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Abstract

Genetic sequences from pathogens can provide information about infectious disease dynamics that may supplement or
replace information from other epidemiological observations. Most currently available methods first estimate phyloge-
netic trees from sequence data, then estimate a transmission model conditional on these phylogenies. Outside limited
classes of models, existing methods are unable to enforce logical consistency between the model of transmission and that
underlying the phylogenetic reconstruction. Such conflicts in assumptions can lead to bias in the resulting inferences.
Here, we develop a general, statistically efficient, plug-and-play method to jointly estimate both disease transmission and
phylogeny using genetic data and, if desired, other epidemiological observations. This method explicitly connects the
model of transmission and the model of phylogeny so as to avoid the aforementioned inconsistency. We demonstrate the
feasibility of our approach through simulation and apply it to estimate stage-specific infectiousness in a subepidemic of
human immunodeficiency virus in Detroit, Michigan. In a supplement, we prove that our approach is a valid sequential
Monte Carlo algorithm. While we focus on how these methods may be applied to population-level models of infectious
disease, their scope is more general. These methods may be applied in other biological systems where one seeks to infer
population dynamics from genetic sequences, and they may also find application for evolutionary models with pheno-
typic rather than genotypic data.

Key words: phylodynamics, iterated filtering, sequential Monte Carlo, maximum likelihood, virus evolution, human
immunodeficiency virus.

Introduction
Phylodynamic methods extract information from pathogen
genetic sequences and epidemiological data to infer the de-
terminants of infectious disease transmission (Grenfell et al.
2004). For successful phylodynamic inference, mechanisms of
transmission must leave their signature in genetic sequences.
This occurs when pathogen transmission, and evolution oc-
curs on similar timescales (Drummond et al. 2003). By explic-
itly relating models of disease dynamics to their predictions
with respect to pathogen sequences, it is possible to estimate
aspects of the mechanisms of transmission (Rasmussen et al.
2011; Stadler et al. 2013; Volz, Koelle, et al. 2013; Frost et al.
2015; Poon 2015; Karcher et al. 2016). Most existing phylody-
namic inference methods proceed in three stages. First, one
estimates the pathogen phylogeny using sequence data. Next,
one fits models of disease dynamics to properties of the path-
ogen phylogeny, such as coalescent times or summary statis-
tics on the tree. Finally, one assesses the robustness of the
results to variation in the estimated phylogeny to account for
phylogenetic uncertainty. Frequently, such methods harbor
logical inconsistencies between the assumptions of the model

used to estimate the phylogeny and those of the model of
disease dynamics. In particular, it may happen that popula-
tion dynamics, as estimated by the transmission model, are
inconsistent with those assumed when estimating the phy-
logeny. In the absence of consistent methods, it may be dif-
ficult to assess the loss of accuracy due to the use of
inconsistent methods.

Researchers developing Markov chain Monte Carlo
(MCMC) approaches to phylodynamic inference have recog-
nized the need to develop fully consistent approaches. In
particular, Lau et al. (2015) have proposed a Bayesian method
for joint inference. This work builds off phylodynamic infer-
ence that uses MCMC to fit deterministic population models
(Bouckaert et al. 2014). However, to achieve efficiency, it is
typically necessary to tailor an MCMC sampler to the specific
model being fit (Vaughan et al. 2014). The required invest-
ment makes it costly to entertain competing models and to
base inference directly on the models of greatest scientific
interest. In practice, phylodynamic inference for infectious
diseases has therefore tended to focus on the three-stage
methods described above.
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In this paper, we develop methodology for jointly inferring
both phylogeny and transmission, as well as estimating un-
known model parameters. Our central contribution is an al-
gorithm which we call GenSMC, an abbreviation of sequential
Monte Carlo with genetic sequence data. Sequential Monte
Carlo (SMC), also known as the particle filter, provides a
widely used basis for inference on complex dynamic systems
(Kantas et al. 2015) with several appealing properties. Because
basic SMC methods rely only on forward-in-time simulation
of stochastic processes, they can accommodate a wide variety
of models: Essentially any model that can be simulated is
formally admissible. Thus, the algorithm enjoys a variant of
the plug-and-play property (Bret�o et al. 2009; He et al. 2010).
An SMC computation results in an evaluation of the likeli-
hood, which is a well understood and powerful basis for both
frequentist and Bayesian inference. Finally, again because
SMC requires only forward-in-time computation, it is
straightforward to construct a model of genetic sequence
evolution upon the basis of a transmission model, thus avoid-
ing all conflict between these models.

SMC techniques have previously been used for inferring
phylogenies (Bouchard-Côté et al. 2012) and for phylody-
namic inference conditional on a phylogeny (Rasmussen
et al. 2011). However, using SMC to solve the joint inference
problem through forward-in-time simulation of tree-valued
processes is a high-dimensional, computationally challenging
problem. We found that several innovations were necessary
to realize a SMC approach that is computationally feasible on
models and datasets of scientific interest. The key innovations
that provided a path to feasibility were: Just-in-time construc-
tion of state variables, hierarchical sampling, algorithm paral-
lelization, restriction to a class of physical molecular clocks,
and maximization of the likelihood using the iterated filtering
algorithm of Ionides et al. (2015).

In the following, we first give an overview of the class of
models for which our SMC algorithms are applicable. A for-
mal specification is given in the supplement, and the source
code for our implementation is also available. Next, we pre-
sent a study on a simulated dataset as evidence of the algo-
rithm’s feasibility. Finally, we use our methods to estimate
determinants of the epidemic of human immunodeficiency
virus (HIV) among the population of young, black, men who
have sex with men (MSM) in Detroit, Michigan from 2004 to
2011. This analysis uses time-of-diagnosis and consensus pro-
tease sequences to estimate the rates of infection attributable
to sources inside and outside the focal population.

New Approaches
The key novelty in our approach to phylodynamics is in for-
mulating a flexible class of phylodynamic models and a class
of SMC algorithms in such a way that the latter can be effi-
ciently applied to the former. We refer to our phylodynamic
model class as GenPOMP models, in recognition of the fact
that they are partially observed Markov processes (POMPs).
As such, a GenPOMP model consists of an unobserved
Markov process—called the latent process—and an observ-
able process. In the following sections, we specify the

structure of each of these components. An additional,
more formal, description of the GenPOMP model is given
in the supplement (supplementary section S1,
Supplementary Material online). Our GenSMC algorithm
for GenPOMP models is introduced in the Materials and
Methods section. GenSMC is presented at greater length in
the supplement (supplementary section S2, Supplementary
Material online) and also provided with a mathematical jus-
tification (supplementary section S3, Supplementary Material
online). Our extension of GenSMC to parameter estima-
tion, via iterated filtering, is called the GenIF algorithm
and is discussed briefly in the Materials and Methods
section and at greater length in supplementary section
S2.2, Supplementary Material online. For computational
implementation of the GenPOMP framework and the
GenSMC and GenIF algorithms, we wrote the open-
source genPomp program discussed further in supplemen-
tary section S1.1, Supplementary Material online.

For concreteness, we focus here on an infectious disease
scenario, wherein the model describes transmission of infec-
tions among hosts and the sequences come from pathogens
in those infections. In this context, measurements on infected
individuals are called diagnoses. In the concluding Discussion
section, we briefly consider other contexts within which the
models and methods we have developed may prove useful.

The Latent Process
We adopt the convention of denoting random variables using
uppercase symbols; we denote specific values assumed by
random variables using the corresponding lowercase symbol.
We use an asterisk to denote the data, which are treated as a
specific realization of random variables in the model.

The latent Markov process, fXðtÞ; t 2 Tg, defined over a
time interval T ¼ ½t0; tend�, explicitly models the population
dynamics and also includes any other processes needed to
describe the evolution of the pathogen. Specifically, we sup-
pose that we can write XðtÞ ¼ ðT ðtÞ; PðtÞ; UðtÞÞ, where
T ðtÞ is the transmission forest,PðtÞ is the pathogen phylogeny
equipped with a relaxed molecular clock, and UðtÞ represents
the state of the pathogen and host populations. For example,
UðtÞ may categorize each individual in the host population
into classes representing different stages of infection. We sup-
pose that fUðtÞ; t 2 Tg is itself a Markov process.

The transmission forest represents the history of transmis-
sion among hosts. We assume that hosts cannot be multiply
infected; this implies that T ðtÞ is a forest, that is, a collection
of trees. Nodes inT ðtÞ are time-stamped and of several types.
Internal nodes represent transmission events. Terminal nodes
are of three types: 1) active nodes represent infections active
at time t; 2) observed nodes correspond to diagnosis events,
possibly associated with genetic sequences; 3) dead nodes
correspond to death or emigration events. Root nodes at
time t0 correspond to infections present in the initial popu-
lation; root nodes at times t > t0 correspond to immigration
events. Since all nodes are time-stamped, edges of T ðtÞ have
lengths measured in units of calendar time.

The pathogen phylogeny PðtÞ represents the history of
divergences of pathogen lineages. Internal nodes of PðtÞ
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represent branch-points of pathogen lineages, which, we as-
sume, coincide with transmission events. The terminal nodes
ofPðtÞ are in 1–1 correspondence with the terminal nodes of
T ðtÞ. The distinction between PðtÞ and T ðtÞ allows for
random variation in the rate of molecular evolution, that is,
relaxed molecular clocks (see below). Specifically, the edge
lengths of T ðtÞ measure calendar time between events,
whereas edge lengths in PðtÞ can have additional random
variation describing nonconstant rates of evolution.

The transmission forest T ðtÞ can grow in only five dis-
tinct ways: 1) active nodes can split in two, when a trans-
mission event occurs, 2) active nodes can become dead
nodes, upon emigration, recovery, or death of the corre-
sponding host, 3) immigration events can give rise to new
active nodes, each with its own distinct root, 4) sampling
events cause active nodes to spawn diagnosis nodes, and 5)
active nodes for which none of the above occur simply grow
older. Likewise, the pathogen phylogeny PðtÞ grows along
with T ðtÞ (fig. 1). The Markov process fUðtÞg can contain
additional information about the system at time t, for ex-
ample, states of individual hosts. fUðtÞg can affect, but
must not be affected by, the fT ðtÞg and fPðtÞg processes.
That is, given any sequence of times t1 < . . . < tk < t;
fUðtÞg is independent of {ðT ðtjÞ;PðtjÞÞ; j ¼ 1; . . . ; k}
conditional on fUðtjÞ; t1 < . . . < tk < tg. The depen-
dence relationships among T ; P; U , and the data are dia-
grammed in supplementary figure S1, Supplementary
Material online.

We assume subsequently that PðtÞ and T ðtÞ agree topo-
logically, but we note that this assumption is not essential. In
particular, the SMC algorithms we apply could be straightfor-
wardly extended to allow the topology and timing of genetic
lineage divergences to deviate from those of transmission
events and to allow multiple pathogen lineages within each
host. Such extensions might be useful, for example, in ac-
counting for within-host pathogen diversity.

The Observable Process
We now describe the model explicitly linking the latent pro-
cess to the data. Let Y be the set of all finite collections of
dated genetic sequences, with an element of Y being a col-
lection fðgk; tkÞ; k ¼ 1; . . . ; ngwhere gk is a sequence and tk

is the associated diagnosis time. We allow gk to be an empty
sequence, in the event that the corresponding diagnosis had
no associated sequence. The observable process is a Y-valued
process, fYðtÞ; t 2 Tg, where Y(t) consists of all sequences
that have accumulated up to time t. Thus, Y(t) is expanding,
that is, YðtÞ � Yðt0Þ whenever t � t0, and if YðtÞ ¼
fðGk; TkÞ; k ¼ 1; . . . ;Ng, then Tk � t for all k. The data
are modeled as a realization of the observable process,
YðtendÞ ¼ y�.

Suppose each diagnosis has an equal and independent
chance to give rise to a pathogen sequence, and each diag-
nosis event in Y(t) corresponds to a unique diagnosis node in
T ðtÞ. Suppose also that some time-reversible molecular sub-
stitution model is defined to describe sequence evolution on
the pathogen phylogeny PðtÞ. These modeling assumptions
implicitly define a conditional distribution for Y(t) given X(t).

Relaxed Molecular Clocks
A strict molecular clock assumes that the rate of evolution is
constant through time and across lineages. Relaxation of this
assumption has been shown to improve the fit of phyloge-
netic models to observed genetic sequences in many cases
(Drummond et al. 2006) and for HIV in particular (Posada
and Crandall 2001). A relaxed molecular clock models the rate
of evolution as random. In our approach, this corresponds to
constructing each edge length ofPðtÞ as a stochastic process
on the corresponding edge of T ðtÞ. Various forms of such
processes have been assumed in the literature (Lepage et al.
2007; Ho and Duchne 2014), but not all of these are compat-
ible with a mechanistic approach. In particular, a mechanistic
molecular clock must be defined at all times and must have
non-negative increments. Many relaxed clocks commonly
employed in the literature do not enjoy the latter property:
In effect, such clocks allow evolutionary time to run back-
ward. The class of suitable random processes includes the
class of nondecreasing Lévy processes, that is, continuous-
time processes with independent, stationary, non-negative
increments.

The Plug and Play Property
The formulation of the latent and observable processes as
above is flexible enough to embrace a wide range of
individual-based models. In particular, models that describe
actual or hypothetical mechanisms of transmission and dis-
ease progression are readily formulated in this framework.
Moreover, with this formulation, it becomes clear that the
models described are POMPs (Bret�o et al. 2009). This fact
makes SMC methods for likelihood-based inference available
for use in the present context. The supplementary material
S1, Supplementary Material online makes the formal connec-
tions between this class of models and SMC methodology.

It is worth noting that models formulated as above are
compatible with inference techniques that only require sim-
ulation from the model, not closed-form expressions for tran-
sition probabilities. Such algorithms are said to have the plug-
and-play property (Bret�o et al. 2009; He et al. 2010). The
particle filter and iterated filtering, which we describe in the
Materials and Methods section, are two algorithms that have
this property. Because these algorithms only require the abil-
ity to simulate from the model, they allow for consideration
of a wide class of models. Greater freedom in choice of the
form of the model allows one to pose scientific questions
closed to non-plug-and-play approaches. In the following,
we demonstrate this potential in a study of HIV transmission
dynamics.

A Model of HIV Transmission
Our study focuses on the expanding HIV epidemic among
young, black, MSM within the Detroit metropolitan area.
Specifically, we ask two questions: 1) How much transmission
originates inside the study population relative to that origi-
nating outside? 2) Within the study population, how does
transmission vary with respect to stage of disease (e.g., early,
chronic, AIDS) and diagnosis status? To address these
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questions we construct a basic model of HIV transmission,
similar to that of Volz, Ionides, et al. (2013). We describe our
model as a special case of the general class of models de-
scribed above. This model contains assumptions that can be
altered and examined within our methodological framework.
In the following, we describe both the form of the model and
how we relate it to two data types: Diagnosis times and ge-
netic sequences.

The Latent and Observable Processes
The latent state of the system at time t, (T ðtÞ; PðtÞ; UðtÞ), is
of the form described above. To specify it completely, it re-
mains to describe the Markov process fUðtÞg and the tran-
sitions of fT ðtÞg and fPðtÞg. UðtÞ contains information
about all infected individuals in the population. Following
Volz, Ionides, et al. (2013), we do not explicitly track unin-
fected individuals and thus disallow depletion of the

susceptible pool. There are reasons to suspect that this
assumption may be problematic (Kenah et al. 2016), but its
adoption here facilitates comparison of our results with those
of Volz, Ionides, et al. (2013). Specifically,UðtÞ ¼ fðsi; BiðtÞÞ : i
infected at time tg, where si is the time at which individual i
was infected and BiðtÞ 2 C is the class of individual i at time
t, where C ¼ fI0; I1; I2; J0; J1; J2g. BiðtÞ ¼ Ik indicates that
individual i has an infection at stage k 2 f0; 1; 2g but has
not yet been diagnosed; BiðtÞ ¼ Jk indicates that individ-
ual i has been diagnosed and has an infection at stage k.
We think of k¼ 0 as indicating the early stage of infection;
k¼ 1, the chronic stage; k¼ 2, AIDS. Individuals move be-
tween classes according to figure 2. New infections can
occur, as can deaths, emigrations, and diagnosis events.
Transmission events, immigration events, deaths, and di-
agnoses all result in events of the corresponding type being
recorded in the structure of T ðtÞ.

FIG. 1. A schematic showing the nature and evolution of the latent transmission and phylogeny processes. The transmission forest, T ðtÞ, is shown
in black; the pathogen phylogeny,PðtÞ, in blue. On the left, we see the latent state at time t1; it evolves by time t2 to the state shown on the right. At
time t1, T ðt1Þ consists of two disconnected trees, representing the transmission histories of five active infections (�). These infections derive from
two infections present at t0 (black dots). The branching pattern of the pathogen phylogeny mirrors that of T ðtÞ over the interval ½t0; t1�. This
diagram assumes that pathogen lineages branch exactly at transmission events; alternative models could allow for differences in the branching
pattern betweenT ðtÞ andPðtÞ. This diagram displays a model with a relaxed molecular clock; randomness in the rate of evolution along lineages is
depicted via random edge lengths in PðtÞ. Over the time interval ½t1; t2�, changes of each of the five permissible types are shown. At ‹, an active
node splits in two when a transmission event occurs. At ›, an active node becomes a dead node (3) when an infected host emigrates, recovers, or
dies. At fi, an immigration event gives rise to a new active node with its own root. At fl, a sequence node (�) is spawned when a sample is taken.
Finally, active nodes for which none of the above occur simply persist. The Markovian property insists that the latent state at time t2 be an
extension of the latent state at time t1. In other words, changes to the latent state over the interval ½t1; t2�must not retroactively modify elements
of the latent state prior to time t1.
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New infections arise from two distinct sources:
Immigration and transmission within the population.
Immigrations occur at a constant rate, w. Each currently in-
fected individual inside the population seeds new infections
at rate ec, where c 2 C indicates infection class. Thus, we
allow transmissibility to vary between different infection clas-
ses, but assume homogeneous transmissibility within each
class. It follows that the incidence of new infections is
hðtÞ þ w, where hðtÞ ¼ eI0 NI0ðtÞþ eI1 NI1ðtÞ þ eI2 NI2ðtÞþ
eJ0 NJ0ðtÞ þ eJ1 NJ1ðtÞ þ eJ2 NJ2ðtÞ, and NcðtÞ is the number of
individuals in class c at time t. Defining all nonzero transition
rates between states is sufficient to specify a Markov process;
a full set of model equations for fUðtÞg is presented in the
supplement (supplementary section S4, Supplementary
Material online).

The inclusion of individual time-of-infection, si, within
fUðtÞg allows us to model within-host pathogen evolution. In
particular, when an individual is diagnosed at time t, a diagnosis
node is added to T ðtÞ, together with a diagnosis edge, the
length of which is linearly related to how long the diagnosed
individual has been infected (fig. 1). This edge may account for
sequencing error; it can also describe the emergence of new
pathogen strains within a host having reduced between-host
transmission potential (Lythgoe and Fraser 2012).

We assume for simplicity that the topology ofPðtÞmatches
that of T ðtÞ. Thus, we explicitly disallow the possibility of in-
complete lineage sorting, though, as mentioned before, this
choice is not forced by the algorithm. We assume a relaxed
molecular clock: The edge lengths of PðtÞ are random.
Specifically, each edge of PðtÞ has length conditionally
Gamma distributed with expectation equal, and variance pro-
portional, to the corresponding edge of T ðtÞ. That is, if L is the
length of an edge ofPðtÞ corresponding to an edge of length D
in T ðtÞ, we posit that LjD is Gamma distributed with E½LjD
¼ d� ¼ d and Var½LjD ¼ d� ¼ r d. The parameter r scales
the noise on the rate of evolution. This relaxation, identical to
the white noise model of Lepage et al. (2007), is a Lévy process
with non-negative increments, as we require. Having specified
PðtÞ, the joint distribution of observed sequences is deter-
mined by the choice of the time-reversible molecular substitu-
tion model. Here, we used the TN93 model of molecular
evolution (Tamura and Nei 1993). This model distinguishes
between the rate of transitions between purines, the rate of
transitions between pyrimidines, and the rate of transversions.
It is fully specified by the following rate matrix (see also table 2):

Q ¼

� bpT bpC aRpG

bpA � aYpC bpG

bpA aYpT � bpG

aRpA bpT bpC �

2
666664

3
777775

Results
We present results from both a study on simulated data and
an analysis of actual data. The primary goal of the simulation

study is to show how our methods can be used to extract
information about transmission dynamics from pathogen
genetic sequence data within the framework of likelihood-
based inference. This study was carried out with 30 se-
quences of length 100 bases. The goals of the data analysis
are to demonstrate the numerical feasibility of our imple-
mentation as well as illustrate the role of likelihood-based
inference as part of the cycle of data-informed model de-
velopment for a phylodynamic model. The data analysis
was carried out using 100 protease consensus sequences of
length 297 bases. Due to the intensive nature of the com-
putations, further developments will be required to handle
considerably larger datasets. Some empirical results con-
cerning how our GenSMC implementation scales with
number of sequences are given in the supplement (sup-
plementary section S2.3, Supplementary Material online).
We discuss applicability to the range of current phylody-
namic challenges in the Discussion section.

A Study on Simulated Data
Using the individual-based, stochastic model of HIV de-
scribed above (fig. 2), we set parameters governing the
rate of evolution at relatively high values to generate a
high proportion of variable sites. As computation scales
with the number of variable sites, the computational ef-
fort in this simulation study could be comparable to fit-
ting real sequences of greater length. Parameters values
and their interpretations are specified in tables 1 and 2.
Algorithmic parameters are specified in supplementary
section S4.2, Supplementary Material online. Each simu-
lated epidemic consisted of a transmission forest and a set
of pathogen genetic sequences. We randomly selected 5
epidemics to fit. Each dataset consists of two types of
data: Times of diagnoses and pathogen genetic sequences.

FIG. 2. A flow diagram showing the possible classes for infected indi-
viduals. The columns represent stage of disease: With subscripts 0, 1,
and 2 representing early, chronic, and AIDS stages respectively. The
rows represent diagnosis status, with the top row representing
undiagnosed individuals, Ik, and the bottom row representing diag-
nosed individuals, Jk, where k 2 f0; 1; 2g. qk are per capita rates of
diagnosis and cc are rates of disease progression. Arrows out of classes
that do not flow into other classes represent the combined flow out
of the infected population due to death and emigration.
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A representative simulated transmission forest and its
associated pathogen genetic sequences are shown in
figure 3.

For each of the selected epidemics we ask two ques-
tions. First, when all other parameters are known, is it
possible to infer eI0 and eI1 using only diagnosis times?
Second, how does inference change when we supplement
the diagnosis data with pathogen genetic sequences? To
perform this comparison we estimated two likelihood sur-
faces for each epidemic: One using only the diagnosis like-
lihood, and one using both the diagnosis likelihood and the

genetic likelihood. We estimated each surface by using the
particle filter to compute a grid of likelihood estimates
with respect to the two parameters of interest: eI0 , the
infectiousness of early-stage undiagnosed individuals, and
eI1 , the infectiousness of chronic-stage undiagnosed indi-
viduals. Equilibrium base frequencies were set to the em-
pirical values in the simulated data. All other parameters
were fixed at the known values used for simulation. We
extracted grid-based likelihood profiles for each parameter
by taking maxima over the columns or rows of the grid. For
each parameter we therefore obtained two profiles: One

Table 1. Parameters of the Transmission Model Used in Simulation of Datasets.

Parameter Interpretation Value

eI1
Infectiousness of undiagnosed chronic stage individuals 0.25 year–1

eI2
Infectiousness of undiagnosed AIDS individuals 0 year–1

eJ0
Infectiousness of diagnosed acute stage individuals 0.125 year–1

eJ1
Infectiousness of diagnosed chronic stage individuals 0.025 year–1

eJ2
Infectiousness of diagnosed AIDS individuals 0 year–1

lI0
Death rateþaging rate of undiagnosed acute stage individuals 1/3 year–1

lI1
Death rateþaging rate of undiagnosed chronic stage individuals 1/3 year–1

lI2
Death rateþaging rate of undiagnosed AIDS individuals 5/6 year–1

lJ0
Death rateþaging rate of diagnosed acute stage individuals 1/3 year–1

lJ1
Death rateþaging rate of diagnosed chronic stage individuals 1/3 year–1

lJ2
Death rateþaging rate of diagnosed AIDS individuals 2/3 year–1

cI0
Progression rate from undiagnosed acute to undiagnosed chronic 1 year–1

cI1
Progression rate from undiagnosed chronic to undiagnosed AIDS 1/6.3 year–1

cJ0
Progression rate from diagnosed acute to diagnosed chronic 1 year–1

cJ1
Progression rate from diagnosed chronic to diagnosed AIDS 1/6.3 year–1

q0 Diagnosis rate of acute stage individuals 0.5 year–1

q1 Diagnosis rate of chronic stage individuals 0.225 year–1

q2 Diagnosis rate of AIDS individuals 50 year–1

w Immigration rate of infected individuals 0 year–1

u Emigration rate of infected individuals 0 year–1

troot Root (polytomy) time 0 year
t0 Time to begin simulation of the transmission model 2 year
tend Time to end simulation of the transmission model 10 year
nloci Length of the sequences to simulate 100 base pairs
pG Probability of a sequence given diagnosis 0.48
NI0
ðt0Þ Number of undiagnosed early-stage individuals at t0 11

NI1
ðt0Þ Number of undiagnosed chronic-stage individuals at t0 15

NI2
ðt0Þ Number of undiagnosed AIDS individuals at t0 0

NJ0
ðt0Þ Number of diagnosed early-stage individuals at t0 4

NJ1
ðt0Þ Number of diagnosed chronic-stage individuals at t0 8

NJ2
ðt0Þ Number of diagnosed AIDS individuals at t0 6

Table 2. Parameters of the Genetic Model Used in Simulation of Datasets.

Parameter Interpretation Value

b Rate of transversions 0.013 year�1

aY Rate of transitions between purines 0.03 year�1

aR Rate of transitions between pyrimidines 0.1 year�1

pA Equilibrium frequency of adenine 0.37
pG Equilibrium frequency of guanine 0.23
pC Equilibrium frequency of cytosine 0.18
pT Equilibrium frequency of thymine 0.22
rsite Relaxation of the molecular clock with respect to sites 0
r Relaxation of the molecular clock with respect to edges 0.1 year
dfixed The initial component of the sequence stem 0.001 year
dprop Proportion of time since infection to add to the sequence stem 0.05
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using only the diagnosis likelihood and one using the joint
likelihood. The difference in curvature between these pro-
files tells how much the genetic data improves, or weakens,
inference on the parameters.

When only the diagnosis data are used, we find a trade-
off between eI0 and eI1 (fig. 4). The diagnoses provide

information on upper bounds for each infectiousness pa-
rameter, but otherwise only inform their sum. In other
words, when estimated using only the diagnosis times, eI0

and eI1 are nonidentifiable. Supplementing the data on
diagnoses with pathogen genetic sequences resolves this
uncertainty (fig. 4). Note that including the genetic data
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increases noise in the likelihood estimate. This is ex-
pected, as computing the likelihood estimate for the ge-
netic sequences requires a numerical approximation to an
integral over tree space. Nevertheless, the genetic data
increase the curvature of the likelihood surface. From fig-
ure 4, we see that this additional curvature leads to more
precise identification of the parameters despite the in-
creased Monte Carlo noise. In principle, Monte Carlo var-
iation can be reduced to negligibility by increased
computational effort. This may not be practical when
computational expense is high, as it is here. Therefore, it
is necessary to bear in mind the tradeoff between the
benefits of the information accessed for inference versus
the computational burden of extracting this information.

Analysis of an HIV Subepidemic in Detroit, MI
In this data analysis, we explored whether our full-
information approach could estimate key transmission
parameters using HIV protease consensus sequences and

diagnosis times. We focused our analysis on a subepidemic
in the young, black, MSM community. The cohort of individ-
uals that we chose to study is shown in figure 5. See Materials
and Methods for details on how we selected the subepidemic
and cleaned the sequence data.

As in the study on simulated data, we were interested in
what the genetic data yield beyond what we can see using the
diagnoses alone. Therefore, we again estimated likelihood
profiles in two ways: Using only the diagnosis data and using
both the diagnosis data and the genetic sequences. We esti-
mated likelihood profiles for three parameters of interest:
eI0 ; eJ0 , and w. In contrast to the simulation study, in this
analysis we were faced with a parameter space of much higher
dimension. To reduce the dimension of the problem we fixed
some parameters: Rates of disease progression, rates of diag-
nosis, and the rate of emigration. Parameters that were fixed
and fit are shown in tables 3 and 4, respectively.
Algorithmic parameters are specified in supplementary
section S4.2, Supplementary Material online. For each
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FIG. 4. Grid-based estimates of likelihood surfaces and likelihood profiles from fitting to simulated data. The top row shows the surface (A) and
profiles (B and C) estimated using only the diagnosis likelihood. The bottom row shows the surface (D) and profiles (E and F) estimated using both
the diagnosis and the genetic likelihood. Red dots and red lines indicate true values of eI0 and eI1 used in simulation. Point estimates and 95%
confidence intervals are shown in green just above the horizontal axis of the likelihood profile plots. Confidence intervals for (E) and (F) account for
both statistical uncertainty and Monte Carlo noise (Ionides et al. 2016) using a square root transformation appropriate for non-negative
parameters. Augmenting the diagnosis data with genetic data yields smaller confidence intervals for eI0

and eI1
, and resolves the nonidentifiability

of these parameters when estimated using only the diagnoses. Note that scales of the likelihood surfaces shown in (A) and (D) are not the same; (E)
and (F) have the same scale as (B) and (C) but with a vertical shift.
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likelihood profile we first used iterated filtering (Ionides
et al. 2015) to maximize the likelihood for a sequence of
values that spanned the reasonable range of the param-
eter. Second, we used the particle filter to estimate like-
lihoods for each parameter set obtained from iterated
filtering. We repeated this process of maximization fol-
lowed by evaluation until the profile stabilized. All initial-
value parameters were fixed, with the exception of troot.

Initial counts for individuals in each class were fixed. See
the supplement for details on how we arrived at these
counts.

When only the diagnosis data are used, we find that
the model prefers to explain all infections as originating
outside the cohort, with the maximum likelihood esti-
mate (MLE) for w � 120 infections per year (fig. 6).
Under this explanation for the data, little or no transmis-
sion occurs inside the cohort: This covariate-defined sub-
group acts as a sentinel of the broader epidemic.
Equivalently, this result would imply that the covariates
we used to select these cases do not define a meaningful
subepidemic.

On the other hand, when the genetic data are folded in,
the estimate of w is greatly revised: The MLE for w becomes
�6 infections per year. On its face, this is evidence for a low
rate of transmission into the cohort and, therefore, evidence

that the cohort subepidemic is much more self-contained.
Although this may in part be true, the lower estimate of w is
also potentially driven by assumptions of the genetic model.
Supposing, as it does, that all immigrant lineages coalesce at a
single, global polytomy, the model insists that sequences from
immigrant infections derive from a broad genetic pool. The
breadth of this pool—the average genetic distance between
an imported infection and any other observed sequence—is
determined by the depth of the polytomy, an estimated pa-
rameter. Nevertheless, the low estimate of w implies that
few infections derive from this broader pool. The model’s
disallowance of a more structured immigrant pool makes it
difficult to say more, however. In particular, the low value
of w is not inconsistent with the existence of chains of
transmission originating within the cohort, leaving it, and
returning. Such chains would produce sequence clustering
despite the openness of the cohort to transmission. Future
work, incorporating genetic and diagnosis information
from the broader epidemic will be needed to better quan-
tify the latter effect.

Joint likelihood profiles over eI0 and eJ0 show support for
transmission from both of the early-stage groups, with evidence
for higher infectiousness in the early-stage diagnosed class than
in the early-stage undiagnosed class. However, it is epidemio-
logically implausible that diagnosis increases transmission: This is

FIG. 5. The distribution of age at diagnosis through time for black MSM in Detroit, MI. The cohort that we selected for analysis is outlined in red. We
excluded the data from 2012 to limit effects from delays in updating the MDCH database. Twenty-nine individuals that were diagnosed at ages
greater than or equal to 60 years are not shown on this plot.
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a paradox. Since the paradox did not arise in the simulation
study, it cannot be due to a coding error in the implementation
of the model or the statistical methodology. Assuming no errors
in the data, therefore, it must derive from some inappropriate
feature of the model. We propose two possible explanations for
how the model and data combine to yield this result.

One possibility is that temporal clusters of genetically re-
lated diagnoses favor high infectiousness for the early-stage
diagnosed. For example, this could be an artifact of unmod-
eled clusters in HIV testing. We searched the data for such
clusters, but found no conclusive evidence for their presence.

A second possibility is understood by noting that, under
the model, any significant amount of transmission from the
undiagnosed classes leads necessarily to an exponentially
growing accumulation of diagnoses, in conflict with the
data. When the genetic data were left out, the model ac-
counted for the observed, roughly linear, ramp-up in diagno-
ses using immigration, hence the relatively high estimated w.
Incorporating the genetic data eliminates this option, forcing
the model to explain the epidemic’s sub-exponential growth
as a consequence of diagnosis itself.

To illustrate the second possibility, we estimated likelihood
profiles using only the diagnosis likelihood, fixing the immi-
gration rate, w, at zero. These profiles show that, when forced
to explain the diagnoses without any imported infection, the
model prefers to do so by making the early-stage diagnosed
class most infectious (fig. 6). This suggests that the model
lacks flexibility to explain the pattern in the diagnoses without
immigration; this constraint likely limits efficient use of infor-
mation in the genetic sequences. To remedy this problem,
one could modify the model by explicitly introducing a small
and ephemeral population of susceptible hosts.

In this methodological paper, we display but one iteration of
the scientific method and it is clear that our motivating

scientific questions remain incompletely answered. Our princi-
pal goal, however, is to illustrate how the methodology facili-
tates the formulation and testing of scientific hypotheses. For
example, the results above suggest a number of straightforward
model modifications: The plug-and-play property of the meth-
odology makes it nearly as straightforward to evaluate the ev-
idence for these new hypotheses just as we have done for the
old. Moreover, we have shown how probing the data with a
mechanistic model can lead to clear identification of flaws in
model structure, along with indications for improvements.

Discussion
We demonstrated, via a simulation study, that our algorithms
provide access to the likelihood surface of a population dy-
namic model fit to genetic sequence data. This opens the
door to likelihood-based phylodynamic inference. As this
study shows, incorporating information from genetic data
has the potential to improve on inference that we obtain
using diagnosis data alone.

In our analysis of an HIV subepidemic in Detroit, MI, we
showed that our methods can be used to ask questions of
current public health interest by fitting practical models to
data of nontrivial size. This study illustrates how the ability to
confront the model with different data types, alone or in
combination, can be essential to understanding how the
model interacts with the data, to uncovering shortcomings
of the model, and to pointing the way toward improved
model formulations. The ability of our methods to incorpo-
rate different data types made it possible to assess each source
of information’s contribution to the overall inference. In turn,
the ability to easily restructure the model, guaranteed by the
plug-and-play property, will allow us to push forward model
development.

Table 3. Parameters Fixed in the Data Analysis.

Parameter Interpretation Value

lI0
Death rate of undiagnosed acute stage individuals 1/70 year�1

lI1
Death rate of undiagnosed chronic stage individuals 1/70 year�1

lI2
Death rate of undiagnosed AIDS individuals 1/2 year�1

lJ0
Death rate of diagnosed acute stage individuals 1/70 year�1

lJ1
Death rate of diagnosed chronic stage individuals 1/70 year�1

lJ2
Death rate of diagnosed AIDS individuals 1/70 year�1

cI0
Progression rate from undiagnosed acute to undiagnosed chronic 1 year�1

cI1
Progression rate from undiagnosed chronic to undiagnosed AIDS 1/6.3 year�1

cJ0
Progression rate from diagnosed acute to diagnosed chronic 1 year�1

cJ1
Progression rate from diagnosed chronic to diagnosed AIDS 1/6.3 year�1

q0 Diagnosis rate of acute stage individuals 0.225 year�1

q1 Diagnosis rate of chronic stage individuals 0.225 year�1

q2 Diagnosis rate of AIDS individuals 50 year�1

/ Emigration rate of infected individuals 0 year�1

NI0
ðt0Þ Number of undiagnosed early-stage individuals at t0 20

NI1
ðt0Þ Number of undiagnosed chronic-stage individuals at t0 36

NI2
ðt0Þ Number of undiagnosed AIDS individuals at t0 0

NJ0
ðt0Þ Number of diagnosed early-stage individuals at t0 4

NJ1
ðt0Þ Number of diagnosed chronic-stage individuals at t0 22

NJ2
ðt0Þ Number of diagnosed AIDS individuals at t0 16

rsite Relaxation of molecular clock with respect to sites 0 year
t0 Time to start filtering January 1, 2004
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The scope of our methodology goes beyond the exam-
ples presented: The algorithms described here are applica-
ble across a wide range of host-pathogen systems and may
find application in realms beyond genetics. From an ab-
stract perspective, these algorithms provide the ability to
relate demographic processes with a growing tree-like
structure to the evolution of discrete characters that are
carried and passed along the branches of that tree. So long
as this evolution occurs on a similar timescale to that of
the demographic process, and measurements of the dis-
crete process are heterochronous, the methods presented
here apply.

In this paper, we demonstrated the methods using rela-
tively short consensus sequences derived from Sanger se-
quencing. While our methods may be well suited to
analysis of data from fast-evolving RNA viruses, they may
also apply in studies of pathogens that evolve more slowly.
Advances in sequencing are increasing the range of problems
for which phylodynamic inference is applicable (Biek et al.
2015). The ability to apply phylodynamic inference to bacte-
rial and protozoan genomes opens the door to many epide-
miological applications. One area that may be particularly
interesting to explore using our methods is hospital outbreaks
of drug resistant bacteria. Hospital records on location and
duration of stay may provide fine-scale information on pop-
ulations of susceptible and infected individuals. Accurate
measures of these demographic quantities may allow for ef-
ficient use of information held in genetic data. Furthermore,
the relatively small size of outbreaks in hospitals means that
stochasticity may play a large role in their dynamics, and our
methods are designed to explicitly account for the role of
different sources of stochasticity.

We conclude by placing our new methodology in the con-
text of the eight current challenges identified by Frost et al.
(2015) for inferring disease dynamics from pathogen se-
quences. We will make some relevant comments on each
challenge, in order.

(1) Accounting for sequence sampling patterns. Our meth-
odology explicitly models sequence sampling. The
chance of an individual being diagnosed, or subse-
quently having their pathogen sequenced, is permitted
to depend on the state of the individual. This state
could contain geographic information, or whatever
other aspect of the sampling procedure one desires
to investigate. Sampling issues revolve around how
the dynamics and the measurement process affect
the relatedness of sequences, and are more naturally
handled in a framework that deals jointly with estima-
tion of the population dynamics and the phylogeny.
Thus, our main innovation of joint estimation is di-
rectly relevant to this challenge.

(2) Using more realistic evolutionary models to improve
phylodynamic inferences. In this paper, we have
used simple evolutionary models that have been
widely used for previous phylodynamic inference in-
vestigations. Our methodology does not particularly
facilitate the use of more complex evolutionary
models, since the large number of trees under con-
sideration puts a premium on rapid likelihood com-
putation. However, our methodology is primarily
targeted at drawing inference on the population dy-
namics rather than the micro-evolutionary processes.
For this purpose, it may be sufficient to employ an
evolutionary model which captures the statistical re-
lationship between genetic distance and temporal
distance on the transmission tree, together with an
appropriate estimate of the uncertainty in this rela-
tionship. Better evolutionary models would be able
to extract information more efficiently from the
data, but from our perspective this challenge may
not be a primary concern.

(3) The role of stochastic effects in phylodynamics. Our
methodology explicitly allows for stochastic effects in
the population dynamics and sequence collection.

Table 4. Parameters Fit in the Data Analysis.

Parameter Interpretation Diagnosis data Diagnosis data
and genetic sequences

Diagnosis data,
with w fixed at 0

w Immigration rate of infected individuals 120 (104, 134) year–1 5.82 (2.55, 11.2) year–1 0 year–1

eI0
Infectiousness of undiagnosed acute stage individuals 0 (0, 0.413) 0.257 (0.0399, 0.623) 0 (0, 0.192)

eI1
Infectiousness of undiagnosed chronic stage individuals 0.0042 0.00048 0.0056

eI2
Infectiousness of undiagnosed AIDS individuals 0 0 0

eJ0
Infectiousness of diagnosed acute stage individuals 0.0675 (0, 1.17) 3.36 (3.13, 4.2) 7.34 (5.78, 9.25)

eJ1
Infectiousness of diagnosed chronic stage individuals 0.0089 0.17 0.032

eJ2
Infectiousness of diagnosed AIDS individuals 0 0 0

b Rate of transversions — 0.0042 year–1 —
aY Rate of transitions between purines — 0.047 year–1 —
aR Rate of transitions between pyrimidines — 0.043 year–1 —
pA Equilibrium frequency of adenine — 0.37 —
pG Equilibrium frequency of guanine — 0.24 —
pC Equilibrium frequency of cytosine — 0.18 —
pT Equilibrium frequency of thymine — 0.21 —
r Relaxation of molecular clock with respect to edges — 2 year —
dprop Proportion of time since infection to use for diagnosis edge — 0.064 —
dfixed Amount of calendar time to add on to diagnosis edge — 0.00049 year —
troot Time of the polytomy that joins all genetic lineages — August 27, 2000 —

We present confidences intervals for parameters for which we computed likelihood profiles. For all other parameters, we present only the point estimate.
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(4) Relating the structure of the host population to pathogen
genetic variation. Our framework explicitly models this
joint relationship. Further scientific investigations, fit-
ting models using methods accounting properly for
the joint relationship, will lead to progress in under-
standing which aspects of dynamics (such as super-
spreading) might be especially important to include
when carrying out phylodynamic inference.

(5) Incorporating recombination and reassortment. In prin-
ciple, our methodology is flexible enough to include
co-infection and its evolutionary consequences. Due to
computational considerations, it will be important to
capture parsimoniously the key aspects of these
processes.

(6) Including phenotypic as well as genotypic information.
Our framework naturally combines genotypic

A B C

D E F

G H

FIG. 6. Estimated likelihood profiles from fits to data from the black, MSM cohort. (A–C) show likelihood profiles computed using only the
diagnosis likelihood. (D–F) show likelihood profiles computed using both the diagnosis likelihood and the genetic likelihood. (G, H) show
likelihood profiles computed using only the diagnosis likelihood when w is fixed at zero. Black dots represent particle filter likelihood
evaluations of parameter sets obtained using iterated filtering. Red dots represent mean log likelihoods of the multiple likelihood evaluations
(black dots) at each point in the profile. Red lines are loess fits to the red dots. Green bars along the lower margin of each panel encompass
95% confidence intervals for each parameter. Confidence intervals account for both statistical uncertainty and Monte Carlo noise (Ionides
et al. 2016). The smoothed profile was calculated on the square root scale, appropriate for non-negative parameters, with a green dot
indicating the maximum.

Smith et al. . doi:10.1093/molbev/msx124 MBE

2076



information with other information sources. For exam-
ple, in our data analysis we complemented genetic
sequence data with diagnosis times for unsequenced
patients.

(7) Capturing pathogen evolution at both within-host and
between-host scales. The diagnosis edges on our phy-
logenetic tree allow for differences between observed
and transmissible strains, and therefore give a repre-
sentation of within-host diversity or measurement
noise. Other approaches to within-host pathogen di-
versity are possible within our general framework. For
example, one could include within-host branching of
the phylogenetic tree. More complete investigation of
within-host pathogen dynamics will require additional
modeling. Due to the larger models and datasets in-
volved, applying our methodology to such investiga-
tions will require further methodological work on
scaling.

(8) Scaling analytical approaches to keep up with advances
in sequencing. In this manuscript, our goal was to de-
velop generally applicable and statistically efficient
methodology. Our methodology is structured with
computational efficiency in mind, subject to that
goal. Our approach combines various algorithms that
have favorable computational properties: Peeling, par-
ticle filtering with hierarchical resampling and just-in-
time variable construction, and iterated filtering. There
is scope for computational enhancement by adapting
the methodology to high performance architectures. In
particular, parallel particle filtering is an active research
topic (Paige et al. 2014) that is directly applicable to our
methodology. There are also possibilities for improving
scaling by imposing suitable situation-specific approx-
imations; for example, it might be appropriate to
reduce the computational burden by supposing
that some deep branches in the phylogeny are
known.

In summary, our new methodology has potential for
making progress on many of the challenges identified by
Frost et al. (2015). Beyond that, the methodology offers a
full-information, plug-and-play approach to phylodynamic
inference that gives the scientist flexibility in selecting appro-
priate models for the research question and dataset at hand.
Although technical challenges remain, especially in scaling
these methods to large data, these algorithms hold the po-
tential to ask and answer questions not accessible by alterna-
tive approaches.

Materials and Methods

Overview of SMC Estimation of the Likelihood
SMC is a family of stochastic algorithms originally designed to
estimate imperfectly observed states of a system via a collec-
tion of dynamically interacting simulations (Arulampalam
et al. 2002). Each such simulation is called a particle; SMC is
often referred to as the particle filter. The simplest SMC algo-
rithm sequentially estimates the latent state at the time of

each observation by iteratively repeating three steps: 1) for
each particle, simulate the latent process forward in time to
the next data point, 2) for each particle, compute the condi-
tional probability density of the observation given the pro-
posed latent state, and 3) resample the particles with
replacement with probabilities proportional to their condi-
tional probabilities. While inference of unobserved states is
one use of the particle filter, we are primarily interested in
using the filter for likelihood estimation. The average of the
conditional likelihoods across particles is an estimator of the
conditional likelihood of each observation, and the product of
these conditional likelihoods is an unbiased estimator of the
full likelihood of the data (Del Moral 2004, Theorem 7.4.2 on
p. 239).

The basic particle filter described above requires only the
ability to simulate realizations of the latent state and to eval-
uate the density of an observation given the latent state. As
explained above, in the present case, the latent state contains
both the full transmission forest and the phylogeny of the
pathogen lineages. At minimum, the observations consist of a
time-ordered set of pathogen genetic sequences. Although in
principle these methods could be applied to homochronous
sequences, we primarily envision using them to fit models to
heterochronous sequences. Additional datatypes can be in-
corporated into the likelihood evaluation if desired so long as
there is a means to relate these data to the latent state.

Algorithm 1. GenSMC [Corresponding step numbers
for the complete description in supplementary section
S2, Supplementary Material online are in brackets]

input: simulator for the initial state; a dynamic model;
diagnosis times; genetic sequence data; number of par-
ticles; number of nested particles; number of relaxed
clock samples.

initialize filter particles [step 1]

for each diagnosis time do [step 2]

simulate particles through to next diagnosis time
[steps 3, 5]

propose multiple candidate individuals for the next
diagnosis [steps 6, 7]

propose multiple relaxed clock edge lengths for each
candidate assignment [steps 8–11]

compute particle weights: the probability density of
the diagnosis and sequence [steps 4, 12, 13]

resample according to particle weights [steps 14–21]

compute conditional log likelihood [step 22]

end for

output: log likelihood estimate; latent states estimates.
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We implemented the particle filter such that the algorith-
mic code is independent of the code that specifies the model.
This structure allows for realizing the advantanges of the
plug-and-play paradigm by facilitating quick comparisons be-
tween models of different forms. Pseudocode for the algo-
rithm is provided in the supplement. In Algorithm 1 we give
an outline of the pseudocode, and we show a schematic of
simplest form of the algorithm in figure 7. In our framework,
the user specifies the model by writing three functions:

(1) A simulator for the initial state of the latent process. This
function initializes T ðt0Þ and Uðt0Þ. For example, in a
model with only one class of infected individuals, this
function would initialize T ðt0Þ by specifying the num-
ber of infected individuals at t0. Additional information
about the states of those individuals may be contained
inUðt0Þ. Each of these individuals then becomes a root
of a tree in the transmission forest. Each root of the
transmission forest has its own genetic lineage; these

FIG. 7. A schematic of the particle filter. Here, we show steps to run the filter from the first sequence to the second. Transmission forests are shown
in black and phylogenies that connect observed sequences, ~PðtÞ, are shown in blue. Observed sequences are depicted as blue dots. This schematic
shows how the algorithm uses just-in-time construction of state variables to ease computational costs. Although the model describes how PðtÞ
relates to T ðtÞ across all branches of the transmission tree, the algorithm only constructs the subtree of the phylogeny needed to connect the
observations (and therefore evaluate conditional probabilities of sequences). Note that in our implementation of the particle filter we introduce
additional procedures in the proposal and weighting steps. These procedures, which are detailed below, allow for more accurate assessment of a
particle’s weight (through hierarchical sampling) and estimation of the conditional probability of a sequence under a relaxed clock. In our current
implementation (supplementary algorithm S1, Supplementary Material online), assimilation of each data point is followed by systematic
resampling (Arulampalam et al. 2002; Douc et al. 2005); future developments may aim to increase efficiency further using alternative resampling
schemes.
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comprise Pðt0Þ. In our implementation, the initializer
does not constructPðt0Þ; the structure ofPðtÞ is built
as needed (see Just-in-Time Construction of State
Variables).

(2) A forward simulator for the latent state. This function
simulates T ðtÞ and UðtÞ forward in time from one
observation to the next. This function also places
the next observation on T ðtÞ, assigning the se-
quence to an individual by augmenting T ðtÞ with
a diagnosis edge and a sequence node. Note that
this function does not simulate evolution of genetic
sequences. Rather, the algorithm proposes ancestral
relationships between genetic sequences via the sim-
ulated transmission forest. While formally, the path-
ogen phylogeny PðtÞ is part of the latent state, for
computational efficiency we choose not to simulate
its structure in full. The function in 3) builds the
necessary components of PðtÞ given the simulated
transmission forest and placement of sequences on
the forest.

(3) An evaluator for the conditional probability of observing
a sequence. This function returns the conditional prob-
ability of observing a sequence given the latent state
and all previously observed sequences. In particular,
this function conditions on the structure of the subtree
of PðtÞ that connects the observed sequences. The
simplest choice for this function is to 1) make the
strong assumption that PðtÞ maps directly onto
T ðtÞ, and therefore build the phylogeny based strictly
on the topology of T ðtÞ and 2) evaluate the condi-
tional likelihood of the genetic sequence using the
peeling algorithm (Felsenstein 1981). These two
choices are equivalent to assuming a strict molecular
clock. However, one may choose more complicated
functions, such as mappings that allow for discrepancy
between T ðtÞ and PðtÞ or a relaxed molecular clock,
to better match the mechanistic processes that gener-
ate real data. The branching pattern of the transmis-
sion forest and of the phylogeny may differ for a
number of reasons (Romero-Severson et al. 2014), so
there may be strong arguments for allowing for
discrepancy between these trees.

Maximization of the Likelihood via Iterated Filtering
The particle filter provides access to the likelihood sur-
face, but it does not provide an efficient way to maximize
the likelihood. A closely related class of algorithms, iter-
ated filtering, allows for maximizing the likelihood.
Iterated filtering incorporates perturbation of unknown
parameters into the particle filter. Repeatedly passing the
filter over the data while shrinking the size of the pertur-
bations allows the parameters to converge to their MLEs.
The setup here, with the use of just-in-time construction
of unobserved states, does not perfectly match the frame-
work used to develop iterated filtering by Ionides et al.
(2015). However, the basic iterated filtering approach of
perturbing parameters and filtering repeatedly can be

applied, and can be assessed on its empirical success at
maximizing the likelihood.

Computational Structure
One way our algorithms differ from a standard SMC ap-
proach is that each particle maintains a latent state compris-
ing of tree structures that reach back to troot. As the algorithm
incorporates each additional data point its memory require-
ment grows. From a practical perspective, the necessity of
maintaining a deep structure in the particles presents chal-
lenges for writing a computationally feasible implementation
of the algorithm. We developed several innovations to meet
the computational challenges posed by numerically integrat-
ing over tree space. In this section, we give an overview of key
components of our implementation that contributed to nu-
merical tractability. For details, see the source code at https://
github.com/kingaa/genpomp. Scripts and data that allow for
reproducing the simulation study are archived at Dryad
(doi:10.5061/dryad.3634m).

Data Structures and Their Relationship to Model

Specification
Our implementation holds two tree structures in memory for
each particle: 1) T ðtÞ, the transmission tree, and 2) ~PðtÞ, the
subtree of PðtÞ that connects all sequences observed up to
time t. We represent T ðtÞ as a vector of nodes, where each
node contains the index of its mother, a timestamp, and the
index of the genetic lineage with which it is associated (if any).
Although the model of the latent state includes the full phy-
logeny of the pathogen, PðtÞ, our algorithms only need to
keep a subtree of the phylogeny, ~PðtÞ, in memory. We also
represent ~PðtÞ as a vector of nodes. However, nodes of ~PðtÞ
require more memory than the nodes of T ðtÞ. In addition to
the information in a transmission tree node, each node of
~PðtÞ contains the indices of the node’s daughters, an ar-
ray of probabilities, and an evolutionary edge length.
These additional components allow for computing the
likelihood of observing the sequences at the tips of ~PðtÞ.

Our implementation provides a set of functions that allow
for specifying the model via forward-in-time simulation of
the latent state. These functions provide access to the latent
state and allow for modifying the latent state by branching
lineages in T ðtÞ, terminating leaves in T ðtÞ, etc. Our code
does not provide access to ~PðtÞ. Instead, internal functions
update the structure of ~PðtÞ as necessary (detailed in the
following section on Just-in-Time Construction of State
Variables). The structure of ~PðtÞ is in part determined by
the molecular clock model. Our current implementation
supports strict molecular clock models and relaxed molecu-
lar clocks with Gamma distributed edge lengths (as we use in
this paper). Alternative models forPðtÞ are possible, and the
plug-and-play structure of our algorithms allows the user to
explore a wide range of alternative models.

Just-in-Time Construction of State Variables
Although the model of the latent process includes the full
phylogeny of the pathogen, PðtÞ, for the purposes of
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computation we need only store ~PðtÞ in memory. In our
implementation, we add new edges to ~PðtÞ at the time of
measurement; it is not until a sequence is placed on a lineage

of T ðtÞ that we have enough information to update ~PðtÞ.
We call this approach just-in-time construction of state var-
iables because simulation of part of the state is postponed

FIG. 8. A schematic of our hierarchical sampling scheme. In this scheme, we split the proposal into two steps: 1) simulation of the transmission
forest and 2) selecting an eligible individual to be sequenced. When each particle is expensive, it may pay to invest more effort in evaluating the
conditional probability of a sequence given the latent state. This procedure is easily nested within the simpler form of the particle filter shown in
figure 7. In turn, one can add additional Monte Carlo steps to the weighting step in this procedure to evaluate the conditional probability of a
sequence under a relaxed clock (see fig. 9).
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until the last moment. An alternative approach would in-
clude simulation of PðtÞ in tandem with the transmission
forest. Then, when a sequence is attached to T ðtÞ the nec-
essary components of PðtÞ to relate the new sequence to all

previously observed sequences would be guaranteed to be
present. When the transmission forest is large relative to the
phylogeny such an approach would be costly in both com-
putation and memory.

FIG. 9. A schematic showing our Monte Carlo approach to estimate the conditional probability of a sequence under a relaxed clock. Note that this
procedure only modifies the subtree of the phylogeny that joins the sequences, ~PðtÞ. At the top, we show a particle just before attaching a new sequence. In
this case, the particle has already incorporated two sequences, and the location of the third sequence on the transmission forest has already been selected.
First, we make L copies of ~Pðt2Þ, the subtree of the phylogeny that connects all sequences observed up to time t2 (at ‹). For each of these phylogenies we
propose an attachment site and an edge length for sequence g3 (at ›). The edge length of the edge subtending sequence g3, e‘ , is drawn from a Gamma
distribution parameterized as described in the text. We split the edge between the root and sequence g2 according to a Beta distribution into two lengths, a‘
and b‘ ; this procedure preserves Gamma distributed edge lengths for two components of the split edge. Then, for each proposed phylogeny, we use the
peeling algorithm to compute the conditional probability of sequence g3 (at fi). Finally, we sample one of these proposed phylogenies with probability
proportional to its weight (at fl). The unsampled proposals are discarded and the particle takes the average of the conditional probabilities as its weight.
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A Hierarchical Sampling Scheme
We developed a hierarchical sampling scheme to allow for
scaling the effective number of particles while holding only a
fraction of the effective number of particles in memory. This
sampling scheme allows for holding J particles in memory
while approaching effective sample sizes approaching JK,
where J is the number of base particles and K is the number
of nested particles. In this hierarchical scheme, we split the
proposal into two steps: 1) proposal of the transmission forest
and 2) proposal of the location of the sampled sequence on
the transmission forest. Each of J particles first proposes a
transmission forest. Then each of the J particles calculates
the likelihood of the observed sequence for K possible loca-
tions of the observed sequence (fig. 8). One of the K-nested
particles is kept, sampled with weight proportional to its
conditional likelihood, and the remaining K�1 particles are
discarded. The weight of the surviving particle is the average
of the conditional likelihoods of the K-nested particles.

A Monte Carlo Procedure for the Relaxed Molecular Clock
As we have no closed-form expression for the conditional
probability of an observed sequence under a relaxed clock,
we estimate this probability via simulation. Figure 9 shows

how we incorporate this Monte Carlo procedure into our
SMC framework. We generate L instances of the subtree of
the phylogeny that connects all previously observed se-
quences up to time t, ~PðtÞ. We then augment each subtree
with an edge to accommodate the new sequence. The length
of this edge is Gamma distributed as described above.
When connecting the new edge to the existing phylogeny,
there are two cases: Either the edge connects at the root
or the new edge splits an existing edge. In the case of a
split edge, we allocate edge length to either side of the
split according to a beta distribution. This procedure
maintains Gamma distributed edge lengths. Having con-
structed the phylogeny connecting all sequences up to
the new sequence, we then use the peeling algorithm
(Felsenstein 1981) to compute the conditional probability
of the new sequence. The average of the conditional prob-
ability given each of the L subtrees is an estimate of the
conditional probability of the new sequence under a re-
laxed clock.

Parallelization
We used openMP (Dagum and Menon, 1998) to parallelize
the algorithm at the level of a single machine to reduce

FIG. 10. A schematic of quantities used in calculation of the conditional density of a diagnosis and the conditional probability of a genetic sequence.
At (A) we show a simulated transmission tree. For simplicity, this tree only has individuals of class I0 and class J0. Dashed arrows fall from events in
the transmission tree that change the count of I0 individuals in the population. At (B) we show a plot of the trajectory of the I0 class. This plot shows
the quantities we use to calculate the cumulative hazard of diagnosis for the I0 class, K0, over an interval of time from t1 to t2. We first subdivide the
time interval into R subintervals over which the number of I0 individuals is constant (indicated with dashed lines). We let the number of I0
individuals in the rth subinterval be NI0;r . The cumulative hazard of diagnosis is then: K0 ¼ q0

PR
r¼1 drNI0;r . The cumulative hazards of diagnosis for

the other two classes of undiagnosed individuals are computed in the same fashion. At (C) we show the set of L subtrees of the phylogeny that we
use to numerically estimate the conditional probability of sequence g2 under our relaxed clock model. The ‘th subtree is constructed by
augmenting ~Pðt1Þwith a new edge with length e‘ drawn from a Gamma distribution parameterized as described in the text. For each of these L
subtrees we use the peeling algorithm to compute w‘ ¼ P½g2jg1; ~P‘ðt2Þ�, the conditional probability of observing sequence g2 given sequence
g1 and the structure of ~P‘ðt2Þ. The average of these conditional probabilities is a numerical estimate of the conditional probability of g2 under
our relaxed clock model. For simplicity, here we do not show the case in which the edge length of g2 splits an existing edge; this case requires a
beta bridge to apportion the length of the split edge so as to maintain Gamma distributed edge lengths. For this more complicated case, see
figure 9.
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runtimes. In particular, we parallelized the outer loop of the
hierarchical sampling scheme described above. Each proces-
sor handles one base particle at a time. The cost in memory
for n processors handling J particles with a nested sample size
of K is therefore at worst Jþ nK, as each processor may have
at most K additional particles in memory.

A Model of HIV Transmission: Computation of the
Measurement Model
Each diagnosis event consists of a diagnosis time and,
possibly, an associated genetic sequence. In the case
where the diagnosis event has no sequence, the mea-
surement model is only the conditional density of the
diagnosis time. When there is an associated sequence, it
is the product of the conditional density of the diagnosis
time and the conditional probability of the genetic
sequence.

We compute the conditional density of a diagnosis
time as follows. We decompose the density into two
terms: 1) The probability of no diagnosis over the last
interdiagnosis interval: exp ð�

P2
k¼0 KkÞ where Kk is

the cumulative hazard of a diagnosis from class Ik,
k 2 f0; 1; 2g. That is, Kk ¼ qk

PR
r¼1 drNIk;r , where, qk is

the diagnosis rate for class Ik, dr is length of the rth sub-
interval in the interdiagnosis interval over which the
count of class Ik, NIk;r , is constant, and 2) the hazard of a
diagnosis at the time of diagnosis:

P2
k¼0 qkNIk . The con-

ditional density of a diagnosis time is the product of these
two quantities, and is therefore a mixture of a probability
and a density. To compute the first, each particle accu-
mulates the person-years of undiagnosed individuals over
the last diagnosis interval (fig. 10). The second is easily
computed given the number of each class of undiagnosed
individual at the time of diagnosis.

The conditional probability of a genetic sequence is the
probability of observing that sequence given the latent state
of the system and all previously observed sequences. Our
Monte Carlo approach for computing this probability under
a relaxed clock is detailed in the Computational Structure
section.

Data Analysis Methods: The Sequence Data
We preprocessed the sequence data following Volz, Ionides,
et al. (2013) to facilitate comparison with that work. We
excluded poor quality sequences and recombinant se-
quences, and accounted for known sources of selection. We
first aligned all sequences to the reference sequence for the
pol gene of HIV subtype-B. We then masked known drug
resistant sites, as specified in the Stanford database of HIV
drug resistance (Bennett et al. 2009). We used the program
HyPhy (Pond et al. 2005) to identify the type of each sequence
and then excluded recombinant sequences and nonsubtype-
B sequences. M any individuals in the dataset have multiple
sequences. To limit the complexity of the problem, we chose
to keep only first available sequences that were collected
within 1 year of diagnosis. Our methods could, in principle,
allow for multiple sequences from each individual. However,
this extension has not yet been implemented. We took the

time of diagnosis as the time of sequencing—for most se-
quences this is a reasonable approximation. Poor quality se-
quencing often manifests as sequences with clipped ends. We
therefore considered the length of a sequence as a proxy for
quality, and we excluded sequences whose concatenated
length was shorter than 1,100 base pairs.

Data Analysis Methods: Selecting a Subepidemic
The Michigan Department of Community Health (MDCH)
maintains an extensive dataset on HIV positive individuals
living in the state of Michigan. This dataset stretches back to
the beginnings of the HIV epidemic in the United States, and
includes over 30,000 diagnoses and nearly 9,000 genetic se-
quences. Analysis of the full dataset is beyond the scope of our
current implementation. Further developments, possibly in-
cluding preliminary splitting of the full phylogeny into clusters,
will be necessary to apply our methods to larger-scale situa-
tions. We therefore selected a subset of the cases based on a
number of clinical covariates. We chose to focus on the young,
black, MSM, subepidemic, which has been of recent concern in
Detroit and elsewhere in the United States (Maulsby et al.
2014). In selecting this subset, one of our goals was to choose
a well-defined subpopulation. We selected records of individ-
uals from the MDCH dataset that met the following criteria:
Black, MSM, known not to be an intravenous drug user, and
diagnosed in one of 10 counties that comprise the Detroit
Metropolitan Area. For this subpopulation, the distribution of
the age at diagnosis through time shows striking patterns. In
particular, it there is evidence for cohorts of infected individ-
uals that may be clusters of transmission within the young,
black, MSM community. We selected a cohort from this pop-
ulation that may represent such a cluster of transmission:
Individuals that were between the ages of 19 and 28 inclusive
in the year 2011 (a span of 10 years) and were diagnosed be-
tween January 1, 1999 and December 31, 2011 (fig. 5). We
selected this particular cohort of individuals because it con-
tains what appears to be a pulse of transmission, and because
it coincides with when we have high rates of sampling for the
genetic sequence data. Counts of individuals diagnosed be-
tween January 1, 1999 and December 31, 2003 were used to
determine initial conditions (detailed in the supplement). We
fit models to data from January 1, 2004 to December 31, 2011.
This portion of the cohort has 709 diagnoses and 253 primary
genetic sequences. We subsampled the genetic sequences,
randomly selecting 100 sequences to keep in the analysis.
For the current implementation of our methodology, and in
the context of this HIV model, 100 sequences was around the
limit of computational tractability.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA. 2015. Inference for
dynamic and latent variable models via iterated, perturbed Bayes
maps. Proc Natl Acad Sci U S A. 112(3):719–724.

Ionides EL, Breto C, Park J, Smith RA, King AA. 2016. Monte Carlo profile
confidence intervals (unpublished), last accessed 21 December 2016.
https://arxiv.org/abs/1612.02710.

Kantas N, Doucet A, Singh SS, Maciejowski J, Chopin N. 2015. On particle
methods for parameter estimation in state-space models. Stat Sci.
30(3):328–351.

Karcher MD, Palacios JA, Lan S, Minin VN. 2016. phylodyn: an R package
for phylodynamic simulation and inference. Mol Ecol Resour.
17:96–100.

Kenah E, Britton T, Halloran ME, Longini IM Jr. 2016. Molecular
infectious disease epidemiology: survival analysis and algo-
rithms linking phylogenies to transmission trees. PLoS
Comput Biol. 12(4):e1004869.

Lau MS, Marion G, Streftaris G, Gibson G. 2015. A systematic Bayesian
integration of epidemiological and genetic data. PLoS Comput Biol
11(11):e1004633.

Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of
relaxed molecular clock models. Mol Biol Evol. 24(12):2669–2680.

Lythgoe KA, Fraser C. 2012. New insights into the evolutionary rate of
HIV-1 at the within-host and epidemiological levels. Proc R Soc B: Biol
Sci. 279(1741):3367–3375.

Maulsby C, Millett G, Lindsey K, Kelley R, Johnson K, Montoya D,
Holtgrave D. 2014. HIV among black men who have sex with men
(MSM) in the United States: a review of the literature. AIDS Behav.
18(1):10–25.

Paige B, Wood F, Doucet A, Teh YW. 2014. Asynchronous anytime
sequential Monte Carlo. Adv Neural Inform Process Syst.
27:3410–3418.

Pond SLK, Frost SDW, Muse SV. 2005. HyPhy: hypothesis testing using
phylogenies. Bioinformatics 21(5):676–679.

Poon AFY. 2015. Phylodynamic inference with kernel ABC and its ap-
plication to HIV epidemiology. Mol Biol Evol. 32(9):2483–2495.

Posada D, Crandall KA. 2001. Selecting models of nucleotide substitu-
tion: an application to human immunodeficiency virus 1 (HIV-1).
Mol Biol Evol. 18(6):897–906.

Rasmussen DA, Ratmann O, Koelle K. 2011. Inference for nonlinear
epidemiological models using genealogies and time series. PLoS
Comput Biol. 7(8):e1002136.

Romero-Severson E, Skar H, Bulla I, Albert J, Leitner T. 2014. Timing and
order of transmission events is not directly reflected in a pathogen
phylogeny. Mol Biol Evol. 31(9):2472–2482.
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