi.org/10.1371/journal.pone.0223764.t007
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