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1  | INTRODUC TION

The adaptive immune system relies on a diverse set of T-cell receptors 
(TCR) to recognize pathogen-derived peptides presented by the major 
histocompatibility complex. Each T cell expresses a distinct TCR that 
is created stochastically by V(D)J recombination. This process is very 
diverse, with the potential to generate up to 1061 different sequences 

in humans.1 The resulting “repertoire” of distinct TCRs expressed in an 
individual defines a unique footprint of immune protection. Despite 
this diversity, a significant overlap in the TCR response of different 
individuals to a variety of antigens and infections has been observed 
in humans,2-4 mice,5-7 and macaques8 (reviewed in 9,10). This obser-
vation led to the notion of a “public” response shared by all, and a 
complementary “private” response specific to each individual.5 Since 
antigen-specific TCRs have a restricted set of sequences,11,12 and 
since there is no identified analog for T cells of B-cell affinity matu-
ration, a public response can only arise if the specific responding T 
cells are independently generated in each individual's T-cell repertoire. 
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Summary
Despite the extreme diversity of T-cell repertoires, many identical T-cell receptor (TCR) 
sequences are found in a large number of individual mice and humans. These widely 
shared sequences, often referred to as “public,” have been suggested to be over-repre-
sented due to their potential immune functionality or their ease of generation by V(D)
J recombination. Here, we show that even for large cohorts, the observed degree of 
sharing of TCR sequences between individuals is well predicted by a model accounting 
for the known quantitative statistical biases in the generation process, together with a 
simple model of thymic selection. Whether a sequence is shared by many individuals is 
predicted to depend on the number of queried individuals and the sampling depth, as 
well as on the sequence itself, in agreement with the data. We introduce the degree of 
publicness conditional on the queried cohort size and the size of the sampled reper-
toires. Based on these observations, we propose a public/private sequence classifier, 
“PUBLIC” (Public Universal Binary Likelihood Inference Classifier), based on the gen-
eration probability, which performs very well even for small cohort sizes.
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It was proposed7–9 that these shared sequences can be explained by 
the biases inherent in the V(D)J recombination process, together with 
“convergent recombination,” the possibility to generate the same TCR 
sequence (especially the same CDR3 amino acid sequence) in inde-
pendent recombination events. In this hypothesis, shared TCRs are 
simply those that have a higher-than-average generation probability 
and are thus more abundant in the unselected repertoire.13 The ad-
vent of high-throughput sequencing of TCR repertoires14-17 has largely 
confirmed this view through the analysis of shared TCR sequences 
between unrelated humans,18-20 monozygous human twins,21,22 and 
mice.23 However, despite recent efforts to characterize the landscape 
of public TCRs,24 the contributions of V(D)J generation biases and con-
vergent recombination relative to convergent selection remain to be 
elucidated and quantified. Selection effects include thymic selection25 
by which receptors that bind too strongly or too weakly to self pep-
tides are eliminated in the thymus, peripheral tolerance by clonal dele-
tion or conversion, and clonal selection by which receptors proliferate 
upon recognizing specific antigens in the periphery.

In this review, we address the sharing phenomenon using 
quantitative models of the stochastic V(D)J recombination pro-
cess that have been inferred from repertoire data.26–29 These gen-
erative models, augmented by a simple one-parameter model of 
selection, can be used to predict the number of sequences that 
will be shared between any number of individuals, each sampled 
to any sequencing depth. We make these predictions on the basis 
of stochastic simulations, but we also derive general mathematical 
formulas that allow us to calculate sharing from any recombination 
model. We show that these predictions are in excellent quantita-
tive agreement with data from two recent T-cell repertoire stud-
ies in humans30 and mice.23 The predictive power of our model 
points to convergent recombination as the leading factor for TCR 
publicness over sequence-specific selection effects. Our results 
are consistent with arguments9,31 that the dichotomy between 
public and private is misleading. Instead, we find a wide range of 
possible degrees of sharing, depending on sequencing depth of 
the individual repertoires, the number of individuals in the study, 
and the number of individuals between whom the sequence is 
shared. We propose “PUBLIC” (Public Universal Binary Likelihood 

Inference Classifier), a “publicness score” defined as the recombi-
nation probability predicted by our model. This score predicts the 
sharing status of any TCR with very high accuracy, irrespective of 
the definition for being public vs private.

2  | PREDIC TING SHARING BET WEEN 
REPERTOIRES

2.1 | Spectrum of sharing numbers

We start with an operational definition of sharing in repertoire data 
obtained by high-throughput sequencing from several individuals 
(one sample per individual), which closely follows that of Ref. 23. 
For each individual, we compile a list of unique TCR sequences 
(Figure 1A). Since the functional character of a T cell is thought to 
be largely determined by the amino acid sequence of the highly vari-
able complementarity determining region 3, or CDR3 (to be more 
precisely defined later) of the beta chain protein, we record in our 
list just the unique CDR3 beta chain amino acid sequences found in a 
given biological sample of T cells. For each TCR amino acid sequence, 
we define the “sharing number” as the number of different samples in 
which that sequence was found (Figure 1B). The sharing number de-
pends both on the number of samples and on the number of unique 
sequences in each sample. We note that more restricted definitions 
of sharing, based for example on the full nucleotide sequence, are 
possible, but the correspondingly reduced statistics make it harder 
to draw sharp conclusions. Counting the number of TCRs with each 
sharing number (Figure 1C), we obtain a distribution of sharing, from 
purely private sequences (sharing number 1) to fully public sequences 
(sharing number equal to the number of individuals), and everything 
in between. We will compare the distribution of sharing numbers ob-
tained from the data sequences with predictions of our models.

Early estimates of sharing of human TCRs7 showed that assuming a 
uniform distribution of TCR generation underestimates observed shar-
ing by several orders of magnitude.18 Thus, having an accurate model 
for the non-uniform distribution of TCR generation probabilities is 
crucial for making quantitative predictions of the sharing distribution. 
A simple non-homogeneous model that assigns lower probability to 

F I G U R E  1    Cartoon representation of the pipeline for computing the distribution of shared sequences between samples. (A) Sharing 
between samples is analyzed by marking repeated CDR3s between K samples. (B) The overlapping sequences are counted and binned, and 
the number of CDR3s that were shared m times is computed. (C) Distribution of the number of sequences that are shared m times between 
the sample of K individuals

(A) (B) (C)
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TCR sequences with more non-templated nucleotide insertions in the 
V(D)J recombination process is able to predict sharing between pairs 
of individuals within the correct order of magnitude.18 However, this 
estimate ignores the detailed structure of biases inherent to the re-
combination process and results in strong biases in the distribution of 
TCR sequences that, as we will show, influence the sharing spectrum.

2.2 | TCR generation bias

T-cell receptors are composed of an α and a β chain encoded by 
separate genes stochastically generated by the V(D)J recombination 
process.32 Each chain is assembled from the combinatorial concat-
enation of two or three segments (V as Variable, D as Diversity, and 
J as Joining for the β chain, and V and J for the α chain) picked at ran-
dom from a list of germline template genes. Further diversity comes 
from random non-templated nucleotide insertions between, together 
with random deletions from the ends of, the joined segments. The α 
chain is less diverse than the β chain and sharing analyses have mostly 
focussed on the latter. The germline gene usages are highly non-uni-
form,14,15,33 due to differences in gene copy numbers34 as well as the 
conformation35 and processive excision dynamics36 of DNA during 
recombination. In addition, the distributions of the number of deleted 
and inserted base pairs, as well as the composition of N nucleotides, 
are also biased.37 Taken together, the biases imply that some recombi-
nation events are more likely than others. In addition, distinct recom-
bination events can lead to the same nucleotide sequence, and many 
nucleotide sequences can lead to the same amino acid sequence. This 
convergent recombination further skews the distribution of TCRs, as 
some sequences can be produced in more ways than others.7,9

The effects of recombination biases and convergent recombination 
can be captured by stochastic models of recombination. Given the prob-
ability distributions for the choice of gene segments, deletion profiles 
and insertion patterns, one can generate in silico TCR repertoire samples 
that mimic the statistics of real repertoires, and allow us to predict shar-
ing statistics and the effects of convergent recombination.11,20,22,23,26,38 
To obtain accurate predictions, the distributions of recombination events 
used in the model must closely match repertoire data. This task is made 
difficult by the fact that, as a consequence of convergent recombina-
tion, the specific recombination event behind an observed sequence is 
not directly accessible. However, methods of statistical inference can be 
used to overcome this problem and learn accurate models of V(D)J re-
combination,26,27,29,39 models which can in turn be used to predict shar-
ing properties of sampled repertoires or of individual TCR sequences. 
These models have been shown to vary little between individuals, with 
small differences only in the germline gene usage and remarkable repro-
ducibility in the insertion and deletion profiles.26 In our analysis we will 
assume a universal model, independent of the individual.

2.3 | Using TCR recombination models to 
predict sharing

We used the above-described models of recombination to predict 
the distribution of sharing among cohorts of humans and mice. 

Specifically, we re-analyzed published TCR β-chain nucleotide se-
quences of 14 Black-6 mice23 and 658 human donors30 (Section 7). 
Individual samples comprised 20 000-50 000 unique sequences for 
mice, and up to 400 000 for humans. Sequences were translated 
into amino acid sequences, and trimmed to keep only the CDR3 loop, 
defined as the sequence between the last cysteine in the V gene and 
the first phenylalanine in the J gene.40 The sharing number of each 
observed CDR3 amino acid sequence, and the sharing number dis-
tribution, were then computed from the data. We chose to focus on 
the CDR3 amino acid sequences to get higher sharing numbers than 
would have been obtained for untrimmed nucleotide sequences, 
limiting the effects of sequencing errors and allowing for a better 
comparison to the model.

To obtain model predictions for humans, we used a previously 
described model for TCRβ sequence generation inferred by the 
software package IGoR29 from repertoire data of a single individ-
ual.30 IGoR infers the probability distribution of V(D)J recombination 
events from sequence data (see details in Section 7.1). The mouse 
model was inferred using IGoR from the repertoire data of one of 
the 14 mice.23 In both cases, the model is learned from unproductive 
rearrangements (ie, with a frameshift in the CDR3) since those se-
quences give us access to the raw result of recombination, without 
subsequent effects of selection.26 These unproductive sequences 
are only used to infer a generative model and are not used in the 
sharing analysis. A productive (in frame) sequence that is generated 
in a V(D)J recombination event will not necessarily survive thymic 
selection to become a functional T cell in the periphery. To model 
this effect, we assume that there is a probability q, independent of 
the actual sequence but dependent on the species under study, that 
any given generated sequence will survive thymic selection.41 Model 
sharing predictions are then obtained in two ways: (i) by simulating 
sequences and selecting them at random with probability q to gener-
ate samples of the same size as in the data (an important point about 
simulation is that, once a particular CDR3 amino acid sequence has 
been chosen to not pass thymic selection, any future recurrence of 
that sequence in the simulation is also discarded); (ii) by deriving an-
alytical mathematical expressions for the expected value (Section 7). 
These predictions can then be directly compared to data.

2.4 | Model predicts many degrees of publicness 
in the data

The comparison between data, model simulations, and mathematical 
predictions shows excellent agreement in mice (Figure 2A) and hu-
mans (Figure 2B). The predictions depend on the only free parameter 
of the model, the selection factor q. This parameter was not set sim-
ply by fitting the sharing curves to the data. Instead, it was obtained 
independently as a proportionality factor required to explain the 
number of observed unique amino acid CDR3 sequences given the 
number of unique nucleotide sequences (insets of Figure 2A and B). 
This convergent recombination curve depends on q in a predictable 
way (see Section 7 for mathematical expressions), making it possible 
to fit q to the data (insets of Figure 2A and B). This method yielded 
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selection factors of q = 0.16 ± 0.03 for mice, and q = 0.037 ± 0.002 
for humans, surprisingly close to the estimate of 3% for the fraction 
of human TCR that pass thymic selection.42 Comparison of the pre-
diction with and without selection in mice (red and green lines and 
points in Figure 2A) shows that adding selection greatly improves 
the agreement, despite a slight overestimation of high sharing num-
bers. Adding selection yielded a similar improvement in the human 
sharing prediction of Figure 2B (the model prediction with no selec-
tion is not shown for figure clarity).

Humans have a much more diverse repertoire than mice,28 which 
should result in lower numbers of shared amino acid TCR sequences 
for equal sample and cohort sizes. However, the much larger cohort 
size in the human dataset allows us to illustrate a very wide range of 
sharing behaviors. In particular, we find a long-tailed power-law dis-
tribution in the distribution of sharing numbers (Figure 2B), a feature 
that is reproduced by the model. A very small fraction of sequences 
is shared between all individuals in the 658 donor cohort, while a 
large (>90%) fraction of TCRs is found in just one sample. This di-
versity of behaviors reflects the diversity of generation probabilities 
implied by the strong biases in the VDJ recombination process that 
are correctly captured by our model.

3  | FROM SAMPLES TO FULL 
REPERTOIRES

3.1 | Sampling depth affects sharing

While the sharing potential of a sequence depends just on its gen-
eration and selection probabilities, it is important to realize that ac-
tual sharing numbers will depend on the size of the cohort under 
study and the sampling depth of each individual T-cell repertoire. 
To illustrate this effect, we downsampled both the cohort size and 
the number of sequences in the human dataset, and recalculated 

sharing. Figure 3A compares the distribution of sharing numbers in 
the original dataset, with the same distribution obtained from sam-
ples where a random half of the unique sequences was removed. 
The number of TCRs with each sharing number drops with down-
sampling, and this drop is more marked for high sharing numbers, 
as evidenced by the fraction of CDR3s with each sharing number 
(see inset of Figure 3A). In short, the more TCRs are captured in the 
repertoire samples, and the more likely sequences are to be shared. 
This effect is reproduced in detail by the model calculations. This 
result generalizes previous observations that the number of shared 
TCRs between a pair of individuals should scale approximately with 
the product of the numbers of unique TCRs in each sample20,21,26,43 
to arbitrary sharing numbers.

To demonstrate the effects of varying cohort and sample size 
more clearly, we plot in Figure 3B the complementary quantity—the 
fraction of CDR3s which are purely “private” that is present in only 
one repertoire. This fraction decreases for large cohorts and large 
sample sizes. We note that cohort size and sample depth vary greatly 
from study to study; the data analyzed in this review go from a small 
cohort of mice (14 repertoires with a few tens of thousands TCRs 
each) to a very large cohort of humans (658 donors with 200,000 
TCRs each). The strong dependence of the notion of privateness 
upon the parameters of the study cautions us against interpreting 
sharing numbers and public or private status of individual sequences 
too literally, and further emphasizes that publicness is not a binary 
but rather a continuous measure.

3.2 | Cumulative diversity and extrapolation to full 
repertoires

As Figure 3B shows, most (more than 90%) amino acid TCRs are 
found in only one repertoire. This means that, when pooling rep-
ertoires, each newly added repertoire will contribute a brand new 

F I G U R E  2    Distribution of sharing numbers. (A) Distribution of the number of sequences that are shared between m individuals 
(m = sharing number) for 14 mice. Data points (blue crosses) are compared to analytical model predictions (see Section 7.3.1) with selection 
(red curves) and without selection (green curve), and with simulations (see Section 7.2) based on the generation model with selection (red 
crosses) and without selection (green crosses). While the model without selection underestimates sharing, the prediction is improved by 
adding selection. The model predictions derived from analytical calculations and stochastic simulations agree well. The selection factor q, 
defined as the probability of a CDR3 to pass thymic selection, is inferred by least-square regression from the relation between the number of 
unique CDR3 amino acid sequences with the number of unique nucleotide sequence reads (inset, see Section 7). (B) Distribution of sharing 
numbers in a cohort of 658 humans. The model prediction with selection (simulation: black crosses, analytics: red line) agrees well with the 
data (blue crosses). The selection factor is obtained as for mice (inset)

(A) (B)
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set of TCRs to the pool. To explore this idea, we define the “cu-
mulative repertoire” obtained by pooling together the sampled 
repertoires of several individuals, and count the number of unique 
TCRβ amino acid sequences in it. This cumulative diversity grows 
almost linearly with the number of pooled samples (Figure 4A), 
both in the data and according to the model (see Section 7 for 
calculation of the model prediction). The ratio of unique to total 
sequences starts at 1 for small numbers of pooled individuals, and 
decreases to around 0.9 for high numbers of pooled individuals, 
consistent with the fraction of private sequences. It is interest-
ing to ask whether this trend would continue for larger popula-
tions all the way up to the entire world population. Although we 
cannot answer this question directly by experiments, we can use 
the model to make predictions. Generating in silico repertoires for 
billions of individuals are of course impractical, but we can use 
mathematical expressions (Section 7) to calculate the expected 

diversity. Figure 4B shows the theoretical cumulative diversity as 
a function of the number of individuals for up to 1012 individuals. 
Even with numbers of individuals largely exceeding the number of 
humans having ever lived (1011), we are very far from saturating 
the space of observed TCRs.

The previous estimates rely on partial repertoires comprising a 
few hundred thousand unique TCRs obtained from small blood sam-
ples. However, the human body hosts 5 × 1011 T cells,44 and while 
the T-cell population has a clonal structure, recent estimates of 
the number of clones, and thus of independent TCR recombination 
events, ranges from 108 (from indirect sampling using potentially in-
accurate statistical estimators45), to 1010 (based on theoretical argu-
ments46). The theoretical cumulative diversity based on that latter 
estimate of 1010 (Figure 4B, black curve) still shows no sign of satu-
ration. These results are a consequence of the enormous potential 
diversity of VDJ recombination, and indicate that the diversity of 

F I G U R E  3    The sharing number depends on the sampling depth and cohort size. Downsampling the number of sequences in all 
individuals affects sharing, and decreases the observed probability to be public. (A) The number of sequences for each sharing number 
decreases as the repertoires of all individual are downsampled by a factor 0.5 (blue points) compared to the original sample (red points), as 
predicted by the model (red and blue lines). The normalized distribution of sharing numbers (inset) shows that downsampling affects larger 
sharing numbers more. (B) Model prediction of the fraction of sequences that are entirely private (ie, appearing in just one individual), as a 
function of the downsampling fraction and cohort size. Larger samples and cohorts result in fewer private sequences

(A) (B)

F I G U R E  4    (A) Number of unique CDR3 amino acid sequences in the pooled repertoire of n individuals, as a function of n. This number 
does not depend strongly on the order in which individuals are added to the group (black error bars, obtained by measuring variations across 
30 random orderings). The theoretical prediction (red line, see Section 7.3.4) agrees very well with the data. The model prediction was 
obtained using the mean sample size of the pooled repertoire across 30 random orderings. Each new individual adds ∼200 000 new CDR3 
sequences. (B) Theoretical extrapolation to very large cohorts (red line). This model prediction is based on an average sample size. The same 
prediction can be done for the full repertoires contained in the human body (with 1011 unique recombination events), which yields much 
larger numbers of unique CDR3s (black line). (C) Model prediction for the fraction of sequences in each individual that are truly “public,” ie, 
have a generation probability larger than 1/N, where N is the number of unique TCRs in each individual (repertoire size). The red and blue 
stripes mark the possible range of repertoire sizes in mice and humans, according to current knowledge

(A) (B) (C)
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TCRβ is not exhausted even by the pooled repertoire of the entire 
world population.

Extrapolating these considerations to the full TCR repertoire of 
an individual allows us to estimate the fraction of truly “public” TCRs, 
defined as the sequences that are present in almost all individuals. If 
we define a public TCR sequence as one that has a generation prob-
ability larger than 1/N, where N is the number of T-cell clones in the 
body,	then	1−e−1=63% of all individuals would be expected to have 
that sequence in their repertoire. With this definition, we can pre-
dict the percentage of public sequences as a function of repertoire 
size—ie, the number of T-cell clones (Figure 4C). Interestingly, this 
fraction ranges from 10% to 20% for both humans and mice depend-
ing on estimates of the number of clones, despite their widely dif-
ferent TCRβ diversities and repertoire sizes. It is interesting to note 
that the lower diversity of the TCRβ repertoire in mice as compared 
to humans is matched in a proportional way to the ratio of the TCR 
repertoire sizes in the two species.

4  | PREDIC TING PUBLICNESS

4.1 | Sharing and TCR generation probability

As we have seen, the sequence generation model correctly pre-
dicts the amount of sharing across individuals, as well as the frac-
tion of public sequences. Underlying this prediction method is 
the idea that the likelihood that a given sequence will be shared 
is largely determined by the probability of generation of the se-
quence. Early versions of this argument9,47 noted that sequences 
with a high number of N insertions have lower generation prob-
ability (because of the diversity of possible insertions, each reduc-
ing	 the	 generation	 probability	 by	 a	 factor	 ≈1/4),	 predicting	 that	
shared sequences would have fewer insertions than average. We 
have used recombination models inferred from data to refine this 
argument by accounting quantitatively for the effects of the gen-
eration biases and convergent recombination on the probability of 
generation of particular TCR sequences. As a further test of the 
underlying ideas, we compute the generation probability of TCR 

sequences and ask how this quantity correlates with the sharing 
numbers.

To calculate the generation probability of TCRs, one needs to 
sum the occurrence probabilities of all the possible recombination 
events leading to a given nucleotide sequence26,29 and, since we 
choose to follow CDR3 amino acid sequences, sum the probabilities 
of all nucleotide sequences leading to the amino acid sequence of 
interest. This is a computationally hard task that can be rendered 
tractable using a dynamic programming approach (see Section 7). 
We find that the distribution of generation probabilities of all TCRβ 
CDR3 amino acid sequences (Figure 5, blue curves) is extremely 
broad, spanning many orders of magnitude. This observation is con-
sistent with similar analyses at the level of nucleotide sequences 
in non-productive26 and productive20 human TCRβ, in the α and β 
chains of monozygous twins,22 and mice.28 If we plot instead the 
generative probability distribution of sequences that are shared 
among two or more individuals in our dataset, we find that the 
distribution narrows and shifts toward higher generation probabil-
ities20,22,26 as expected. This effect is displayed in more detail in a 
plot of the generative probability distribution for sequences in our 
dataset with different sharing numbers (Figure 5). On the same fig-
ure, we plot the predictions of the recombination model, following 
the same protocol used for predicting sharing numbers (see Section 
7). There is a systematic shift between the predictions of the recom-
bination model and the distribution of the data itself, for all shar-
ing levels. This difference is due to the fact that the recombination 
model was inferred from non-productive sequences, and does not 
account for selection effects. The data sequences, however, have 
passed thymic and possibly other kinds of peripheral selection, af-
fecting their statistics. The sequence-dependent nature of this ef-
fect was characterized and quantified in a previous work,20 with the 
general finding that selection favors sequences with high generation 
probability. This is qualitatively consistent with the positive sign of 
the shift (solid lines vs dotted lines) we see in Figure 5. Our sharing 
calculations ignore any possible sequence dependence of selection, 
and instead selects TCRs at random (with probability q), regardless 
of their sequence identity. The model prediction could in principle 

F I G U R E  5    Distributions of the logarithm of the generation probability for different minimal sharing numbers, for (A) mice and (B) 
humans. For larger sharing numbers, the distribution shifts toward higher probabilities and becomes narrower. This shift enables the 
characterization of the sharing number, or the degree of publicness, using the generation probability. The model captures the right trend of 
the sharing numbers, despite predicting much narrower distributions

(A) (B)



     |  173ELHANATI ET AL.

be improved by adding sequence-dependent selection factors to 
match the distributions as was done previously.20 However, unlike 
the recombination model, such factors are expected to be specific 
to each individual, owing to their unique HLA type which is involved 
in thymic selection.

4.2 | PUBLIC: Classifier of public vs private TCRs 
based on generation probability

The distributions of generation probabilities for the different shar-
ing numbers suggest that the generation probability is a good proxy 
for the property of being public, regardless of the exact definition 
of publicness. We built a classifier called PUBLIC (Public Universal 
Binary Likelihood Inference Classifier), which is entirely based on the 
probability of generation computed as explained above (detailed in 
Section 7) for each amino acid sequence (Figure 6A). Before discuss-
ing the performance of this classifier, it is important to note that it is 
based on a model of recombination trained in a completely unsuper-
vised way, ie, without using any information about the public status 
of the sequences. In fact, this training can be done with IGoR 29 from 
the repertoire of a single individual, without including any sharing 
information. Unlike previous approaches,23 we do not fit additional 
model features based on the catalog of sequences with their public 
or private status.

We arbitrarily define as “public” the TCRs that are found in at 
least m repertoire samples among a total pool of n individuals. The 
PUBLIC classifier calls a given TCR “public” if its generation prob-
ability is larger than a threshold θ, calling it “private” otherwise. 
Intuitively, the threshold should be set to separate reliably the peaks 
in the probability density function of Figure 5 corresponding to dif-
ferent sharing numbers, as schematized in Figure 6B. The general 
performance of the PUBLIC classifier can be estimated by plotting 
the receiver operating characteristic (ROC) curve, which represents 
the rate of false positives vs that of true positives as θ is varied 
(Figure 6C).

We plot ROC curves for a few different choices of m (the minimal 
number of individuals with the TCR in their sampled repertoire for 

the sequence to be called public) for mice (Figure 7A) and humans 
(Figure 7B). The classification accuracy improves as publicness is de-
fined to be more restrictive (larger m), although it performs well even 
for small m. For mice, the dataset we used had few individuals, mak-
ing the operational definition of publicness less reliable. However, 
for humans, we find highly public TCRs are predicted almost per-
fectly by PUBLIC, despite the larger diversity of human TCRs. This 
suggests that the lesser performance of PUBLIC for mice may be 
attributed to the small size of the cohort, rather than to limitations 
of the classifier itself.

The performance of PUBLIC can be reduced to a single number 
by calculating the area under the ROC curve (AUROC). The AUROC 
corresponds to the probability that the classifier ranks a randomly 
chosen public sequence higher than a randomly chosen private one. 
The closer the AUROC score is to 1, the better the classifier. As was 
clear from the ROC curves themselves, the AUC improves as the 
degree of publicness is higher (insets of Figure 7A and B). As the min-
imal sharing number m increases, the classifying task becomes easier 
and the prediction better. In fact, having the minimal sharing number 
m close to the cohort size n will in general make publicness rarer, and 
the public sequences more extreme in their generation probabilities.

5  | PUBLIC SPECIFIC RESPONSE

Sharing properties are interesting in their own right, but they also 
provide a basal expectation for the prevalence of certain TCRs. 
Using the sharing prediction, one can identify TCRs that are more 
shared in specific populations or subsets than expected according 
to the recombination model. When counting sharing in a population 
of individuals affected by a common condition, this “over-sharing” 
can be indicative of a specific T-cell response to the antigens associ-
ated with the condition. Such sharing of specific TCRs is expected 
from the relatively low diversity of antigen-specific sequences re-
vealed by in vitro multimer-staining experiments.11,12 A very similar 
idea has been exploited by several groups to identify TCRs specific 
to the Cytomegalovirus,30 Type-1 diabetes,48,49 arthritis50 and other 

F I G U R E  6    Cartoon representation of the pipeline for the PUBLIC classifier. (A) To each CDR3 sequence in the dataset we associate its 
generation probability (pgen), which PUBLIC uses to predict the empirical sharing number. (B) The pgen distributions of shared sequences 
depend on the sharing number m. We pick a classifier threshold value of Pgen, θ, that separates public from private sequences for this sharing 
number value of m. The areas of the histograms that fall on the wrong side of the threshold are defined as the false positive and false 
negative rates. (C) For a given choice of the minimal sharing number m, we plot the true and false positive rates as a function of the classifier 
threshold θ to obtain a receiver operating characteristic

(A) (B) (C)
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immune diseases.51 In these studies, there is no theoretical expecta-
tion from the recombination model. Rather, the basal expectation 
for TCR sharing is given by a negative-control cohort. However, this 
control can be efficiently replaced by the recombination model pre-
sented here, as was demonstrated before.41 In this analysis, specific 
TCRs emerge as outliers that are shared much more frequently than 
predicted by the model.

We wondered whether such an approach could be useful for 
identifying tumor-specific TCRs as sharing outliers among cancer 
patients. The T-cell repertoire of tumor-infiltrating cells has been 
studied to look for signatures of immunogenicity,52–54 and the over-
lap between the tumor and blood repertoires was shown to predict 
survival in glioblastoma patients.55 In addition, the tumor-specific 
TCRs have been reported to be shared in the tumor-infiltrating and 
blood T-cell repertoires of breast cancer.56

We thus asked whether the blood repertoires of patients with 
bladder cancer contained TCRs with more sharing than would be 
predicted by our recombination model. We performed the sharing 
analysis on 30 patients with bladder cancer, on TCR repertoires 
sequenced from blood samples.54 We compared it with 30 healthy 
individuals, chosen at random among the individuals studied in 30 
to have similar sample sizes. We then downsampled the reference 
repertoires of the healthy individuals to have the exact same sam-
ple sizes as the cancer patients to guarantee a fair comparison. 
We found that the numbers of shared sequences in the blood of 
bladder cancer patients are almost identical to those found in the 
healthy samples, and thus also in agreement with the recombi-
nation model (Figure 8). This is consistent with previous reports 
that did not find any signatures of TCR repertoire anomalies in 
the blood of bladder cancer patients, although some small differ-
ences could be seen in the tumors. There are many possible ex-
planations for this observation: the tumor-specific response may 
be statistically negligible amid the large number of other cells; or 
the response may not have propagated to the blood; or different 
patients generate responses against different neoantigens; or they 
generate very different responses against the same neoantigen; or 
the tumor does not generate any response at all. Tumor samples 

from larger cohorts would be needed to distinguish between these 
different hypotheses. Additionally, this result is only true for blad-
der cancer. Different tumor types that have a higher rate of in-
filtration to the blood may be more likely to result in detectable 
signatures in the blood.

6  | DISCUSSION

In this paper, we extensively tested and quantified the previously 
proposed hypothesis9,31 that public TCRs owe their status to the 
ease of generating them through V(D)J recombination. Predicting 
and characterizing TCR sharing and publicness is important to iden-
tify universal features of the immune response across individuals. 
This knowledge can be useful when designing vaccines that have a 
high probability of eliciting an immune response, or for identifying 
candidate T-cell clones in immunotherapeutic strategies.57

F I G U R E  7    Performance of the PUBLIC classifier. Receiver operating characteristic (ROC) curves for (A) mice and (B) humans for 
different minimal sharing numbers m. Inset: the area under the ROC curve (AUROC) describes the probability of classifying a given sequence 
as public or private. Higher AUROC values correspond to a better a classifier. The AUROC score increases with the minimal sharing number 
m (inset), meaning that a more restrictive definition of publicness gives better classifiers

(A) (B)

F I G U R E  8    Distribution of sharing numbers in a cohort of 30 
bladder cancer patients. The distribution is compared to a sub-
cohort of 30 healthy individuals downsampled to have the same 
sample sizes as the cancer samples. The distribution are the same 
in healthy and bladder cancer patients, indicating that there are 
no common significantly over-represented TCRs in the blood 
repertoire of cancer patients
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Our predictions, and their agreement with the data, support the 
notion that “publicness,” as it is usually defined, is context-depen-
dent.9 The public status of a TCR depends not only on its (intrinsic) 
generation probability, but also on (extrinsic) parameters including 
the number of individuals sampled, the sequencing depth of the 
samples, and the definition of publicness—the minimal number of 
individuals that need to share a TCR to call that TCR public. Instead, 
we have showed that we can define the potential for publicness, 
largely determined by the generation probability of the sequence, 
and use it to predict actual sharing numbers for any set of repertoire 
samples. At the same time, we proposed that an absolute notion of 
publicness can be defined based on the full repertoire of individu-
als. According to this definition, a TCR is public if its probability of 
occurrence is larger than the inverse of the number of unique TCRs 
hosted in the entire repertoire. While this definition is impossible to 
explore directly in humans, for whom only repertoire samples can 
be obtained, our data-driven recombination model can make pre-
dictions about the public status of particular sequences, and the 
fraction of the repertoire that is public, using this specific definition 
(Figure 4).

We report a wide spectrum of publicness, which we show arises 
from the very wide distribution of TCR generation probabilities. The 
high-end of the distribution holds sequences that will be included in 
any healthy repertoire, just by virtue of their high generation prob-
ability. Due to their publicness, it had been conjectured that some 
of these common TCRs might have a close to innate function.31 In 
this context, it should be noted that young, prebirth repertoires are 
known to be much less diverse both in humans22 and mice,28 due 
the late appearance of TdT, the enzyme responsible for insertions in 
the recombination process. Consequently, the prebirth repertoire is 
expected to be much more public that the adult one, and could be 
enriched in innate-like TCRs. However, since no conclusive evidence 
has been provided about the functional role of these high probability 
sequences, we cannot rule out the possibility that they are just there 
by chance, without a specific function. The other end of the TCR dis-
tribution—the long tail of low generation probabilities—contributes 
to the private part of the repertoire, which makes up the majority of 
the repertoire according to our estimates. It would be interesting to 
explore whether these sequences have a functional role or are just 
by-products of the recombination process.

High-throughput TCR repertoire datasets contain abundance 
levels (number of reads) for each TCR. TCR abundances have be 
attributed to convergent recombination, implying a correlation be-
tween high abundance and publicness.9 However, this connection 
may be confounded by other processes affecting the abundance 
levels reported by high-throughput sequencing. A big source of di-
versity in TCRs abundances is the peripheral proliferation of some 
TCRs, regardless of their generation probability. In addition, exper-
imental or phenotypic noise, including PCR amplification noise58 
and expression variability (for cDNA sequencing) also affect re-
ported abundances. These various effects are expected to dilute 
the correlation between abundance and publicness. Note that our 
statistical models are constructed based only on unique sequences, 

circumventing clonal expansion dynamics, and ignoring abundance 
levels altogether.

The sharing analysis naturally leads to defining the PUBLIC 
score, which we show predicts sharing properties with high accu-
racy. The PUBLIC score is learned in an unsupervised manner, using 
a statistical model trained with no information about the sharing sta-
tus of TCRs. Thus, sharing can be very well predicted with neither 
abundance nor sharing information. This success suggests that being 
public is a very basic property of the recombination process itself, 
and also provides a strong validation of the recombination model. 
It would be interesting to explore how using TCR sharing status and 
abundance levels in a supervised manner that refines the classifier 
could lead to better predictions.

Our prediction for sharing is mainly based on the generation 
model,29 which is sequence specific, attributing each sequence its 
own probability of generation. We have found that an overall se-
lection factor is needed to predict sharing numbers correctly, but 
this simple and effective model is sequence independent. Previous 
work20 inferred a sequence-specific selection process by comparing 
generation model results to observed sequences. In principle, such 
a model could be combined within our framework to yield refined 
sharing predictions. While the parameters of the generation process 
are largely invariant across individuals,29 selection is expected to 
be individual-dependent and heritable due to the diversity of HLA 
types in the population.59 The large variability in the V and J genes 
selection pressures inferred previously20 is consistent with this no-
tion, but in the same work some amino acid features of selection 
were found to be universal. Quantifying these universal features and 
including them in the model could both improve the predictions for 
the sharing numbers, and enable a better assessment of the poten-
tial publicness of specific sequences through an improved classifier.

The discussion in this work was focused on TCRβ chains, but in 
general can be applied to any recombined chain, including α, γ and δ 
TCR chains, as well as B-cell receptor (BCR) light and heavy chains, 
or to paired chain combinations. The α chain, as part of the αβ recep-
tor, contributes to antigen recognition. It is less diverse than the β 
chain, implying higher sharing numbers.22 Paired αβ data is becom-
ing available as paired sequencing technologies improve,60,61 but the 
resulting repertoires are currently too small or not yet available for 
analysis. As more paired sequencing data becomes available, it will 
be interesting to study the sharing properties of the αβ repertoire 
using recombination models for pairs.

A similar analysis could be performed on BCRs. The problem is 
further complicated by somatic hypermutations, which add further 
diversity and are expected to reduce sharing as well as the ability to 
predict it. However, the role of the generation probability, for which 
the models have been trained,29,39,62 for sharing and publicness has 
not been explored. Machine-learning approaches to predict public-
ness of BCR63 could be combined with estimates of the probability 
of generation and hypermutations profile29,64,65 to provide accurate 
predictions for the public status of BCRs. Such an analysis applied 
to the result of affinity maturation in different individuals infected 
with the same pathogens66 could be used to assess the impact of 
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convergent recombination in the public response and better un-
derstand the evolution of specific antibodies, and guide vaccina-
tion strategies to facilitate the emergence of broadly neutralizing 
antibodies.67

7  | METHODS

7.1 | The probability of generating a TCR sequence

To evaluate TCR generation probabilities, we first constructed a proba-
bilistic generation model of the recombination process.26 Such a model 
is parametrized by probabilities for each choice of V, D, and J gene, for 
each deletion length of the different genes, and for each insertion pat-
tern of random nucleotide between the genes. Then the probability of 
a recombination scenario is a product of these probabilities:

The probability of a TCR sequence, whether it is a nucleotide of 
amino acid sequence, for the full sequence or just the CDR3, is ob-
tained by summing the above probability over all the possible sce-
narios leading to the sequence of interest.

The different factors for gene choice, P(V,D,J), deletion patterns, 
P(delV|V), P(delD|D), and P(delJ|J), and insertion length and content, 
P(insVD) and P(insDJ), define the generation model. All these factors 
can be inferred efficiently using the IGoR software29 from non-func-
tional recombinations, which produce out-of-frame or stop codon 
containing sequences. Model training is done by finding model pa-
rameters that maximize the likelihood of the data, equal to the prod-
uct of generation probabilities of the observed TCRs in the dataset. 
Here, we used IGoR to infer a generation model from the non-func-
tional reads in the datasets from which the productive reads used for 
the sharing analysis came, for human,30 and mice.23

To calculate the generation probabilities of CDR3 amino acid 
sequences, we used an efficient algorithm that avoids brute-force 
summation of all possible scenarios using dynamic programming.

7.2 | Evaluating the number of shared sequences 
using simulations

Once inferred, a generative model can be used to generate random 
in silico samples of any size. Recombination scenarios are generated 
using Monte Carlo sampling by drawing events such as gene choices, 
deletions, and insertions according to the model parameters. Each 
recombination scenario constructs a nucleotide sequence which is 
filtered for productivity (in-frame, no stop codons or pseudogenes, 
and the conserved residues C and F are present). A productive nucle-
otide sequence is then trimmed to the CDR3β region and translated 
into an amino acid sequence. To model thymic selection only a ran-
dom fraction q of the productive CDR3β sequences are considered. 
This is implemented using a hash function, keeping only sequences 
whose normalized hash values are less than q. This negative selection 
process is a random function of the sequence, which is consistent 

between any simulated individual sample, so that a given CDR3β will 
either pass or fail selection in all individuals. A simulated sample can 
thus be generated to match the cohort size and sequencing depth of 
the real data, and then analyzed with the same pipelines.

7.3 | Analytical calculation of the number of 
shared sequences

7.3.1 | Predicting sharing numbers from the 
distribution of generation probabilities

Given a collection of CDR3β sequences s ∈ S, a model that assigns 
probabilities p(s) for each sequence, and N independent sequences 
drawn from the model, the expected number of observed unique 
sequences M0 is:

where we have made the Poisson approximation for small p(s). If 
there are n individuals, with sample sizes {Ni}, then the expected 
number of sequences which will be found in exactly m individuals 
(sharing number m) is:

where Jm is the collection of all possible combinations of m individu-
als. This can be computed more efficiently by use of the generating 
function G(x,{Ni}):

where the Mms are the coefficients of the polynomial G(x,{Ni}), and 
can be calculated just by expanding the polynomial in x and summing 
over s.

7.3.2 | Density of states approximation

While the above equations are exact, summing over each individ-
ual sequence is intractable given the huge number of sequences. 
Instead, an integral approximation based on the “density of mstates” 
is used. Let us call E(s)	=	−	ln	p(s) the Shannon surprise of generating 
sequence s at random, also formally equivalent to an energy in phys-
ics according to the Boltzmann's law. The density of states, g(E)dE, 
counts the number of sequences between E and E+dE. Summation of 
an arbitrary function Φ(p(s)) = Φ(E(s)) over the states (sequences) in S 
can then be turned into an integral:

A numerical estimation of g(E) is required to compute this inte-
gral. Estimating g(E) is done by drawing large Monte Carlo samples 
of sequences (107 for humans and 106 for mice) from the generative 
model and calculating the generation probabilities of each sequence. 
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Values of E(s)=−	ln	p(s) can then be histogrammed into bins of size 
dE and the resulting distribution normalized to integrate to 1. This 
yields a probability density, P(E) (shown Figure 5), which can be used 
to compute the density of states:

Equations 2 and 4 can now be rewritten in terms of integrals:

and

7.3.3 | Sharing modified by selection

While the above analysis is general, it depends on the state or se-
quence space S (the collection of productive CDR3βs that pass se-
lection) and on a model that assigns probabilities to each sequence. 
The preferred model to use will be the probability of generating a se-
quence (pgen(s)); however, this model is defined and normalized over 
a state space of all possible recombination events, many of which 
lead to non-functional or negatively selected sequences. As a result, 
the model p(s) that will be used needs to be renormalized to reflect 
the reduced sequence space of productive, selected sequences. This 
introduces two factors. First factor, f, is the fraction of sequences 
which are functional (in-frame, no stop codons or pseudogenes, con-
served residues are present), and can be computed directly from the 
generative model (f = 0.236 for humans and f = 0.260 for mice). The 
second factor, q, is the fraction of productive sequences which pass 
selection and must be inferred (see below). These two factors pro-
vide the definition for the model that is used in the analysis:

The effect of renormalizing pgen(s) to p(s) on the density of states is 
that the energies are shifted by a constant  ln f+ ln q and the density 
itself is everywhere reduced by a factor of f×q:

where ggen(E) is the density of states computed from pgen(s) and g(E) 
is derived from p(s).

7.3.4 | Inferring the selection factor q

The selection factor q is inferred by running a least-squares re-
gression on the model predictions for the M0(N) curve (Eq. 7). This 
curve relates the number M0 of unique amino acid CDR3 sequences 
observed to the number N of productive, selected recombinations 
generated. To determine the M0(N) curve from the data, the num-
ber of productive selected recombinations must be determined for 
each sample. Fortunately, due to the limited sequencing depth, the 
number of unique productive nucleotide reads in each individual 

sample is very close to the actual number of selected recombina-
tions. In practice, N was taken to be the number of unique nucleo-
tide sequences of each repertoire, summed over a subset of the 
individuals, and M0 was the number of unique amino acid sequences 
resulting from the translation of the aggregated repertoire of the 
same subset of individuals. The curve was obtained by adding more 
and more random individuals to the subset, and averaged over 100 
realizations of that random addition process (Figure 4A). A least-
square regression of Equation 7 with Equation 10 to that empiri-
cal curve yielded a value for q of approximately q = 0.037 ± 0.002 
for humans and q = 0.16 ± 0.03 for mice. Sequencing errors could 
produce spurious sequences which would be counted as distinct 
unique sequences, potentially biasing the estimation of q. In the 
datasets used the error rate was low enough to ignore this effect.

7.3.5 | Analytic computation of public fraction of 
a repertoire

In Figure 4C, a sequence s in a repertoire of size N is defined as pub-
lic if p(s)≥1/N. The fraction of the repertoire comprised of these se-
quences is computed by evaluating:

where the term in parenthesis corresponds to the probability that a 
given sequence with probability e−E is found in a repertoire of size N.

7.4 | Sequence data

Mouse data was obtained from Friedman's lab, and published before 
in.23 Out of the 28 mice in that study, we analyzed 14 that had similar 
reads, with length of 52 bp. The sample sizes are summarized in Table 1.
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TA B L E  1   Mice dataset sample sizes

Mouse id Unique reads
Unique CDR3 
amino acid

1 22 118 18 257

2 46 116 32 469

3 55 124 38 669

4 74 026 49 165

5 53 019 37 419

6 23 676 17 032

7 50 672 33 347

8 52 607 34 629

9 51 377 35 803

10 83 641 54 711

11 29 764 21 557

12 66 632 44 269

13 40 428 27 658

14 26 350 18 704
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Human dataset was used from the CMV study in.30 658 individ-
ual	samples	were	used,	with	mean	number	of	reads	≈200	000,	and	
mean	number	of	unique	CDR3s	≈180	000.

Bladder cancer data came from a published immunotherapy 
study.54 We used the blood samples from the first time point of each 
patient in the study. Samples were generally smaller than those in 
the	CMV	study,	with	a	mean	number	of	unique	CDR3s	≈100	000,	
and a smaller spread.

7.5 | Code availability

Code for the PUBLIC classifier is available at github.com/yuvalel/
PUBLIC.
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