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Abstract
Kidney cancer is one of the most frequently diagnosed and the most lethal urinary cancer. Despite all the efforts made, no serum-
specific biomarker is currently used in the clinical management of patients with this tumor. In this study, comprehensive high-
resolution proton nuclear magnetic resonance spectroscopy (1H NMR) and silver-109 nanoparticle-enhanced steel target laser
desorption/ionization mass spectrometry (109AgNPET LDI MS) approaches were conducted, in conjunction with multivariate
data analysis, to discriminate the global serummetabolic profiles of kidney cancer (n = 50) and healthy volunteers (n = 49). Eight
potential biomarkers have been identified using 1H NMR metabolomics and nine mass spectral features which differed signif-
icantly (p < 0.05) between kidney cancer patients and healthy volunteers, as observed by LDI MS. A partial least squares
discriminant analysis (OPLS-DA) model generated from metabolic profiles obtained by both analytical approaches could
robustly discriminate normal from cancerous samples (Q2 > 0.7), area under the receiver operative characteristic curve (ROC)
AUC > 0.96. Compared with healthy human serum, kidney cancer serum had higher levels of glucose and lower levels of
choline, glycerol, glycine, lactate, leucine,myo-inositol, and 1-methylhistidine. Analysis of differences between these metabolite
levels in patients with different types and grades of kidney cancer was undertaken. Our results, derived from the combination of
LDI MS and 1H NMR methods, suggest that serum biomarkers identified herein appeared to have great potential for use in
clinical prognosis and/or diagnosis of kidney cancer.
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Introduction

Kidney cancer is the third most frequently diagnosed cancer of
the urinary tract in the world. In 2018, this disease affected
over 400,000 individuals worldwide and is responsible for

nearly 180,000 deaths annually [1]. An increased understand-
ing of kidney cancer has shown that this is not a single disease,
but rather originates from a number of different types in this
organ, which is driven by differential gene expression, and
characterized by different clinical trajectories and outcomes,
histological manifestations, and responses to therapy [2].
Benign kidney tumors (non-cancerous) do not have the ability
to spread (metastasize) to other parts of the body, while ma-
lignant (cancerous) tumors grow and spread out of control.
There are various types of non-cancerous tumors of the kidney
including adenoma, oncocytoma, and angiomyolipoma
(AML). The most common malignant types of kidney cancer
accounting for > 90% of cancers in this organ are renal cell
carcinomas (RCC) including clear cell (ccRCC), chromo-
phobe RCC (cRCC), and papillary RCC (pRCC), which orig-
inate from the renal tubular epithelial cells. The remaining
subtypes of RCC, including duct carcinoma (CDC),
angiomyolipoma (AML), or simple renal cyst (SRC), are very
rare [3]. Nowadays, diagnosis of RCC is based on imaging
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procedures and more than 50% of RCC are diagnosed inci-
dentally. In most cases, RCC is difficult to detect at an early
stage due to the lack of characteristic symptoms such as triad
of hematuria, low back pain, and flank mass symptoms. Most
patients exhibit systemic symptoms including weight loss,
anorexia, abdominal pain, and fever, and approximately one-
third of patients with RCC have locally advanced ormetastatic
tumors beyond the kidney at the time of diagnosis [4]. The
lack of adequate therapies at this stage, as well as the inherent
resistance of this tumor to chemotherapy and radiotherapy, is
associated with poor prognosis and high mortality rate. Less
than 10% of patients with metastatic disease are alive 5 years
after diagnosis [5]. Of the currently available localized RCC
treatments, such as active surveillance or cryoablation and
radiofrequency ablation, the most effective is still radical ne-
phrectomy with nephron-sparing surgery at an early stage [2].
Despite this type of treatment, nearly one-third of patients
experience disease recurrence after surgical resection.

The survival of advanced kidney cancer patients, for whom
standard chemotherapy is not very effective, has improved
with the advent of targeted therapy. The targeted drugs act
against vascular endothelial growth factor (VEGF) and other
important proteins (tyrosine kinases) that enable cancer cell
growth and survival, but treatment response is varied; and at
best, these targeted drugs can only slow the growth of the
cancer for a time but do not actually cure kidney cancer.
Specific targeting molecules, most of which are proteins, have
been proposed (C-reactive protein (CRP), PTEN, carbonic
anhydrase IX (CAIX), hypoxia-inducible factors (HIF-1α
and HIF-1β), vascular endothelial growth factor (VEGF,
CD44, E-cadherin, osteopontin, antigen Ki-67 and tumor pro-
tein p53), and monitoring their activity might generate a time-
ly prognosis of the metastatic potential of RCC. However,
these biomarkers suffer from low abundance and are not par-
ticularly specific to metastatic RCC, and using them as diag-
nosis of metastasized RCC is very limited [6]. In addition,
numerous low molecular weight markers of kidney cancer
have been proposed including lysophosphatidylcholines,
phenylacetylglycine, ganglioside GM3, sphingomyelin,
thromboxane, phenylacetylglycine, acetylphenylalanine,
glycocholic acid, glycerophosphorylcholine, carnitine,
lysophosphatidylethanolamines, tryptophan, tyrosine, ldl/vldl,
lactate, choline, valine, leucine, isoleucine, glutamate, gluta-
mine, lipids metabolites, carbohydrates metabolites, alanine,
and creatine [7–11].

Unfortunately, though great efforts have been under-
taken in the past decades, there are still no acknowledged
robust biomarkers available for diagnosis or prognosis of
RCC cancers. In order to create more effective therapies,
additional kidney cancer biomarker research is needed,
and has important clinical significance especially for early
detection, diagnosis, as well as guiding treatment inter-
ventions, monitoring treatment effectiveness, identifying

relapse, and elucidating the molecular processes underly-
ing RCC disease states.

Over the past decade, sensitive analytical methods have
been developed, enabling to better understand the metabolic
changes underlying kidney cancer phenotypic changes. These
analytical platforms include 1H nuclear magnetic resonance
(NMR) [12], liquid chromatography-coupled mass spectrom-
etry (LC-MS) [8], gas chromatography-coupled mass spec-
trometry (GC-MS) [13], matrix-assisted laser desorption/
ionization surface (MALDI) [14], desorption electrospray ion-
ization mass spectrometry (DESI MS) [15], and surface-
enhanced laser desorption/ionization mass spectrometry
(SELDI MS), which when employed together enable to
achieve the most comprehensive screening of cancer
metabolomes [16].

NMR and MS combined with multivariate statistical data
analysis are the two most powerful and commonly used ana-
lytical methods for the rapid, noninvasive, and simultaneous
measurements of endogenous metabolites present in biologi-
cal fluids and tissues [17]. These two techniques are highly
complementary; NMR is quantitative, reproducible, and does
not require extensive steps for sample preparation, such as
separation or derivatization. MS is, on the other hand, ex-
tremely sensitive and allows for the detection of thousands
of mass spectral features corresponding to numerous metabo-
lites, and can be undertaken using very small amounts (a few
mg) of sample. Thus, utilization of both MS and NMR
methods in concert expands metabolite coverage and enables
the comprehensive analysis of a wide range of metabolome
profiles [18].

Metabolic profiling of biofluids, especially serum, gener-
ates a biochemical fingerprint of small molecule metabolites,
and allows for identification and characterization of potential
biomarkers associated with cancer. Since genetic studies has
shown that RCC is a metabolic disease, a growing number of
studies is focusing on profiling of tissue, serum, plasma, and
urine samples of kidney cancer patients. However, relatively
low number of NMR metabolomics studies have been under-
taken to characterize the serummetabolomes of kidney cancer
patients in recent years [19].

Lin and co-workers are pioneers in the analysis of the se-
rum of patients with kidney cancer using mass spectrometry.
In 2010, they employed separately two MS-based techniques
to analyze serum samples from 31 kidney cancer patients and
20 healthy volunteers. The authors found a total of 71 vari-
ables useable as potential markers but the identification of
chemical compounds was only successful for only a few of
them [7]. A year later, Lin et al. utilized LC-MS-based meta-
bolomics profiling to evaluate differential levels of com-
pounds present in serum of 33 RCC patients and 25 healthy
volunteers. Application of two different chromatographic col-
umns and combination of data sets, they found 30 potential
serum biomarkers [20]. In 2008, Gao et al. performed
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metabolic profiling of serum from 74 patients with kidney
cancer and 55 controls using proton nuclear magnetic reso-
nance (1H NMR) spectroscopy and found 18 metabolites sig-
nificantly differentiating between three groups: (i) RCC pa-
tients and controls; (ii) RCC patients with metastases and
without metastases; and (iii) RCC patients before and after
nephrectomy [21]. Zira et al. applied 1H NMR spectroscopy
to analyze serum metabolome of plasma in 32 RCC patients
and 13 controls and found 17 metabolites that can distinguish
RCC patients form controls [9]. In another study, Jobard et al.
conducted a metabolomics analysis of serum samples from
171 patients with mRCC participating in clinical trial to iden-
tify metabolic signatures associated with targeted therapies
using 1H NMR [10]. 1H NMR-derived metabolomics profile
of serum samples from 104 participants was studied by Zheng
et al. in order to prepare RCC predictions. They revealed that
cluster of 7 metabolites (alanine, creatine, choline, isoleucine,
lactate, leucine, and valine) can be used for the early diagnosis
of RCC [11]. Moreover, studies focusing on the metabolite
profiling of tissues [12, 22, 23] and urine [24, 25] from pa-
tients with kidney cancer have been reported. Recently, com-
prehensive review regarding metabolic profiling of samples
from RCC patients has been published [19].

In the current work, the metabolomics analysis of 50 serum
samples from patients with kidney cancer and 49 healthy sub-
jects serving as controls was undertaken using two orthogonal
analytical methods: high-resolution 1H NMR and laser
desorption/ionization MS using a 109-silver nanoparticle-en-
hanced steel target platform (109AgNPET LDI MS) [26]. The
value of the 109AgNPET LDI MS approach for metabolomics
has been demonstrated in the analysis of metabolites in plant,
animal, and human tissues [27]. Both multivariate statistical
data and quantitative analysis of metabolite profiles were
employed to assess whether patient cohorts could be separated
from control individuals, based on distinct metabolite patterns
observed in serum samples, and using 1D 1HNMR untargeted
metabolomics.

Materials and methods

Materials and equipment

Silver-109 (min. 99.75% of 109Ag) isotope was purchased
f rom BuyIso tope (Sweden) and t rans fo rmed to
trifluoroacetate salt using commonly known methods (involv-
ing dissolving in HNO3, precipitation of 109AgOH, and reac-
tion with trifluoroacetic acid) and recrystallized from
tetrahydrofuran/hexane system. 2,5-Dihydroxybenzoic acid
(DHB) was purchased fromAldrich. Steel targets were locally
machined from H17 stainless steel. All solvents were of
HPLC quality, except for water and methanol (LC-MS grade,

Fluka). The silver-109 nanoparticles were synthesized on the
surface of steel targets as described in our publication [27].

Collection of serum samples

The study protocol was approved by local Bioethics
Committee at the University of Rzeszow (Poland) (permission
no. 2018/04/10). We confirm that all research was performed
in accordance with relevant guidelines and regulations.
Specimens and clinical data from patients involved in the
study were collected with informed consent. Blood samples
were obtained from fifty patients with kidney cancer and 49
age- and sex-matched healthy control subjects, following de-
tailed clinical questioning at John Paul II Hospital in
Kolbuszowa (Poland). All laboratory test results (complete
blood count, kidney function tests, CRP, urine analysis, bleed-
ing profile) were within normal ranges. Serum samples from
50 patients (20 female, 30 male, age range 36–87, average age
69) with kidney cancer and 49 healthy control subjects were
collected. The majority of patients (n = 33, one patient had
two tumors) had stage T1 disease, four patients had stage
T2, ten patients had stage T3, and one patient had stage T4.
In three patients, the stage of the disease could not be deter-
mined. Among tumors diagnosed, there were 33 clear cell
renal cell carcinomas (ccRCC), 4 oncocytomas, 4
angiomyolipomas (AML), 2 chromophobe renal cell carcino-
mas (chRCC), 2 papillary renal cell carcinomas (pRCC), 1
collecting duct carcinoma (CDC), 1 simple renal cyst (SRC),
and 1 tubulocystic renal cell carcinoma (TCRC) according to
the 2016 WHO Classification of Tumors of the Urinary
System and Male Genital Organs. Most of the diagnosed can-
cers were malignant (n = 41), but few patients (n = 7) had be-
nign (non-cancerous) kidney tumors. In this study, benign
tumors o f the k idney inc lude oncocy toma and
angiomyolipoma, while other types of tumors are considered
malignant. In addition, one patient had a lung adenocarcinoma
metastasis. The majority of patients (n = 33, with one patient
having two tumors) had stage T1 disease, four patients had
stage T2, ten patients had stage T3, and one patient have stage
T4. In three patients, the stage of the disease could not be
determined. The pathological and clinical characteristics of
the patients are presented in the Electronic Supplementary
Material (ESM, Table S1). About 2.6 mL of blood was drawn
from each participant. After approximately 1 h at room tem-
perature, the samples were centrifuged at 3000 rpm for
10 min. The serum was separated and stored at − 60 °C until
further use.

Preparation of serum samples

Prior to NMR analysis, serum samples were thawed at
4 °C, then centrifuged at 12000×g for 5 min at 4 °C to
remove cells and other precipitated material. A volume of
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900 μL of acetone was added to 300 μL of resulting
supernatants. After vortexing for 1 min, the solutions
were incubated at room temperature for 20 min followed
by 30 min at − 20 °C, and then centrifuged at 6000×g for
5 min at 4 °C. Next, 800 μL volumes of clarified super-
natants were transferred to a new polypropylene tube. The
pellets were re-suspended in 500 μL of acetone-H2O mix-
ture (3:1, v/v) and vortex vigorously. The samples were
subjected to centrifugation at 12000×g for 10 min at 4 °C.
The supernatants from the pellet wash were combined
with the supernatants from the first spin. Finally, from
990 μL of resulting samples, 50 μL was taken and used
for 109AgNPET LDI MS analysis. The rest of the sample
was dried to complete dryness in a SpeedVac vacuum
concentrator, with no heat. Dried extracts were re-
suspended in 600 μL of NMR buffer consisting of
25 mM NaH2PO4/Na2HPO4, 0.4 mM imidazole,
0.25 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid
(DSS) in 90% H2O/10% D2O, pH 7.0. Following re-sus-
pension, samples were centrifuged at 21,000 rpm for
1 min to pellet insoluble debris, and then transferred to
5 mm NMR tubes for NMR metabolomics analysis.

NMR spectra acquisition and preprocessing

1D 1H NMR spectra were collected at 298 K (25 °C)
using a Bruker 600 MHz (1H Larmor frequency)
AVANCE III solution NMR spectrometer, equipped with
a SampleJet automatic sample loading system, a 5 mm
triple resonance (1H, 15N, 13C), liquid-helium-cooled
TCI NMR cryoprobe, and Topspin software (Bruker ver-
sion 3.6). 1D 1H NMR spectra acquisition was performed
using the Bruker-supplied excitation sculpting (ES)-based
“zgesgp” pulse sequence, and NMR spectra were recorded
with 256 scans and a 1H spectral window of 7211.538 Hz.
Free induction decays (FIDs) were collected with 64 K
data points and a dwell time interval of 69.33 μsec,
amounting to a data acquisit ion time of 4.54 s.
Relaxation delay (D1) times between acquisitions were
set to 2 s, resulting in an overall 6.5-s delay between
scans. DSS chemical shift referencing and phase correc-
tion of 1D 1H NMR spectra were conducted using
Topspin software (Bruker version 3.6).

For verification of Chenomx-annotated metabolites, 2D
1H-1H total correlation spectroscopy (TOCSY) spectra
were acquired for representative samples using the
Bruker-supplied “mlevphpr.2/mlevgpph19” pulse se-
quences (256 × 2048 data points, 2-s relaxation delay, 32
transients per FID, 1H spectral window of 6602.11 Hz,
80 ms TOCSY spin lock mixing period). 2D 1H-1H
TOCSY spectra were processed using Topspin software
(Bruker version 3.6).

NMR data analysis

Further processing of 1D 1H NMR spectra and metabolite
profiling analyses were conducted using the Chenomx NMR
Suite software (version 8.1; Chenomx Inc., Edmonton,
Alberta, Canada). Baseline correction of NMR spectra follow-
ing import of preprocessed “1r” NMR spectral files into
Chenomx software was performed using the automatic cubic
spline function in Chenomx, and subsequent manual
breakpoint adjustment to obtain a flat, well-defined baseline,
following recommendations from Chenomx application notes
and previously reported methods [28]. 1H chemical shifts
were referenced to the 0.0 ppm DSS signal, and the 1H
NMR signals arising from imidazole were used to correct for
small chemical shift changes due to slight variations in sample
pH. Metabolite identification and quantification were per-
formed by fitting the 1D 1H spectral splitting patterns, chem-
ical shifts, and spectral intensities to reference spectral patterns
of small molecules using the Chenomx small molecule spec-
tral database for 600 MHz (1H Larmor frequency) magnetic
field strength NMR, and manually peak-based fits, where ad-
justments were made to achieve optimal spectral pattern fits
for compound peak cluster location and intensity. An internal
(0.25 mM DSS) standard was used for metabolite quantita-
tion. Although pulse sequences utilizing the “ZGESGP” pulse
sequence scheme suppress proton signals around the water
region to a greater extent than the NOESYPR pulse sequence
(i.e., 1D NOESY with presaturation during relaxation and
mixing time), the relative intensities observed for these partic-
ular 1H signals whose resonance frequencies are close to that
of the water 1H are largely identical to those seen using the
noesypr1d sequence. To adjust for minor differences between
1D 1H spectra acquired using “zgesgp” versus “noesypr1d”
pulse sequences, we have created our own in-house “zgesgp”-
acquired 600MHzmetabolite library using pure standards and
the “Compound Builder” module of Chenomx NMR Suite
program (version 8.1), as described previously in the opera-
tional manual.

MS sample preparation

Volume of 0.3 μL of each sample was placed on a
109AgNPET and allowed to dry at room temperature, then
target was inserted into a MALDI ToF/ToF mass
spectrometer.

MS spectra acquisition and preprocessing

Laser desorption ionization mass spectrometry imaging (LDI-
MSI) experiments were performed using a Bruker Autoflex
Speed time-of-flight mass spectrometer in positive-ion
reflectron mode. The apparatus was equipped with a
SmartBeam II 1000 Hz 355 nm laser, with a laser impulse
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energy of approximately 100–190 μJ, laser repetition rate of
1000 Hz, and deflection set on m/z lower than 80, with a m/z
range of 80–2000 Da. Spectrum for each extract contained
data from 20k laser shots with a default random walk applied
(random points with 50 laser shots). All spectra were calibrat-
ed with the use of silver ions (109Ag+ to 109Ag10

+). The first
accelerating voltage was held at 19 kV, and the second ion
source voltage was held at 16.7 kV. Reflector voltages used
were 21 kV (the first) and 9.55 kV (the second). FlexAnalysis
4.0 software was used for data processing and analysis.

Multivariate statistical analysis

A total of 99 1H NMR spectra were recorded, corresponding
to serum samples of 50 patients with kidney cancer and 49
healthy controls, and 100 LDI MS spectra were recorded for
the same 50 patients with kidney cancer and 49 healthy con-
trols, and resulting data were subjected to multivariate data
analysis. Both NMR and MS data sets were analyzed using
multivariate data analysis to reveal metabolic changes in the
serum of patients with kidney cancer with respect to healthy
controls.

Metabolite concentrations normalized by sum were further
log-transformed to ensure a Gaussian distribution of the data
and auto-scaled (i.e., mean centered and divided by the stan-
dard deviation), prior to statistical analysis, including principal
component analysis (PCA), partial least squares discriminant
analysis (PLS-DA), and orthogonal partial least squares dis-
criminant analysis (OPLS-DA), which was accomplished
using the MetaboAnalyst software 4.0 [29]. The overall qual-
ity of the PLS-DA models was assessed by examining cross-
validation parameters specifying accuracy, predictive ability
of the model (Q2), and goodness of fit (R2). Variable
Importance in the Projection (VIP) plots and S-plots were
generated to identify metabolites whose level changes were
most significantly responsible for group separation.
Metabolites with VIP scores > 1, |p| > 0.05 (magnitude), and
|p(corr)| > 0.5 (reliability) were considered to be potential bio-
markers that distinguish kidney cancer patients from healthy
controls. In this work, 10-fold cross validations were used to
define the number of latent variables (PLS components) in the
model. To test the accuracy of multivariate models and min-
imize the possibility that the observed separation in the PLS-
DA and OPLS-DA is due to chance (p < 0.05), permutation
tests were performed with 2000-fold repetition. Statistical sig-
nificance of metabolite level differences was assessed using
unpaired parametric t test withMann-Whitney and Bonferroni
correction. p values and false discovery rates (FDR; q value)
less than 0.05 were considered statistically significant.
Moreover, receiver operating curve (ROC) analysis was done
to evaluate the diagnostic value of selected metabolites.
Standard chemometrics tools such as 2D PCA and PLS-DA
analysis were also used to assess metabolic profile similarities

and differences between cancer types (malignant and benign)
and grades (grades 1, 2, and 3). An approximation was used
whereby all malignant renal tumors like ccRR, chRCC,
pRCC, CDC, SRC, and benign kidney tumors (oncocytoma
and AML) were grouped together, expecting that changes in
serum metabolite levels in tumor types would follow similar
trends.

Results

In this study, we characterized the metabolic profiles of pa-
tients suffering from kidney cancer, in an effort to develop
serum-specific metabolomics signatures for early and specific
detection of kidney cancer. For this purpose, we recorded
high-resolution 1D 1H NMR spectra on 99 total (50 RCC
and 49 controls) metabolite extracts from serum samples.

Analysis of 1H NMR spectral patterns resulted in the reso-
nance assignment and quantitation of 43 metabolites in each
serum sample. Representative 1H NMR spectra of serum sam-
ples from healthy subjects and kidney cancer patients are
shown in Fig. 1, along with metabolites identified.

Significant differences were observed in levels of individ-
ual metabolites when the metabolic profiles of serum samples
from patients with kidney cancer were compared with those of
healthy controls. Multivariate and univariate statistical analy-
ses of these metabolite patterns were performed to assess sim-
ilarities and differences in serum metabolomes from the two
different groups. This analysis also enabled us to identify a
panel of polar small molecules whose levels are altered sig-
nificantly in kidney cancer.

Distinguishing between kidney cancer and control
samples by 1H NMR

Multivariate analysis was conducted based on metabolite con-
centration data obtained by NMR. Unsupervised principal
component analysis (PCA) was performed to search for trends
in group separation and to identify potential outliers. The re-
sults are presented as 2D PCA scores plots, where each col-
ored dot represents a serum sample from a cancer patient (red)
or healthy control (green) in Fig. 2.

The 2D PCA score plot shown in Fig. 2 reveals a good
separation between the cancer patient and healthy control
groups, with PC1 and PC2 accounting for 22.1% and
10.9%, respectively, of the variance. Next, we performed su-
pervised partial least squares discriminant analysis (PLS-DA)
and orthogonal partial least squares discriminant analysis
(OPLS-DA) to assess the extent of differences between the
two groups that may reveal potential biomarker indicators of
the two different physiological states. The classification from
2D-PLS-DA score plots and VIP score results is shown in
Fig. 3.
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Parameters employed to evaluate the robustness and valid-
ity of the PLS-DA modeling include assessment of R2 and Q2

values and data permutation tests. This analysis resulted in an
R2 value of 0.92, a Q2 of 0.86, an accuracy of 0.99, and p-
values < 5E−4 for the data shown in Fig. 3, demonstrating
that the group separation observed is real, and that the PLS-
DA model is robust and valid (Fig. S1, see ESM).
Subsequently, fourteen potential metabolite biomarkers were
pre-selected based on VIP scores ranking as shown in Fig. 3b.
Additional OPLS-DA was conducted to improve the model’s
effectiveness and to extract variable information that facili-
tates sample classification. The OPLS-DA score plot present-
ed a clear discrimination between two groups as shown in Fig.
3c. To evaluate statistical parameters of this model, 2000-
permutation tests were conducted. The resulting values of
R2Y and Q2 were respectively 0.92 (p value < 5E−04

(0/2000)) and 0.865 (p value < 5E−04) giving an indication
of good fitness and predictability of the two-class model (Fig.
S1, see ESM). The metabolites that are significantly varying
between the two-class models were identified using the load-
ings of S-plot of OPLS-DA data based on the criterion that
|p(corr)| > 0.5 (Fig. 3d). Seven variables were positively cor-
related to group separation showing +p(corr) [1] > 0.5 and one
negatively correlated showing −p(corr) [1] < − 0.5.

Biomarker candidates were further subjected to univariate t
test analysis to check the significance of altered levels of these
metabolites in serum samples of cancer patients versus healthy
controls. In total, 8 of the identified metabolites were consid-
ered to be present at statistically significantly differential con-
centrations (p < 0.05; q < 0.05, VIP > 1 and |p(corr)| > 0.5).
Mean metabolite concentrations with all relevant statistical
parameters are summarized in Table S2 (see ESM). To further
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Fig. 1 aCharacteristic 1D 1HNMR spectrum of a protein-freemetabolite
extract mixture obtained from a serum sample of a kidney cancer patient,
recorded on MSU 600 MHz (14 Tesla) solution NMR spectrometer.
NMR signals of specific metabolites are labeled. b–c Expanded regions
of the spectrum shown in a with NMR resonances corresponding to
specific metabolites indicated. The chemical shift ranges of the expanded
spectral regions shown in panels b and c are indicated by dashed line
boxes in the full spectrum shown in a. The expanded spectra shown in b
and c depict the spectral overlay of the “fitted” 1H NMR spectrum (red
trace), which was generated using the Chenomx data processing and

analysis software, with the original NMR spectra depicted by the black
traces. d, e Expanded NMR spectral regions corresponding to 1H chem-
ical shift ranges of 1.33–1.30 ppm (d) and 3.93–3.68 ppm (e), with a
spectral overlay of 15 serum metabolic profiles obtained from healthy
patients depicted in black (black spectral traces) and kidney patients in
red (red spectral traces). These spectral regions illustrate the typical NMR
signals observed for lactate and glucose, respectively. The intensity-
normalized spectral overlays shown in d and e clearly indicate that lactate
levels are lower and glucose levels are higher in the serum profiles of
kidney patients (red) compared with healthy controls (black)
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assess the predictive value of these metabolites to discriminate
between the serum profiles of kidney cancer patients and con-
trols, we performed multivariable ROC curve analysis, using
the differential concentrations of this subset of metabolites.
The quality of the ranking represents the area under the curve
(AUC). The closer AUC approaches a value of 1, the better
the discrimination performance of the ROC curve. The clas-
sifier is of no practical utility when AUC reaches 0.5, as this
indicates that subject classification is random. In our study, all
previously selected metabolites have an area under the curve
(AUC) > 0.8 were found to include choline, glucose, glycerol,
glycine, lactate, leucine myo-inositol, and pi-methylhistidine
(Table 1).

Among these metabolites, best results with highest signif-
icant were achieved for the metabolite myo-inositol (AUC =
0.979, specificity = 1, and sensibility = 1), followed by glu-
cose (AUC = 0.934, specificity = 0.9, and sensibility = 0.9),
choline (AUC = 0.837, specificity = 0.9, and sensibility =
0.7), and lactate (AUC= 0.833, specificity = 0.8, and sensibil-
ity = 0.8). The distribution of concentration values of individ-
ual metabolites in control and cancer serum samples is shown
in Fig. 4a (the best results) and in Fig. S2 (see ESM).

Ten metabolites exhibiting the highest AUC > 0.8 in the
ROC curve generated (Fig. S3, ESM) were used to assess
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the quality of this diagnostic model. The classification model
for selected metabolites was built using analysis tools avail-
able in the MetaboAnalyst software based on the random for-
est algorithm. An excellent classification was obtained with
AUC of 0.963, with a confidence interval (CI) from 0.922 to
1. This result suggests that eleven specific metabolites could
be used as diagnostic biomarkers that separate serum samples
from kidney cancer patients and control groups with high
specificity and sensitivity.

Distinguishing between grade and type of kidney
cancer in 1H NMR dataset

To demonstrate whether metabolite fingerprinting of serum
extracts using 1H NMR metabolomics can significantly dif-
ferentiate between kidney cancer tumor types (malignant and
benign) and healthy control subjects, we assessed whether the
8 most significant metabolites identified in our PCA and PLS-
DA analyses can also serve to distinguish between the
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Fig. 4 ROC curve analysis for potential biomarkers predicted by classical
univariate analysis derived from a 1H NMR data and b 109AgNPET LDI
MS data. The left-hand side of each panel indicates ROC curve for a
particular metabolite, with 95% confidence interval (shadowed) and the
solid red dot indicating the optimal cutoff, associated with sensitivity and

specificity values. The right-hand side of each panel depicts the distribu-
tion of metabolite level values observed in control and kidney cancer
serum samples. The horizontal red line in the graphs indicates the cutoff
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Table 1 Summary of relative concentration changes of potential metabolite markers, as revealed from 1H NMR spectral analyses of serum samples
from kidney cancer patients and healthy control volunteers

No. Metabolite AUC VIP p(corr) p valuea Fold changeb

Cancer vs. control Malignant vs. benign G1 vs. G2 G1 vs. G3 G2 vs. G3

1 Choline 0.84 1.76 0.609 1.04E−08 0.7 1.0 0.9 0.9 1.1

2 Glucose 0.93 2.12 − 0.708 1.85E−13 1.7 1.1 0.8 0.8 1.0

3 Glycerol 0.81 1.49 0.516 1.48E−07 0.7 1.0 0.8 0.7 0.9

4 Glycine 0.80 1.58 0.531 1.93E−07 0.8 0.9 1.0 1.0 1.0

5 Lactate 0.83 1.78 0.641 2.10E−08 0.7 0.7 1.0 1.2 1.2

6 Leucine 0.82 1.56 0.522 8.23E−08 0.8 1.0 1.0 0.9 1.0

7 myo-Inositol 0.98 2.02 0.645 3.11E−16 0.4 1.1 1.1 1.0 1.0

8 1-Methylhistidine 0.80 1.71 0.582 2.72E−07 0.3 1.3 0.5 1.0 2.0

a p value determined from Student’s t test with Welch’s correction; b Calculated from the concentration mean values of each group; G grade of kidney
cancer
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different grades of kidney cancer tumors (grades 1–3) and the
healthy control groups. A 2D-PCA score plot highlighting the
extent of the separation three groups (malignant, benign kid-
ney cancer, and healthy volunteers) based of distinct metabol-
ic serum is shown in Fig. 5a, while Fig. 5b displays the 2D-
PCA score plot of four groups that were classified according
to kidney cancer grades, with grade 1, grade 2, grade 3 shown
in green, dark blue, and cyan, respectively, and healthy vol-
unteers in red.

Both 2D PCA score plots shown in Figs. 5a and b do not
reveal significant group separation between the groups classi-
fied by different tumor grades, at least based on serum metab-
olome profiles as characterized by 1H NMR. This suggests
that metabolic patterns for those groups are not easily separa-
ble by just simply assessing differences in polar metabolite
levels in serum samples. Similarly, 2D-PLS-DA analysis
could not distinguish clearly between tumor types and grades,
as illustrated in Fig. 6a and 7 a; however, these groups were
clearly distinct from the normal (control group), as indicated
by the VIP score plots shown in Figs. 6b and 7b and the
metabolites that are most responsible for the PLS-DA score
plot patterns observed.

Validation parameters indicated that the group separation
observed in the 2D-PLS-DA models were shown significant
(p < 0.05) (ESM Fig. S4). Comparing concentration differ-
ences of selected metabolites extracted from serum samples
of patients with various grades of kidney cancer suggested
trends in metabolite level changes that appeared to track with
kidney cancer grades, as shown in Table 1 and Figs. 6c–e and
Fig. S5 (see ESM).

Data shown in Fig. 6c and d and Table 1 indicated that
glucose and lactate may be considered indicators of the tumor
grade.

Analysis of the selected metabolite concentration changes
in a given type of cancer, i.e., benign versus malignant reveals
higher levels of lactate in the serum samples of kidney cancer
patients with a benign tumor compared with those whose

tumor was malignant one. The trends are the opposite for 1-
methylhistidine whose concentration is more elevated in the
malignant cancer group compared with benign (Table 1,
Fig. 7c–e and Fig. S6 in ESM).

Metabolic profile of serum in kidney cancer with
109AgNPET LDI MS

The peak intensity data from LDI MS spectra for metabolite
extracts of serum samples was subjected to multivariate data
analysis. 2D-PCA, 2D-PLS-DA, and OPLS-DA score plots
were generated for the entire data set. As shown in Fig. 8a,
the 2D-PCA score plot of LDI MS mass spectral features
highlights a separation trend between the two groups, indicat-
ing that, although subtle, there exist inherent metabolic profile
differences between kidney cancer and healthy controls.

Results from PLS-DA analysis as shown in Fig. 8b also
clearly demonstrated a good separation between those two
groups, which was actually more pronounced than the one
identified from the NMR metabolite profiles. The good-
ness of fit and cross-validated predictive ability for the
PLS-DA models for healthy control versus cancer group
was reflected in the values of R2 = 0.90, Q2 = 0.70, accu-
racy = 0.89, with a permutation test also indicating PLS-
DA model robustness and high predictability value of the
model (p < 0.012, Fig. S7, see ESM). Based on the statis-
tical analysis of the MS data, mass spectral features (m/z
values) that contributed most to group separation were
considered significant with p and q values < 0.05. As a
result, 62 m/z variables were detected as potential serum
discriminators of kidney cancer versus controls, using
109AgNPET LDI MS (Table S3, see ESM). To assess
the potential of these m/z features to represent robust bio-
markers of cancer phenotypes, VIP score plots were
employed to assess their degree of importance (Fig. 8d).
Only variables with VIP above 1.0 were considered im-
portant. The variables whose intensity changes were not
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significantly different between the patients and the con-
trols (p > 0.05; q > 0.05, VIP < 1) were removed from this
analysis. Next, OPLS-DA was applied to the MS dataset
to reveal the features that had the greatest contribution to
the discrimination between serum samples from kidney
cancer and controls (Fig. 8c). The OPLS-DA score plot
presented a clear discrimination between two groups. To
evaluate the statistical robustness of this model, 2000-
permutation tests were conducted. The resulting values
of R2Y and Q2 were respectively 0.902 (p value < 5E
−04 (0/2000)) and 0.708 (p value < 5E−04), giving an
indication of good fitness and predictability of the two-
class model (Fig. S7, see ESM). Potential features for
group separation were subsequently identified by analyz-
ing the S-plot of OPLS-DA data based on the criterion
that |p(corr)| > 0.5 and |p| > 0.05 (Fig. 8e). The loading
S-plot revealed that three variables were positively corre-
lated to group separation showing +p(corr) [1] > 0.5 and
six negatively correlated showing −p(corr) [1] < − 0.5.

Corresponding loading factor plots contributing the
separation observed in the 2D-PLS-DA, 2D-OPLS-DA,
and VIP scores plot resulted in the identification of 9
m/z spectral figures with significant discriminatory po-
tential between kidney cancer and controls (Fig. 8d),

with color changes depicted on the right-hand side of
the VIP scores plot indicating relative higher or lower
abundance in the two groups.

Selected m/z values were subjected to multivariate
ROC curve analyses based on the random forest algo-
rithms. Fifteen m/z values were identified with high
AUC values with an area under the curve, > 0.75. Eight
serum features were putatively identified as known me-
tabolites. Putative identifications were guided by
searches on the Human Metabolome Database (HMDB)
[30]. All of the identification results are shown in
Table 2. The distribution of abundance values of these
mass spectral features in control and cancer serum sam-
ples is shown in Fig. 4b (selected features) and Fig. S8
(see ESM). Among the metabolites, the most significant
was observed for monoglyceride MG(16:0) AUC value
(0.82), sensitivity (0.8), and specificity (0.8). As shown
in Fig. S9 (see ESM), very good classification was ob-
tained with AUC of 0.963 which is within the range of
0.919 to 1 at the 95% confidence interval (CI). This
result suggests that the nine m/z values could be used
as diagnostic variables enabling the distinction between
kidney cancer and the control groups with high specific-
ity and sensitivity.
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Discussion

Biological changes associated with potential
biomarkers of kidney cancer

Kidney cancer is one of the most studied neoplasms charac-
terized by metabolic reprogramming. Changes in cellular me-
tabolism are reflected in the concentration changes of detected
metabolites. The best material for biomarker and metabolo-
mics research is cell cultures and tissues. However, tissue
samples must be obtained in invasive way (surgery, biopsy).
Therefore, body fluids like urine and serum, which can be
obtained with minimal discomfort, are the most preferable
materials for biomarker discovery in cancer research.
Metabolite levels are in constant flux between tissue and body
fluids; therefore, changes in tissue metabolism are reflected in
changes in the metabolomes of biofluids. In this study, we
analyzed changes in metabolites, which were extracted from
serum samples of kidney cancer patients and healthy controls.
These data demonstrated that, based of statistically significant
(p < 0.05) metabolite level changes, cancer patient versus con-
trol groups could be clearly differentiated.

Some of the most notable changes were seen in the
levels of glucose and lactate, which are substrate and
product of glycolysis. In our study, we observed a signif-
icant increase in relative glucose concentration in the se-
rum of RCC patients. Intriguingly, these results are incon-
sistent with the reports of Gao et al.. who showed de-
creased serum glucose and increased serum lactate in
RCC [21]. What is interesting, 1H NMR profiling of se-
rum samples from patients with RCC presented by Zira
et al. showed that glucose levels were not altered in the
RCC patients compared with controls [9]. Increased level
of glucose was observed in kidney cancer tissue and urine
from patients with RCC in number of previous MS and

NMR-based metabolomics studies of kidney cancer
[31–33]. Some studies suggest that elevation of serum
glucose may be due to a phenomenon called stress-
induced hyperglycemia. As Palermo et al.. reported, stress
associated with surgery increases sympathetic stimulation
and a subsequent rise in catecholamines, cortisol, gluca-
gon, and growth hormone levels [34]. This release of hor-
mones leads to increased serum glucose via gluconeogen-
esis and glycogenolysis. Moreover, in perioperative peri-
od, transient insulin resistance has been observed.
Increased level of glucose in malignant cells may be also
associated with increasing glycolytic flux caused by an
upregulation of numerous glycolysis-related genes in the
majority of human cancers [35].

Due to increased aerobic glycolysis, cancer cells tend to
produce high amounts of lactate, which is then excreted ex-
tracellularly and released into the bloodstream. In our study,
we observed decreased level of lactate in serum. It can be
explained by the presence of the Cori cycle in the liver which
recycles muscle lactate back to glucose, which is then
transported back to the muscle for energy production.
Moreover, there is emerging evidence that cancer cells may
use excess lactate as a fuel for mitochondrial oxidative phos-
phorylation in a process called lactate shuttling [36]. Lower
concentrations of lactate in RCC serum are consistent with the
findings of Zira et al. [9], which contrast with Zheng et al.’s
report of higher serum lactate levels in RCC patients [11].
Also, metabolic profiling of human RCC tissue and urine
showed statistically significantly altered level of lactate in
RCC tumors compared with controls [31–33].

In our study, RCC patients exhibited decreased serum
levels of glycine and leucine, which may be a reflection of
an increased energetic and metabolic demand of proliferating
tumor cells for amino acids. The need for increased amino
acid pools would be particularly appropriate for essential

Table 2 Selected mass spectral features with characteristic m/z values, as observed in 109AgNPET LDI MS spectra of serum from kidney cancer
patients and control volunteers

No. m/za Putative metabolite Adduct type Mass error (ppm) AUC VIP p(corr)[1] p valuec FCd

1 122.943 UNb – – 0.87 3.05 − 0.666 2.65E−10 1.6

2 304.268 [FA (20:4)] eicosatetraenoyl amine [C20H33NO+H]+ 14.8 0.76 3.05 − 0.608 7.31E−06 43.1

3 353.264 MG(0:0/16:0/0:0) [C19H38O4 + Na]
+ − 6.3 0.83 2.69 − 0.569 2.05E−08 2.1

4 390.166 Phe-Thr-Thr [C17H25N3O6 + Na]
+ 6.3 0.90 3.03 − 0.583 8.19E−12 2.1

5 409.153 Thr-Trp-Cys [C18H24N4O5S +H]
+ − 2.5 0.83 2.69 0.607 1.55E−08 0.5

6 410.157 Glu-Asp-Phe [C18H23N3O8 + H]
+ 2.9 0.79 2.02 0.501 6.11E−07 0.5

7 425.125 Ala-Cys-Pro-Pro [C16H26N4O5S +K]
+ − 1.3 0.79 2.44 0.554 7.56E−07 0.5

8 439.171 Glu-Arg-Pro [C16H28N6O6 + K]
+ 1.8 0.88 3.08 − 0.631 3.73E−11 2.3

9 467.201 His-Ser-Ser-His [C18H26N8O7 + H]
+ 1.6 0.78 2.47 − 0.568 9.68E−07 4.3

a Experimental monoisotopic neutral mass; b Unknown; c p value determined from Student’s t test with Welch’s correction; d Fold change between
kidney cancer and healthy controls calculated from the abundance mean values of each group

5838 Nizioł J. et al.



amino acids (i.e., leucine) that are not synthesized de novo by
humans. Our results do not coincide with previous NMR-
based serum metabolomics studies that described the in-
creased leucine levels from RCC patients [9, 11]. Regarding
the glycine, its decreased level has also been found in urine of
patients with RCC which is consistent with our results [37].

Regarding lipid metabolism, choline levels were decreased
in the serum samples of RCC patients compared with controls,
which may be a consequence of increased choline uptake by
cancer cells to fuel phospholipid production for cell mem-
brane formation. Similar results were reported by Gao et al.
who observed, in two separate studies, decreased level of se-
rum choline and increased concentration of choline in RCC
tissue [12, 21]. Moreover, the reduced level of choline in
serum of patients with RCC compared with controls was also
reported by Zheng et al. [11]. Previously, Zira show that level
of serum choline was increased in RCC patients compared
with controls [9].

In this study, we observed decreased level of glycerol
in serum samples of RCC patients. Glycerol is a precur-
sor for the synthesis of triacylglycerols and phospho-
lipids, the latter being major structural components of
cellular membranes. Moreover, during prolonged fast
or in a nutrient-depleted environment (cancer cachexia),
glycerol and other substrates (lactate and α-keto acids)
may be transformed in liver and kidney into glucose
through gluconeogenesis. This finding is also supported
by the research of Catchpole et al. who has shown that
glycerol is lower in abundance in RCC tissue [38].

myo-Inositol, a carbocyclic sugar, is a precursor of second-
ary messengers including inositol triphosphate and phos-
phatidylinositol, which mediate cell signal transduction in re-
sponse to hormones, neurotransmitters, and growth factors. In
our study, and when comparing the kidney cancer group to
controls,myo-inositol levels were found to be decreased in the
serum of RCC patients. Similar results concerning the level of
myo-inositol were reported by Popławski et al. and Catchpole
et al. [38]. The research carried out by these teams focused on
metabolic differences between RCC and healthy tissue. This
convergence of results between ours and theirs supports the
notion that changes in cancer tissue metabolism are reflected
in distinct changes in metabolite levels in the sera of these
patients.

Other metabolites that were found in lower abundance
in the sera RCC patients included 1-methylhistidine. Prior
studies conducted by Felagan et al. have also confirmed
that level of 1-methylhistidine is found to be decreased in
the urine of kidney cancer patients [39]. 1-Methylhistidine
is considered biomarker of meat consumption [40]. High
consumption of red meat and processed meat is associated
with increased risk of cancer. However, to date, a direct
relationship between 1-methylhistidine and cancerogenesis
has not been established.

Conclusion

This work has demonstrated that high-resolution 1H NMR
and 109AgNPET LDI MS, along with multivariate statis-
tics, are useful approaches to characterize the serum me-
tabolome differences between patients with kidney cancer
and healthy people and to separate these two groups based
on their distinct serum metabolite profiles. Moreover, 1H
NMR enabled to identify trends between tumor grades
and to discriminate between different types and grades
of kidney cancer and healthy controls. With regard to
biomarker discovery, 8 potentially robust metabolic bio-
markers in 50 serum samples of kidney cancer patients
and 49 controls were identified using 1H NMR spectros-
copy, while 9 mass spectral features were obtained by
LDI MS. The most important endogenous compounds
having bioactive properties and pharmacological applica-
bility were discussed in details. Both methods have a
valuable potential for use as diagnostics and analysis of
serum metabolic profiles may be a useful, less invasive
way to screen patients with kidney cancer.
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