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Background: Rheumatoid arthritis is a highly heterogeneous autoimmune

disease characterized by unpredictable disease flares and significant

differences in therapeutic response to available treatments. One possible

reason for poor efficacy is that it cannot be treated accurately due to no

optimal stratification for RA patients.

Objective: This study aims to construct an RA classification model by m6A

characters and further predict response to medication.

Methods: Twenty m6A regulators were used to construct a random forest

diagnosis model, and RNA-seq analysis was employed for external validation.

The RNA modification patterns mediated by 20 m6A regulators were

systematically evaluated in 1191 RA samples and explored different molecular

clusters associated with other immune microenvironment characteristics and

biological pathways. Then, we established an m6A score model to quantify the

m6A modification patterns. The model was applied to patients at baseline to

test the association between m6Ascore and infliximab responsiveness.

Results: The m6A diagnosis model showed good discriminatory ability in

distinguishing RA. Patients with RA were classified into three clusters with

distinct molecular and cellular signatures. Cluster A displayed strongly activated

inflammatory cells and pathways. Specific innate lymphocytes occupied cluster

B. Cluster C was mainly enriched in prominent adaptive lymphocytes and NK-

mediated cytotoxicity signatures with the highest m6A score. Patients with a

low m6Ascore exhibited significantly infliximab therapeutic benefits compared

with those with a high m6Ascore (p< 0.05).

Conclusion: Our study is the first to provide a comprehensive analysis of m6A

modifications in RA, which provides an innovative patient stratification

framework and potentially enables improved therapeutic decisions.
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Introduction

Rheumatoid arthritis (RA) is a highly heterogeneous chronic

autoimmune disease that is characterized by joint inflammation

(1, 2). Several risk factors are known to be involved in the

development of RA, including genetics, female sex, and

environmental factors (3). Especially epigenetic regulation (4)

is proposed to play an indispensable role in the occurrence and

development of RA. Currently, conventional therapies,

including conventional DMARDs, biological DMARDs, and

targeted DMARDs, have substantially changed the course of

RA (5). However, individual responses vary widely to treatment;

6%–21% of patients are refractory to multiple therapies, defined

as refractory rheumatoid arthritis (6). Therefore, biomarkers are

urgently needed to stratify patients and assess the benefits of

from specific drug or class of drugs.

Epigenetics is a branch of genetics that refers to heritable

chromosomal changes without nucleotide sequence alterations,

including histone modification, DNA methylation, and RNA

modification. As the third layer of epigenetics, more than 170

different types of RNA modifications, including N6-

methyladenosine (m6A), 5-methylcytosine (m5C), and N1-

methyladenosine (m1A), have been described (7). M6A is one

of the most dominant RNA modifications in RNA. Like DNA or

histone modification, m6A modification is a dynamic and

reversible process in mammalian cells controlled by enzymes

such as methyltransferases, demethylases, and binding proteins

(8). Methyltransferase promotes m6A methylation modification

to RNA, and demethylase removes the m6A-methylated group

from RNA. RNA-binding proteins bind to the m6A methylation

site in RNA to regulate mRNA metabolism and function (9). An

in-depth investigation of these regulators would help uncover

the role and mechanisms of m6A in gene posttranscriptional

regulation (10, 11). Further, accumulating evidence indicated

that not only m6A but also m6A regulators were correlated with

disorders of multiple biological processes such as the occurrence

of tumor (12), disturbance of immunomodulatory function (13),

and systemic lupus erythematosus (14). In addition, m6A

modification has been implicated in T-cell differentiation,

homeostasis, and response to HIV infection (14). Considering

the vital role of m6A modification in the immune response and

immune cells, m6A may be involved in the etiology of RA.

Studying epigenetic factors and mechanisms related to RA

progression and treatment response is increasingly significant

(15, 16).

However, the epigenetic modulation of single m6A

regulators and the overall m6A modification characteristics

in RA have not been fully understood. This study aims to

revolve the patterns of m6A modifications of RA by

performing a comprehensive analysis of the publicly available

transcriptome datasets.
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Methods

Overview of data processing and analysis

A total of 12 RA patients and five healthy controls (HC) were

recruited for this study from the Second Hospital of Shanxi

Medical University in August 2021. All the patients met the 2010

American College of Rheumatology (ACR)/European League

Against Rheumatism (EULAR) classification criteria for RA

(17). To evaluate the relationship between m6A and response

to treatment, genome-scale data about infliximab therapy

response were also recorded in our study, which included

patients’ response to anti-TNF evaluated by Disease Activity

Score-28(DAS28).
Preparation of peripheral blood samples
and isolation of RNA

Peripheral blood samples (5 ml) were collected from each

patient and control subject into EDTA-2 K-containing tubes.

According to the manufacturer’s protocol, fresh PBMCs from

each donor blood were isolated by Ficoll-Hypaque (Beijing

Solarbio Science & Technology Co., Ltd.) density-gradient

centrifugation for 20 min at room temperature. Total RNA

was isolated from freshly obtained PBMCs. Before RNA

sequencing, the quality of RNA was assessed on the Agilent

Bioanalyzer 2100 system. A 1.5-mg RNA sample was taken for

RNA sequencing. The library preparations were sequenced on

Illumina. Removing reads containing adapter, containing ploy-

N, and low-quality reads containing >50% bases with qualities of

≤20 from raw data, clean reads were obtained.
RNA-seq expression analysis

Reference genome and gene model annotation files were

downloaded directly from the Genome website, and paired clean

reads were aligned to the reference genome using Hisat2 v2.0.5.

Reads mapped to each gene were calculated using featureCounts

v1.5.0-p3. Then the FPKM for each gene was calculated.
The random forest model could
distinguish between RA and HCs

Samples from the GEO cohort were randomly divided into

the training set (935 samples, 70%) and the testing set I (400

samples, 30%). During training, to avoid the overfitting problem

caused by random oversampling, the SMOTE sampling method

was adopted to repeatedly sample the healthy controls, which
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had fewer samples, and thereby balance the number of samples

in the RA and HCs. The R package “pROC” was used to evaluate

the visualization of the receiver operating characteristic curve

(ROC) to calculate the area under the curve (AUC). The

sequencing data were employed for external validation.
Unsupervised clustering for
20 m6A regulators

Twenty-one acknowledged m6A regulator genes were

referred (10, 18, 19). Only 20 regulators were stably expressed

and used to identify distinct m6A methylation modification

patterns . These 20 m6A regulators included eight

methyltransferases (METTL3, METTL14, RBM15, RBM15B,

WTAP, VIRMA/KIAA1429, CBLL1, ZC3H13) , two

demethylases (ALKBH5, FTO), and 10 RNA-binding proteins

(YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3,

HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1).

Unsupervised clustering analysis was applied to identify

different m6A modification patterns based on these 20 m6A

regulators by the “ConsensusClusterPlus” package. The optimal

and stable numbers of clusters were selected according to

cophenetic, dispersion, and silhouette coefficients.
Annotating immunocyte and function

To characterize the biological features between different

m6A modification patterns, we utilized single-sample gene set

enrichment analysis (ssGSEA) to estimate the population of

specific infiltrating immunocytes and the activity of immune

reactions. The gene sets marking each infiltrating immunocyte

type were obtained from the previous study17, and the RA-

related pathways were obtained from the MSigDB database. The

enrichment scores defined by ssGSEA analysis represent the

degree of each immunocyte abundance and immune reaction

activity in each sample, compared to three distinct modification

patterns by the Wilcoxon test.
Identifying m6A modification phenotype-
related DEGs

M6A-related differentially expressed genes (DEGs) in

different m6A phenotypes were identified by the “Limma” R

package, in which P-values< 0.05 were set as cutoff criteria for

the DEGs. GO and KEGG enrichment analyses were applied to

analyze the biological significance of DEGs. P< 0.05 was

considered statistically significant, and visualization of results

was conducted by R package ‘ggplot2’ and ‘GOplot’.
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Construction of an m6A gene signature

To quantify m6A modification patterns in individual RA

patients, we constructed a set of the m6A gene signature

(m6Ascore) by using principal component analysis (PCA)

algorithms. The differentially expressed genes (DEGs) obtained

from three clusters in the previous step were intersected to get

shared DEGs between three m6A clusters. Pearson correlations

were performed to obtain positive or negative correlation

signature genes for co-expressed DEGs. The signature genes

were further selected for features by the “Boruta” R package. We

then conducted PCA based on the final determining genes.

Principal components from the two groups of signature genes

were separately extracted and served as the final signature score

by subtraction. This approach concentrates the score on the set

with highly correlated or anticorrelated gene blocks while down-

weighting the gene contributions that are not tracked with other

set members. We then define the m6Ascore by adopting a

formula like previous studies (18, 20, 21).

Gene : score =opca1i −opca1j

where i is the signature score of clusters that have a positive

coefficient, and j is the expression of genes that have a

negative coefficient.
Results

Transcriptional alterations of
20 m6A regulators

A total of 1,203 RA and 149 healthy controls (HCs) from six

cohorts were included in this study (Supplementary Table 1).

PCA was used to visualize variation in correcting for batch

effects (Supplementary Figure 1). We noticed a very close

association among methyltransferases in the 20-m6A regulator

protein–protein interaction (PPI) network, which usually

function as a complex (Supplementary Figure 2) .

Subsequently, we explored the different expressions of 20 m6A

regulators between RA and healthy controls in a GEO public

cohort (Figures 1A–C). Five regulators were observed to have

consistently different expressions in 12 RA patients and five HC

participants from the Second Hospital of Shanxi Medical

University ward and health examination center again

(Figure 1D): FMR1, HNRNPC, LRPPRC, WTAP, YTHDF3.

To examine the ability of the 20 m6A regulators to distinguish

between RA and HCs, we conducted a diagnosis model by the

random forest (RF) algorithm. The area under the curve (AUC)

value was 0.83 (Figure 1E). External validation was performed

for the diagnostic efficacy of the m6A-RF model (Figure 1F).

Actually, this diagnostic model is not highly efficient in the
frontiersin.org
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FIGURE 1

(A, B) Principal component analysis for the expression profiles of 20 m6A regulators could roughly distinguish RA from HC samples in the GEO
cohort (A) and validation cohort (B). (C, D) The box plot demonstrated the 20 m6A regulators between healthy and RA patients in the GEO
cohort (C) and clinical validation cohort (D) (*P < 0.05, **P < 0.01, ***P < 0.001, ns P >=0.05). (E, F) ROC curve of the 20 specifically expressed
m6a regulators in RA samples. The 20-M6A feature random forest model predicted the testing cohort (E, AUC = 0.83) and validation cohort (F,
AUC = 0.68).
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validation cohort because of the insufficient sample size, but it

also partly explains the role of m6A in the occurrence and

development of RA.
Mediation of m6A RNA methylation
modification patterns by 20 regulators

To investigate transcriptome relationships, we calculated

pairwise correlations among the expressions of the 20 m6A

regulators. We found that positive correlations were more

frequent than negative correlations (Figure 2A). Next, based

on the expression profiles of the 20 selected m6A regulators, we

utilized consensus clustering analysis to stratify patients to

different m6A modification patterns (Figures 2B–D).

Accordingly, we determined that the matrix heatmap retained

sharp and clear sides when k = 3, which indicated there were

three distinct m6A modification pattern clusters, including 279

cases in cluster A, 581 cases in cluster B, and 331 cases in cluster

C (Figures 2E, F). We termed these clusters as m6A cluster A,

m6A cluster B, and m6A cluster C.
Immune landscape characteristics in
m6A modification patterns

To identify the immune microenvironment characteristics

underlying three distinct m6A modification patterns, we

compared the enrichment scores of RA-related pathways and

immune cell infiltration (Supplementary Tables 2, 3) among the

RNA modification patterns. We found inflammatory cell

infiltrates, including neutrophils, monocytes, and T helper type

17 (Th17) in cluster A, with the enormous imbalance between T

helper type 1 and T helper type 1 (Th1/Th2) at the same time

(Figure 3A). Patients in cluster C were rich in adaptive immune-

related cells such as activated CD4+T cells, activated CD8+T

cells, and activated B cells (Figure 3A). In cluster C, Th2 and

eosinophil abundant infiltration was considered a protective

factor by counteracting the development of arthritis and

preventing bone loss20. Cluster B was modestly activated in

most inflammatory and immune cells. Nevertheless, cluster B

displayed more activation of natural killer cells (NK), natural

killer T cells (NKT), gamma delta T cells (gdT), and CD56 bright
natural killer cells (CD56bright NK), which are typical innate

lymphoid cells. In parallel with this, the RA-related biological

process was differentially activated in the three subgroups

(Figure 3B). Cluster A showed strong enrichment for most

inflammatory pathways, including acute and chronic

inflammation, response to bacterium and virus, complement

activation, and chemokine. Therefore, cluster A can be referred

to as the highest inflammatory phenotype. In contrast, the

abovementioned inflammatory pathways were remarkably less

expressed in cluster C than in clusters A and B, and we assume
Frontiers in Immunology 05
cluster C as an adaptive lymphocyte-rich phenotype. Cluster B

was enriched in natural killer cell-mediated cytotoxicity, IL-17

signaling pathway, JAK-STAT signaling pathway, and TNF

signaling pathway. They were identified as an innate

lymphocyte-rich phenotype.
Clusters are not influenced by
disease activity

To determine whether the molecular cluster has an

association with clinical features, we investigated the

distribution of the three clusters according to disease activity

(Figure 4 and Supplementary Table 4). Disease Activity Score

(DAS)28 - erythrocyte sedimentation rate (DAS28-ESR) and

DAS28-C-reactive protein (DAS28-CRP) larger than 5.1 were

regarded as high disease activity. All three clusters existed

independently of disease status. Therefore, the three clusters

were similar and clinically indistinguishable by DAS28-ESR/

DAS28-CRP parameters.
M6A phenotype-related DEGs

Although RA patients were classified into three m6A

modification phenotypes based on 20 m6A regulators, the

underlying genetic changes and expression perturbations

within these phenotypes remain unclear. To further examine

potential m6A-related transcriptional expression changes in

three patterns, we identified 209 overlapping DEGs using an

empirical Bayesian algorithm and performed an enrichment

analysis (Figure 5A). GO and KEGG pathway enrichment

analyses were conducted to explore the functional

characteristics of the DEGs (Figures 5B, C). The GO and

KEGG analysis results showed that the DEGs were

significantly enriched in “defense response to virus”, “response

to interferon-beta”, “response to interferon-alpha”, “regulation

of innate immune response”, “NOD-like receptor signaling

pathway”, “Coronavirus disease-COVID-19”, and so on. We

performed an unsupervised consensus clustering analysis based

on the 209 RNA phenotype-related DEGs to further validate this

differential regulation. Consistent with the clustering grouping

of m6A modification patterns, we obtained three stable

transcriptomic phenotypes named m6A gene clusters A–C

(Supplementary Figure 3), consistent with the expected results.
M6A score model in the value of drug
response prediction

We applied the m6A score model to accurately evaluate the

m6A modification pattern of individual patients with RA.

Patients were divided into high or low m6A score groups
frontiersin.org
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FIGURE 2

(A) Correlation heatmap for all 20 m6a regulators in RA patients. Some regulators were negatively related, represented in blue, and others
were positively correlated, represented in red. The darker the color, the higher the correlation. (B) The consensus cluster matrix for k = 3
shows three major clusters. (C) Consensus clustering cumulative distribution function (CDF) for k = 2–6, which can completely describe the
probability distribution of a real random variable. (D) The relative change of CDF Delta area curve for k = 2–6. (E) The distribution of 20 m6A
RNA methylation regulators among three clusters. (F) Visualization of the clustering results through a scheme based on principal component
analysis (PCA).
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A

B

FIGURE 3

(A) The abundance of infiltrating immunocytes cells in the three m6A clusters. The upper and lower ends of the boxes represent the
interquartile range of values. The lines in the boxes represent the median value, and the black dots show the outliers. The asterisks represent the
statistical p-value (*P < 0.05, **P < 0.01, ***P < 0.001), ns P>=0.05. (B) Some rheumatoid arthritis-related immune reaction gene sets showed
the activity differences in the three m6A clusters (*P < 0.05, **P < 0.01, ***P < 0.001), ns P>=0.05.
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using the median m6A score as the cutoff. In the two m6Ascore

groups, almost all HLA gene expressions showed prominent

differences, and that in m6Ascore-low was significantly higher

than that of m6A score-high (Figure 6A). The m6Ascore-high

group observed a significantly lower expression of 12 critical

immune checkpoints than that in the m6Ascore-low group, like

tumor necrosis factor superfamily15, tumor necrosis factor

receptor superfamily14, CTLA4, and CD86 (Figure 6B). The

above analysis indicated that m6Ascore might be closely

connected with immunotherapy. To further understand the

effects of m6Ascore on predicting drug response, we selected

two independent groups, 154 RA patients treated with infliximab

(Supplementary Table 5) and 92 RA patients treated with

rituximab (Supplementary Table 6). We tested the differences

in m6Ascore between infliximab responders and non-

responders and found that responders had a lower m6Ascore,

while patients showed a high m6Ascore with poor clinical

efficacy of infliximab therapy (Figure 6C). The above analysis

was in accordance with the expected results that the lower m6A

score group, which has higher immune checkpoints TNFSF15

and TNFRSF14, may have a better anti-TNF (like infliximab)

treatment effect. In cluster C, a higher m6A score was observed,

which suggested that there may be a lower infliximab therapeutic

response. Clusters A and B have lower m6A scores, and there

may be higher infliximab therapeutic responses (Figures 6D, E).

Nevertheless, the rituximab cohort study did not observe

significant treatment differences between the two m6Ascore

groups (Supplementary Figure 4).
Frontiers in Immunology 08
Discussion

Heterogeneity within RA remains poorly characterized and

understood; the possible reason might be that the existing

classification criteria for RA do not clearly explain the

heterogeneous clinical response to the different treatments.

Some studies tried to search for new stratification and

classification in rheumatoid arthritis. The type I interferon

signature expression at baseline could predict clinical

outcomes upon TNFa blockade treatment (22). Frances et al.

stratified RA as B-cell-poor and B-cell-rich patients. They found

that patients with a low or absent B-cell lineage expression

signature in synovial tissue tocilizumab are more effective than

rituximab (23). To explore the contribution of m6A subtype

classification to the heterogeneity of RA, we developed an

m6Ascore model to quantify the m6A modification patterns of

individual RA patients. We assessed its potential predictive value

in infliximab therapy.

Along with research going deep, several studies have partially

unraveled the relationship between m6A modification and RA.

RNA modifications play an indispensable role in autoimmune

regulation through an interaction with diverse m6A regulators

(24, 25). Specific deletion of m6A methyltransferases causes

severe autoimmune diseases (13). Luo et al. confirmed that the

expressions of peripheral blood ALKBH5, FTO, and YTHDF2 were

associated with disease activity and inflammatory response (26).

METTL3 serves as a potential biomarker for the diagnosis of RA

due to its significant inhibition of the inflammatory response of
A B

FIGURE 4

Distribution of disease activity scores between clusters. (A) DAS28-ESR showed no discrepancies identified in the three m6A clusters (P > 0.05).
(B) DAS28-CRP showed no discrepancies identified in the three m6A clusters (P > 0.05).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.940918
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2022.940918
macrophages (27). Therefore, identifying the roles of m6A

modification patterns in RA will help understand the

mechanisms of m6A in RA, providing insights into the prediction

of the efficacy of immunotherapy strategies.

First of all, we identified the distinct expression of the m6A

regulator pattern of RA patients. The classifier based on 20 m6A

regulators could distinguish RA and healthy individuals,

reaffirming the critical role of m6A regulators in RA. Then, we

identified three distinct RNA modification patterns correlated

with different immune phenotypes. Considering that

stratification methods are not clinically practical enough, we

established a scoring system to quantify the m6A modification

patterns of individuals and accurately reflected the m6A

regulator modification pattern in RA. We found that the m6A

score not only played a non-negligible role in shaping different

m6A methylation modification patterns but also might define

clinically meaningful subgroups of RA patients with distinct

responses to therapeutic agents. Patients sensitive to infliximab

therapy were significantly related to a lower m6A score.

Interestingly, the predictive value of the m6A score in

rituximab-treated cohorts has not been observed. Previous
Frontiers in Immunology 09
studies found inherent molecular signatures in RA patients,

independent of disease severity and which could not be

entirely normalized with current symptomatic treatments (28).

In addition, the feature is associated with resistance to drug

treatments, which are primarily explained by the imbalance of

immune cell subsets (28). In our results, RA was classified into

three clusters, (A) highest inflammatory phenotype, (B) innate

lymphocyte-rich phenotype, and (C) adaptive lymphocyte-rich

phenotype, and there was no differential distribution of disease

activity scores between clusters. Cluster A showed strong

inflammatory features including a left shift in neutrophil- and

monocyte-activated complement pathways. Tasaki et al. found

that transcriptional changes induced by infliximab treatments

mainly occurred in genes expressed in neutrophils (28).

Furthermore, one study also reported good responders for

infliximab-exhibited mobilization of neutrophils and

monocytes, whereas poor responders showed a high

expression of activated B-cell genes (29). In contrast, cluster C

showed the lowest levels in nearly all inflammatory cells and

pathways and had abundant activated B-cell and immature B-

cell infiltration, which could be important reasons for cluster C
frontiersin.org
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FIGURE 5

(A) Venn diagram shows 209 overlapping differentially expressed genes (DEGs) among the three m6A modification patterns. (B, C) Functional
annotation for 209 m6A phenotype-related DEGs by GO (B) and KEGG (C) enrichment analyses. Each node represents one pathway or gene.
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patients with an unfavorable response to infliximab. The highest

m6A score implies a worse response to infliximab in our results.

Additionally, cluster A has been significantly activated in the

mTOR signaling pathway, reported in several chronic

inflammatory diseases. The inhibition of mTOR has shown

moderate efficacy in reducing joint inflammation (30). Cluster
Frontiers in Immunology 10
B is an interesting subgroup, which was modestly activated with

neutrophils, monocytes, and B cells. However, its m6A score is

comparable to cluster A. Except for neutrophils, Tasaki et al. also

found that the second most informative cell type in the

infliximab response model was NK (28). Infliximab was

observed to bind firmly to CD14dim monocytes, granulocytes,
B

C

A

D E

FIGURE 6

(A) The expression differences of HLA between two different groups *P < 0.05, ***P < 0.001, ns P>=0.05. (B) Differences in 12 critical immune
checkpoints between high m6Ascore and low m6Ascore groups *P < 0.05, ***P < 0.001, ns P>=0.05. (C) M6Ascore in the infliximab treatment
responder and non-responder patients. (D) M6Ascore in three m6A clusters (Wilcoxon test). (E) ROC curve of the m6Ascore in RA responder
and non-responder samples, suggesting that the m6Ascore feature could predict patients’ response levels.
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and NK cells, hardly binding to CD8+ T cells or B cells, which

might be related to expressing higher levels of membrane TNF

(mTNF) in RA patients (31). Infliximab induces potent anti-

inflammatory responses through TNF (32). In this context, the

response to infliximab of cluster BCmay be related to the highest

activation with innate lymphocytes represented by NK.

M6A-related gene signatures were used for pathway

enrichment analysis and found to have significant differences

in innate immune responses among the three clusters, consistent

with characteristics of immune cell infiltration. Plenty of studies

have revealed nucleotide-binding and oligomerization domain

(NOD)-like receptors (NLRs) to play essential roles in

autoimmune diseases including RA (33, 34). In addition,

increasing studies have reported a role for type I IFNs

(interferons) in the pathogenesis of different subsets of RA

patients, indicating that IFN-a/bactivity may have essential

clinical utility in predicting response to tumor necrosis factor

antagonists (35–37). Chen et al. also found that the expression of

m6A phenotype-related hub genes might predict a therapeutic

response to anti-TNF therapy in inflammatory bowel disease

(38). Previous studies have demonstrated that m6A involves the

progression of the inflammatory response by affecting TNF-a
degradation and regulation. The knockdown of METTL14 led to

the inhibition of the TNF-a-induced cell senescence (39),

endothelial inflammation, and atherosclerosis development

(40). Tong et al. have confirmed that METTL3-deficient

macrophages exhibited reduced TNF-a production upon LPS

stimulation in vitro (41). YTHDF2 knockdown significantly

increased the LPS-induced IL-6, TNF-a, IL-1b, and IL-12

expression (42), accompanied by increased TNF receptor

superfamily member 1b (TNFRSF1b) mRNA (43).

Our study is the first to systematically analyze the

relationship between m6A regulators and rheumatoid arthritis.

We identified three distinct m6A methylation modification

patterns and constructed a scoring model which demonstrated

clinical utility for the m6A score as a biomarker in the prediction

of arthritis infliximab therapy, which are likely to be useful in

future studies exploring m6A epigenetic modification in RA and

potentially enabling improved therapeutic decisions and more

reliable prediction of response to therapy. Nevertheless, it can

hardly be denied that this study had some limitations. This study

is based on bioinformatics analysis, and many results

theoretically need to be verified by subsequent experiments

like m6Aseq, LC-MS, and MeRIP seq.
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