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TAK1 inhibition prevents the 
development of autoimmune 
diabetes in NOD mice
Hui Cao1,*, Jingli Lu1,*, Jiao Du1, Fei Xia1, Shouguo Wei1, Xiulan Liu1, Tingting Liu1, Yang Liu2 
& Ming Xiang1

Transforming growth factor-β activated kinase-1 (TAK1, Map3k7), a member of the mitogen-activated 
protein kinase kinase kinase (MAP3K) family, is essential in innate and adaptive immune responses. 
We postulated that blockade of TAK1 would affect autoimmune diabetes in non-obese diabetic (NOD) 
mice. Administration of 5Z-7-oxozeaenol (OZ), a TAK1 inhibitor, decreased the incidence and delayed 
the onset of autoimmune diabetes in both spontaneous and accelerated (cyclophosphamide-induced) 
experimental NOD mice. OZ also reduced insulitis, preserved islet function, increased the expression 
of α1- antitrypsin (AAT), and severely inhibited NF-κB and JNK/AP-1 signaling pathways in immune 
organs and pancreatic tissues. Importantly, TAK1 inhibition by OZ elicited a Th1 to Th2 cytokine shift, 
and increased TGF-β1 production in cultured T lymphocytes supernatants. Systemic TAK1 inhibition 
induced immature DCs with lower expressions of MHC-II and CD86, attenuated DC-mediated T cell 
proliferation in allogeneic MLR, and production of cytokine IL-12p70 in DCs suspensions. The results 
indicate that TAK1 inhibition with OZ was associated with a lower frequency of autoimmune diabetes 
in NOD mice. The net effect of TAK1 inhibition in NOD mice therefore appears to be protective rather 
than disease-enhancing. Strategies targeting TAK1 specifically in NOD mice might prove useful for 
the treatment of autoimmune diabetes in general.

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder caused by autoreactive T cells, which 
mediates the impairment of insulin-producing pancreatic β -cell function1,2. Insulin replacement is the 
mainstay of treatment for T1DM, but its disadvantages include poor effectiveness in preventing long-term 
complications, frequency of episodes of severe hypoglycemia, and disruption of lifestyle3,4. In addition, 
insulin treatment does not inhibit T cell-mediated β  cell function5,6. Strategies aimed at stopping immune 
destruction of β  cells and preserving β  cell function may thus improve overall T1DM therapy.

The NOD mouse is a spontaneous model of type 1 diabetes, with genetic and pathophysiological 
characteristics that are similar to those of the human disease7. Early islet inflammation probably involves 
T-cell infiltration at the endocrine/exocrine border. Consequent “peri-insulitis” lasts for weeks to months 
in NOD mice and likely for years in humans before detectable β -cell death8. During pre-insulitis, islet 
antigen is initially presented by dendritic cells (DCs) to islet antigen-specific T cells and innate immunity 
occurs9. As ‘danger signals’ such as cytokines and chemokines are released by dying β  cells and immune 
cells, immune cells are activated and attracted to pancreatic islets (a process termed insulitis) to destroy 
β  cells10. These immune cells include T cells, B cells, macrophages, natural killer (NK) cells and NKT 
cells, as well as DC subsets contributing to β  cells death11. Thus, development of T1DM involves complex 
interactions between immune cells and pancreatic β  cells.

TAK1 (transforming growth factor-β-activated kinase-1, Map3k7), a member of the mitogen-activated 
protein kinase kinase kinase (MAP3K) family, functions as a critical regulator in innate and adaptive 
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immune responses12–14. Many of the signaling pathways triggered by multiple extracellular stimuli con-
verge at the level of TAK1. Those stimuli include cytokines such as interleukin-1 (IL-1), toll-like receptor 
(TLR), tumor necrosis factor (TNF), transforming growth factor β  (TGF-β ), B cell receptor (BCR), and 
T cell receptor (TCR) ligands15,16. Activated TAK1 then phosphorylates the IKK complex as well as p38, 
c-Jun N-terminal kinase (JNK), and extracellular signal regulated kinase (ERK), thus activating NF-κ B 
and AP-1 17. Ultimately, these transcription factors initiate expression of genes involved in inflammatory 
responses. Subsequent IKK activation induces the expression of cytokines, chemokines, and adhesion 
molecules that mediate the recruitment and activation of immune cells18. In addition, TAK1 induces 
expression of antiapoptotic proteins to protect cells from cytokine-induced death19. Therefore, as a key 
regulator of downstream signaling pathways, TAK1 is implicated in a number of pathophysiologic pro-
cesses including CNS autoimmune inflammation, arthritis, and colitis20–22.

TAK1 conditional knockout systems have been used to reveal roles of TAK1 in immune cells includ-
ing T cells, B cells, DCs, and Gr-1+CD11b+ neutrophils. In B cells and T cells, TAK1 is required for 
development and survival through NF-κB and MAPK pathways induced by cytokines, TLR ligands, 
and T cell receptor (TCR)-or B cell receptor (BCR)12,23,24. In DCs, TAK1 acts to maintain mature DCs 
and BM precursors25. DC cell-specific ablation of TAK1 causes a myeloid proliferative disorder, disrupts 
T-cell homeostasis, and prevents effective T-cell priming and Tregs generation25. However, TAK1 may 
also negatively regulate TLR4-induced NF-κB and p38 signaling pathways during myeloid cell homeosta-
sis26. The role of TAK1 in controlling the immune system in vivo, and autoimmune diabetes in particular, 
is complex and not yet fully understood. Here, we investigated the role of TAK1-dependent cascades in a 
preclinical mouse model of autoimmune diabetes using the TAK1 inhibitor 5Z-7-oxozeaenol (OZ). The 
results provide evidence that TAK1 may be a potential target for treatment of T1DM.

Results
TAK1 inhibition affects maturation and survival of DCs via interfering with NF-κB and JNK/
AP-1 signaling pathway.  To determine the role of TAK1 in differentiation and maturation of DCs, 
we examined the development of DCs derived from bone marrow of C57BL/6 mice. We firstly assessed 
OZ cytotoxicity in DCs. OZ showed minimal cytotoxicity with more than 90% cell viability at the 
concentration of 20 μ M (Supplementary Fig. S1a online). Cells in the bone marrow were treated with 
either DMSO vehicle or 5 μ M OZ for 4 h.The number of total CD11c+DCs were comparable between 
OZ-treated DCs and control DCs, indicating that TAK1 inhibitor did not affect the differentiation of 
bone marrow cells into DCs (Fig.  1a). Among the populations of CD11c-gated cells, OZ-treated DCs 
(with LPS stimulation) expressed lower CD86 and MHC-II than LPS-stimulated DCs did, demonstrating 
TAK1 inhibited DCs maturation (Fig. 1a).

To further study the effect of TAK1 inhibition on DCs, we measured the extent of apoptosis in DCs 
which were treated with 5 μ M OZ. Apoptosis was assayed by FITC annexin V/PI staining in combination 
with FACS analysis. Mature DCs were derived from bone marrow and then stimulated with GM-CSF 
plus IL-4 and LPS. The results showed that OZ treatment produced significant apoptosis in mature but 
not in immature DCs (Fig. 1b). Approximately 50% of OZ-treated mature cells were apoptotic.

To determine the effects of TAK1 on the activity of TLR4-induced signal transduction in DCs, LPS 
was used to activate the TLR4 pathway27. Bone marrow-derived DCs were treated with 5 μ M of the TAK1 
inhibitor, 1 μ g/mL of LPS, or both. Compared with the control group, OZ-treated DCs significantly 
diminished the expression of TLR4 and NF-κ B p65 both in protein and mRNA level, indicating that 
TAK1 influenced the survival of DCs. We also detected the activity of JNK/AP-1 signaling pathway in 
OZ-treated DCs. TAK1 inhibition led to a reduction of JNK and AP-1 activation in DCs. (Fig. 1c and 
Supplementary Fig. S2a online)

TAK1 inhibitor impacts the percentage of Tregs in vitro.  Firstly, we tested the cytotoxicity of 
OZ in T cells. As shown in supplementary Fig. S1b, there were 90% cell viability at the concentration 
of 20 μ M, which indicated that OZ had minimal cytotoxicity directly on T cells. Tregs participate in 
the regulation of the immune state during the progression of T1D28. In this study, OZ decreased the 
differentiation of CD4+CD25+Foxp3+ Tregs from spleen, thymus and lymph nodes of C57BL/6 mice 
(Supplementary Fig. S3a–c online). OZ also ameliorated the gene expression of Foxp3, an essential factor 
for the differentiation and function of Tregs (Supplementary Fig. S3d online).

TAK1 inhibitor downregulates the mRNA levels of TAK1 and its downstream components 
in vitro.  To explore possible mechanisms of TAK1 inhibitor -OZ in immunosuppression in vitro, we 
carried out the following experiments focusing on TAK1 and associated signal pathways. We estimated 
mRNA expressions of key molecules, includingTLR4, TAK1, NF-κ B, Iκ Bα , JNK and AP-1 in T cells from 
spleen, thymus, and lymph nodes. Results manifested that OZ decreased the gene expressions of TLR4, 
TAK1, NF-κ B, JNK and AP-1, and enhanced Iκ Bα  expression (Supplementary Fig. S2b-d online). These 
data indicated that OZ executed immunoregulatory effects of T cells in vitro via inhibiting the activation 
of NF-κ B and JNK/AP-1 signaling pathway.
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Figure 1.  Effect of TAK1 inhibition in DCs. (a) Effect of TAK1 inhibition on DCs’ development. OZ-
treated DCs with LPS stimulation expressed low CD86 and MHC-II, indicating TAK1 affected DCs 
maturation. (b) Effect of TAK1 inhibition on apoptosis in mature DCs. The apoptosis of mature DCs were 
analyzed by flow cytometry. TAK1 inhibitor promoted mature DCs’ apoptosis. (c) Effect of TAK1 inhibition 
on LPS-induced NF-κ B and JNK/AP-1 signaling in DCs. DCs were generated from bone marrow of 
C57BL/6 mice, the cells were treated with 1 μ g/ml LPS for 24 h, then cells were treated with either DMSO 
vehicle or 5 μ M OZ for 4 h. Blockade of TAK1 leads to a reduction of LPS-induced NF-κ B and JNK/AP-1 
signaling as a downstream indicator of TAK1 signaling activity. Representative data from three or four 
independent experiments were expressed as mean ±  SD. β -actin was detected as the internal reference. 
#P <  0.05, compared with control DCs; *P <  0.05, **P <  0.01, compared with LPS-treated DCs.
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TAK1 expression increases during development of insulitis.  In our NOD female mice, nonde-
structive peri-insulitis developed from 6 to 10 weeks of age followed by an invasive insulitis at 15 weeks. 
The onset of diabetes was first observed at age of 17 weeks, progressing to a cumulative disease incidence 
of 60–80% by 40 weeks of age. Results of western analysis showed that, compared to 8-week-old mice, 
TAK1 protein was significantly increased in 17-week-old mice and reached a maximum by 25 weeks of 
age in thymus, spleen, and pancreas (Fig. 2a). Immunohistochemistry analysis manifested that TAK1 was 
expressed in the blood vessels of pancreas in the absence of insulitis and increased with disease progres-
sion (Supplementary Fig. S4 online). Thus, levels of TAK1 in NOD mice increase in an age-dependent 
manner, suggesting that TAK-1 is associated with the progression of T1DM.

TAK1 inhibition reverses T1DM in early-onset NOD mice, but not late-onset NOD mice.  To 
further validate TAK1 as a candidate therapeutic target in the amelioration of diabetes, we used a potent 
and selective TAK1 kinase inhibitor—5Z-7-oxozeaenol (OZ) to treat female NOD mice at the onset of 
diabetes with doses of 15 μ g or 30 μ g/mouse. As shown in Fig. 2b, OZ at 30 μ g/mouse normalized hyperg-
lycemia. OZ also delayed or reduced the incidence of diabetes in a dose dependent manner. However, OZ 
at 5 μ g/mouse had no effect on glucose control (data not shown). Administration of OZ (30 μ g/mouse) 
to 8-week-old female NOD mice for four weeks significantly decreased diabetes incidence to 33% in 
comparison to mice treated with PBS, whose diabetes incidence was 75%. Notably, 8 of 12 OZ-treated 
mice remained diabetes-free after cessation of treatment, with some remaining in remission up to 40 
weeks. These results showed that TAK1 inhibition can have long-term protective effects in NOD mice. 
As an aside, we also found that OZ treatment reduced glucose levels of nonfasted diabetic mice. We 
also observed that the effectiveness of TAK-1 inhibition was dependent on viable islet mass in the early 
stage of diabetes; we found no efficacy of OZ if diabetic mice had no or very few remaining islets prior 
to treatment (data not shown).

Figure 2.  Impact of TAK1 inhibitor on spontaneous diabetes onset in female NOD mice. Spontaneous 
autoimmune diabetes onset was evaluated in female NOD mice exposed to either 15 μ g/mouse/week OZ, 
30 μ g/mouse/week OZ, or PBS treatment starting at age 8 weeks up to age 11 weeks. (a) Expression level of 
t-TAK1 protein in immune organs and pancreas from 8, 17 or 25-week-old NOD mice. (b) TAK1 inhibitor 
delayed the onset and decreased the incidence of autoimmune diseases in NOD mice. (c) Glucose tolerance 
of non-diabetic NOD mice at age of 12 weeks. Glucose was measured in blood from the tail vein at 0, 30, 
60, 90, 120, 180 min after glucose administration. (d) Representative images of pancreatic islets from 13 and 
20-week-old NOD mice. (e,f) Distribution of insulitis scores at age of 13 weeks and 20 weeks. Scoring scale: 
0, no insulitis; 1, peri-insulitis; 2, < 50% invasive islet damage; and 3, > 50% islet mass destroyed. Average 
percentages of insulitis were determined from 50 to 100 islets in each treatment group. Data represent the 
mean ±  SD (n= 6 in each group). *P <  0.05, **P <  0.01 for Control vs. OZ (15 μ g or 30 μ g/mouse)
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TAK1 inhibition reduces insulitis and preserves islet function.  We next examined whether ame-
lioration of the diabetic state with the TAK1 inhibitor was associated with reduced insulitis and improved 
islet function in NOD mice. Examination of islet infiltration after drug administration showed that the 
percentage of severely infiltrated islets (score =  3) in diabetic mice treated with OZ for 4 weeks was sig-
nificantly reduced compared to islets of untreated mice (Fig. 2d–f). The OZ-treated NOD mice thus had 
significantly more islets free of mononuclear cell infiltration than did the control mice. Intraperitoneal 
glucose tolerance test (IPGTT) assays revealed improved glucose tolerance 2 weeks after OZ treatment 
of prediabetic mice (Fig. 2c), consistent with reduced insulitis and preserved islet function.

To determine the extent of apoptosis in β  cells, sections were stained for TUNEL, insulin, and PCNA 
(proliferating cell nuclear antigen). The number of apoptotic cells was higher in NOD mice treated with 
PBS at 13 weeks of age than in sections from OZ-treated mice (Fig. 3). TUNEL-positive β  cells in PBS- 
and OZ-treated (30 μ g/mice) NOD mice were 67.0  ±  6.71% and 29.0 ±  6.46%, respectively. As a result, 
TAK1 inhibition in NOD mice caused a 48.1% decrease in the relative number of apoptotic β  cells. To 
examine the proliferation of pre-existing β  cells, we evaluated the PCNA of β  cells by staining for PCNA. 
The PCNA of 13-week-old OZ-treated mice (2.56 ±  0.48%) was significantly higher than that of control 
mice (0.92 ±  0.27%) (Fig. 3a,b).

AAT, a naturally-occurring anti-inflammatory glycoprotein, may be beneficial in T1DM by protect-
ing residual β  cell function and mass and by exerting anti-inflammatory effects29,30. We detected α 1- 
antitrypsin (AAT) in serum and in supernatants of DCs in diabetic mice. AAT secreted by DCs from 
OZ-treated NOD mice as well as AAT levels in serum were elevated compared with PBS-treated DCs, 

Figure 3.  TAK1 inhibition protects β cells. OZ was administered to 8-week-old female NOD mice at doses 
of 15 μ g or 30 μ g/mouse once a week for 4 weeks, respectively. Pancreata were removed at age of 13 weeks. 
(a,b) Immunostaining for insulin, proliferation and apoptosis on spontaneous diabetes onset in female NOD 
mice. In the pancreas of OZ-treated NOD mice, islets were larger, insulin-positive cells were more, and 
apoptotic β  cells was significantly lower than those in the PBS-treated mice. (c) Effects of TAK1 inhibition 
on AAT secretion in DCs’ supernatants and serum. Cell supernatants and serum were collected, and AAT 
levels were measured by ELISA. Data represent the mean ±  SD (n =  6 in each group). *P <  0.05, **P <  0.01 
for Control vs. OZ (15 μ g or 30 μ g/mouse)
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consistent with a protective effects of OZ on β  cell function. The results indicated that preserved islet 
function produced by the TAK1 inhibitor was associated with an elevated production of AAT (Fig. 3c).

TAK1 inhibits NF-κB and JNK/AP-1 signaling pathways.  Levels of TAK1 and downstream sign-
aling molecules were quantified by western blotting analysis in spleen, thymus, and pancreatic tissues of 
PBS- and OZ- treated NOD mice (Fig. 4). OZ treatment significantly interfered with TAK1 expression 
and TAK1 activation in immune organs and pancreatic tissues compared with PBS-treated mice. The 
TAK1 inhibitor dramatically inhibited the inflammatory NF-κ B signaling cascade, as evidenced by the 
elevated expression levels of the protease-sensitive inhibitor Iκ Bα . In all immune organs and pancreatic 
tissues, the TAK1 inhibitor reduced levels of NF-κ B which led to accumulation of substantial amounts of 
total Iκ Bα , reflecting the effective shut-off of inflammatory NF-κ B-dependent signals. JNK/AP-1 path-
way activation also seemed to be markedly inhibited by the TAK1 inhibitor, as evidenced by reduced total 
and phosphorylated JNK kinases and AP-1 in comparison with levels in the PBS-treated NOD mice. As 
AP-1 activation is regulated by phosphorylation of JNK, which belongs to the MAPKs, lower expression 
of JNK resulted in failure of AP-1 induction.

TAK1 inhibition elicits a Th1 to Th2 cytokine shift.  It has been previously reported that the path-
ogenic activity of autoreactive diabetogenic T cells in NOD mice can be inhibited if cytokines shift from 
a Th1 (primarily TNF-α , IFN-γ ) to a Th2 (primarily IL-4 and IL-10) profile31. To examine whether a 
Th1 to Th2 cytokine shift happened in NOD mice after injection of TAK1 inhibitor, cells were isolated 
from spleen of NOD mice at 13 weeks of age previously treated from 8 to 11 weeks of age with PBS or 
OZ (15 μ g or 30 μ g/mouse). We analyzed TNF-α , IFN-γ , IL-4 and IL-10 secretion in NOD mice after 
TAK1 inhibitor treatment, focusing on cultured T lymphocytes supernatants (Fig. 5a–d). OZ treatment 
significantly reduced Th1 cytokine IFN-γ  and TNF-α , and increased Th2 cytokine IL-4 and IL-10, con-
sistent with a Th1 to Th2 cytokine shift in spleen.

TAK1 inhibition alters DCs and Tregs percentage and characteristics in vivo.  To establish 
whether effects of OZ on immunosuppression were related to a modification of Tregs frequency or char-
acteristics, we quantified their proportion in the spleen, thymus and lymph nodes of 13-week-old NOD 
mice. Administration of OZ for 4 weeks induces major changes in frequencies of CD4+ T cells in lym-
phoid tissues. OZ also increased expression of CD4+CD25+Foxp3+Tregs in a dose dependent manner 

Figure 4.  TAK1 regulates the activation of NF-κB and JNK signaling in NOD mice. Thymus, spleen 
and pancreas from 13-week-old NOD mice treated with OZ for 4 weeks were used to analyze expression of 
t-TAK1, p-TAK1, NF-κ B, Iκ Bα , t-JNK, p-JNK and AP-1 by western blotting, which were all normalized to 
control. Data are representative of three independent experiments. Data represent the mean ±  SD (n =  6 in 
each group). *P< 0.05, **P <  0.01 for Control vs. OZ (15 μ g or 30 μ g/mouse)
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(Fig. 6a–c and Supplementary Fig. S5–6 online) as well as the production of TGF-β 1 in T lymphocytes 
supernatants as well (Fig. 6d).

TAK1 inhibition did not affect the differentiation of DC precursors into myeloid DCs ex vivo. Myeloid 
DCs were generated from mouse BM cells (lineage depleted) cultured with GM-CSF plus IL-4. The cell 
surface expression of CD11 reached about 90% by 7 days in both the control and the TAK1 inhibitor 
group. However, the TAK1 inhibitor did suppress MHC class II (I-Ak) and CD86, both markers of DC 
maturity (Fig. 7a–c). DCs from NOD mice treated with either OZ or PBS stimulated T cells as quanti-
fied by the mixed leukocyte reaction (MLR). In contrast, OZ-treated DCs impaired T cells proliferation, 
indicating that the stimulatory capacity of DCs assessed by allogeneic MLR was significantly inhibited 
(Fig. 7e).

Supernatants of DCs were then used to measure levels of cytokine IL-12p70. As predicted by their 
low surface levels of MHC-II and costimulatory molecules, IL-12p70 production by DCs isolated from 
OZ treated mice was also decreased significantly below control levels (Fig. 7d). Collectively, these data 
provide evidence that TAK1 inhibition alters DCs such that they remain immature for longer periods, 
and exhibit lower T cell stimulating capability, leading to immunosuppression in T1DM.

TAK1 inhibition reverses T1DM in cyclophosphamide-accelerated diabetes.  Administration 
of high-dose cyclophosphamide (CY) to prediabetic NOD mice leads to rapid synchronous onset of 
T1D32,33. This is associated with cytotoxicity in a number of lymphoid populations including B cells, 
and reductions in numbers of CD4+CD25+Foxp3+ regulatory T cells. In keeping with previous study, 
CY treatment here accelerated diabetes in NOD mice within 14 days. Prior treatment of with the TAK1 
inhibitor delayed and reduced the incidence of CY-induced diabetes in a dose dependent manner. A sin-
gle dose of CY induced diabetes in 83% of untreated mice. Administration of 15 μ g or 30 μ g/mouse OZ 
once a week, starting 1 week prior to CY treatment, resulted in a sizable and dose-dependent reduction 
in the incidence of diabetes. Only 58% and 41% of the animals developed the disease after treatment 
with the lower and higher OZ doses (Fig. 8).

Discussion
In this study, TAK1 inhibition with OZ was associated with a significantly reduced incidence of autoim-
mune diabetes in both spontaneous and accelerated (CY-induced) NOD mouse models. OZ treatment 
(30 μ g/mouses) decreased the incidence of diabetes by over 40% in both models. Our data also suggest 
that treatment with the TAK1 inhibitor induced long-term tolerance, since reduced inflammation and 

Figure 5.  TAK1 inhibitor elicits a Th1 to Th2 cytokine shift. Cells were isolated from spleen of NOD mice 
at 13 weeks of age previously treated from 8 to 11 weeks of age with PBS, or OZ (15 μ g or 30 μ g/mouse). 
Then cells were cultured for 3 days in 96-well culture plates coated with 3 μ g/mL anti-CD3/CD28 antibodies. 
Supernatants were assayed for TNF-α , IFN-γ , IL-4 and IL-10 production by ELISA. Data are representative 
of three independent experiments. The results of duplicate cultures are expressed as mean ±  SD (n =  6 in 
each group). *P <  0.05, **P <  0.01 for Control vs. OZ (15 μ g or 30 μ g/mouse)
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islet protection were found after treatment remission for four weeks. The reversal did not require con-
tinuous TAK1 blockade, which may have been detrimental for the immune system and even for β -cell 
function. The protective effect of TAK1 inhibition was not unexpected, because TAK1 is indispensable 
for cellular responses to Toll-like receptor ligands, CD40, and B cell receptor crosslinking, all potentially 
implicated in immune-related pathological processes including T1D15,16.

TAK1 is considered to be a critical regulator of stress responses, immunity, and inflammation; all 
of these actions are mainly mediated by the downstream pathways p38 MAPK, JNK, extracellular sig-
nal–regulated kinases (ERK)-1 and ERK2, and NF-κ B p6526. NF-κ B is sequestered in the cytoplasm as 
an inactive complex with inhibitors of NF-κ B (Iκ B). With the phosphorylation and degradation of Iκ B, 
the p65 subunit of NF-κ B translocates into the nucleus where it activates transcription of TNF-α  and 
IL-1β  genes34,35. The JNK/AP-1 signaling pathway acts as a multifunctional regulator of cell survival as it 
functions as a stress-related inducer of programmed cell death in many tissues36,37. Recently, it has been 
confirmed that the role of NF-κ B and JNK/AP-1 pathways are implicated in the pathogenesis of T1D. 
Induction of NF-κ B is pro-apoptotic in pancreatic β  cells and JNK activation in pancreatic β  cells leads 
to glucose intolerance38,39. Thus, in line with previous study, our results here indicates that TAK1 inhibi-
tion blocks JNK and NF-κ B activation in immune organs and pancreatic tissues, effectively shutting off 
inflammatory NF-κ B - and JNK - dependent pathways.

Figure 6.  TAK1 regulates Tregs generation and function. T cells were isolated from spleens using standard 
procedures from 13 week-old NOD mice treated with 15 μ g, or 30 μ g/mouse OZ once a week from 8 until 
11 weeks of age. (a) Flow cytometry of T cells population in NOD mice. Cells were stained with CD4, 
CD25 and Foxp3. (b,c) The proportion of T cells populations in NOD mice. (d) T cells suspensions were 
prepared and cultured for 3 days in 96-well culture plates coated with 3 μ g/mL anti-CD3/CD28 antibodies. 
Supernatants were assayed for TGF-β 1 production in T cells by ELISA. Data are representative of three or 
four independent experiments. Each symbol represents one mouse. The results of duplicate cultures are 
expressed as mean ±  SD (n =  6 in each group). *P <  0.05, **P <  0.01 for Control vs. OZ (15 μ g or 30 μ g/
mouse)
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Enhanced antigen presentation cell (APC) function due to elevated NF-κ B activation correlates 
with the progression of autoimmune diabetes in NOD mice40. Here, we report that inhibition of TAK1 
down-regulated CD86 and MHC-II expressions in DCs, resulting in low levels of the proinflammatory 
cytokine IL-12p70. In vitro, blockade of TAK1 inactivated NF-κ B and JNK/AP-1 signaling pathways, 
leading to apoptotic death of mature DCs. As professional antigen-presenting cells, DCs are important 
for the induction of both adaptive immunity and tolerance41. Tolerogenic DCs exhibiting low expres-
sions of CD80, CD86, CD40, MHC-II are beneficial for T1DM42. Elevated NF-κ B activation results 
in an overall enhanced APC function of DCs in NOD mice40. Thus, the ability of TAK1 inhibition to 
down-regulate TAK1-dependent pathways may help to explain the observed reductions in diabetes inci-
dence and preserved islet function in OZ-treated NOD mice. These results are consistent with those of 
previous reports showing that deficiency of TAK1 in dendritic cells from lymphoid and nonlymphoid 
tissues affects immune homeostasis by disrupting T cell homeostasis and preventing effective T cell 
priming and generation of regulatory T cells25.

Figure 7.  TAK1 regulates DC maturation and function. Bone marrow cells were obtained from 13-week-
old NOD mice and cultured in 1 ×  106 cells/mL RPMI-1640 containing 10% heat-inactivated FBS in 
6-well plates with mouse GM-CSF mouse IL-4. One day 7, cells purified and stained with CD11c, MHC-II 
and CD86. And supernatants were assayed for IL-12p70 production by ELISA. (a) Flow cytometry of 
DCs populations in NOD mice. (b,c) The proportion of DCs populations in NOD mice. (d) Expression 
of IL-12p70 in DCs was measured by ELISA. (e) The stimulatory capacity of DCs was checked in MLR, 
OZ-treated DCs impaired T cell proliferation. Allogeneic splenic T cells were stained with diluted 
carboxyfluorescein succinimidyl ester (CFSE) at 5 ×  106 cells/ml for 15 min at 37 °C. DCs from NOD mice 
as stimulators to stimulate allogeneic splenic T cells from NOD mice in 72 h MLR using 24-well plates. 
Data are representative of three or four independent experiments. Each symbol represents one mouse. Data 
represent the mean ±  SD (n =  6 in each group). *P <  0.05, **P <  0.01 for Control vs. OZ (15 μ g or 30 μ g/
mouse)
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Treg cells may exert beneficial effects during the development of T1D28. Treg cell maintenance inhib-
its the progression of autoimmune responses at least in part by interfering with the function of DCs, 
the only major APC subset involved in activating T lymphocytes responses to self-antigen43. In the 
NOD mouse, DC-expanded, islet-specific Tregs conferred protection and restored normoglycemia in 
overt diabetes44. Although a previous study indicated that TAK1 in DCs mediated the induction of 
antigen-specific iTreg cells both in vivo and in vitro25, we report here an increase in Foxp3+ Tregs was 
associated with elevated levels of TGF-β 1 in NOD mice after OZ treatment. Treg cells also inhibit the 
expression of CD86 and CD80 costimulatory molecules on DC by down-regulating the activation of 
NF-κ B, and this effect also requires TGF-β 145. TGF-β 1 negatively modulates DC maturation and favors 
the differentiation of tolerogenic DC46. Therefore, Treg cells appear to act on immature DCs to block the 
up-regulation of costimulatory molecules such as CD80 and CD8647. In feedback fashion, tolerogenic 
DCs, through enhanced production of IDO, subsequently promote Treg cell differentiation and expan-
sion46. TGF-β 1 is a stimulator of TAK1 signaling, which would be expected to exacerbate disease in NOD 
mice. This did not occur in this study, perhaps because immunological tolerance had been established 
after short-term OZ treatment. To investigate this possibility further, we measured changes of TGF-β 1 
during OZ treatment and found that levels of TGF-β 1 decreased during the first three weeks after treat-
ment, but began to increase beginning after the fourth week (data not shown). These results indicated 
that increased TGF-β 1 levels contributed to the establishment of immune tolerance subsequent to OZ 
treatment. Thus, TAK1 inhibition by OZ treatment may have been protective against diabetes in NOD 
mice in part by promoting immunosuppressive interactions between Tregs and DCs.

Importantly, TAK1 inhibition with OZ inhibited systemic and islet inflammation, as evidenced by 
decreased lymphocytic infiltration and proinflammatory cytokine production. Systemic TAK1 blockade 
led to significantly impaired production of Th1-type cytokines (TNF-α , IFN-γ ) and increased Th2-type 
cytokine (IL-4 and IL-10) secretion from T cells in NOD mice. These findings may represent a novel role 
of TAK1 in immune-mediated inflammatory disorders.

Apart from balancing immune responses to reverse diabetes, blockade of TAK1 also preserved β  cell 
function. We found that the reversal of diabetes after treatment with OZ was primarily due to decreased 
β  cell death rather than inhibited growth of new cells. When administered to NOD mice at age 15 
weeks, OZ did not reverse diabetes (data not shown). This suggested that residual β  cells need to be 
present for OZ to be effective. When administered to 8-week-old prediabetic NOD mice, OZ delayed 
the onset and reduced the incidence of autoimmune diabetes. This protective effects was associated with 
a 48.1% decrease in apoptotic β  cells. OZ treatment of younger NOD mice also reduced insulitis in 
islets and preserved insulin-positive islets. OZ treatment also increased levels of AAT both in blood 
and in supernatants of DCs. AAT, an acute-phase reactant with serine proteinase inhibitor, possesses 
anti-inflammatory and anti-apoptotic effects48.AAT also exerts cytoprotective effects upon islets in vitro 
and preserves residual β  cell function in NOD mice29,30. Thus, inhibition of TAK-1 seems to decrease the 
severity and incidence of diabetes in NOD mice at least in part by promoting the levels and actions of 
the antiinflammatory cytokine AAT and consequently enhancing the survival of β  cells.

It has been reported that TAK1 negatively regulated NF-κB and p38 MAPK activation in Gr-1+CD11b+ 
neutrophils26, In contrast, we demonstrated here that TAK1 was a key regulator of T1DM whose inhibi-
tion delayed and reduced the incidence of diabetes by alleviating insulitis and preserving islet function. 
Inhibition of TAK1 also induced Tregs and immature DCs in secondary lymphoid organs. The net effect 
of TAK1 inhibition in NOD mice thus appears to be protective rather than disease-enhancing. Strategies 
specifically targeting TAK1 might therefore prove to be useful for the treatment of autoimmune diabetes 
without suppressing immune responses peripherally.

Figure 8.  TAK1 inhibitor delays the onset and decreases the incidence of autoimmune diseases in 
CY-accelerated NOD mice. Accelerated autoimmune diabetes onset was studied in 9-week-old female 
NOD mice receiving single cyclophosphamide (CY; 200 mg/kg; Sigma-Aldrich) injection intraperitoneally. 
Experimental groups received OZ at doses of 15 μ g or 30 μ g/mouse starting 1 week before CY once a week 
for 4 weeks, respectively. *P <  0.05, compared with PBS-treated NOD mice.
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Materials and Methods
Mice.  Animal experiments were approved by the Institutional Animals Care and Use Committee of 
Tongji Medical College, Huazhong University of Science and Technology. Animal care and experimental 
procedures were carried out in accordance with the guidelines of the Institutional Animal Care and Use 
Committee of Tongji Medical College and the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals. Female NOD/ShiLtJ mice and C57BL/6 mice were purchased from Beijing HFK 
Bio-Technology Co. Ltd. and kept in a specific pathogen-free environment.

TAK1 inhibitor (OZ) administration in NOD mice.  Spontaneous autoimmune diabetes was eval-
uated in female NOD mice exposed to either 15 μ g/mouse/week OZ, 30 μ g/mouse/week OZ, or PBS 
treatment starting at age 8 weeks up to age 11 weeks, each group had 12 mice.

At the end of the 4-week treatment period, 6 mice per group (13-weeks old) were randomly selected 
for determining cytokine levels, histopathological insulitis, DCs surface molecules and immunostimula-
tory function, the percentage of CD4+CD25+Foxp3+ Tregs, and TAK1 expression. The remaining 6 mice 
per group were fed until 40 weeks of age for diabetes incidence studies. Nonfasting blood glucose was 
measured every week with an Easy Check monitor (Home Aide Diagnostics, Deerfield Beach, FL) begin-
ning at age of 10 weeks. Mice were considered diabetic when blood glucose concentrations exceeded 
250 mg/dL on two consecutive determinations.

Intraperitoneal glucose tolerance test (IPGTT).  IPGTT analyses were performed in age-matched 
NOD mice including spontaneous NOD mice and OZ-treated spontaneous NOD mice at 12 weeks of 
age. Food was withheld 16 h before testing. Animals were weighed and blood glucose concentrations 
were measured just before injection with 2 g/kg of glucose (i.p.). Glucose concentrations were measured 
at 30, 60, 90, 120, 180 min after glucose injection.

Insulitis score and immunohistochemistry analysis.  Pancreata from NOD mice treated with OZ 
or PBS for 4 weeks were removed at age 13 weeks. They were fixed in 10% formalin, embedded in par-
affin, and stained with hematoxylin and eosin (H&E). Insulitis score was assigned under double-blinded 
conditions and the degree of insulitis was determined (0 =  no insulitis; 1 =  periinsulitis; 2 =  invasive 
insulitis with < 50% islet area affected; 3 =  invasive insulitis with > 50% islet area affected). Average per-
centages of insulitis were determined from 50 to 100 islets in each treatment group.

Other sections were stained for insulin and TAK1 using anti-insulin and anti-TAK1 antibody, visu-
alized with diaminobenzidine. Apoptotic and proliferated cells in pancreatic islets were determined by 
terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and proliferating cell 
nuclear antigen (PCNA) staining. The level of apoptotic or proliferated cells was expressed as the number 
of TUNEL or PCNA-positive cells per area of pancreatic islets (cells/mm2).

Generation of DCs from bone marrow.  Bone marrow cells were obtained from 13-week-old NOD 
mice which were treated with OZ or PBS for 4 weeks and cultured in (1 ×  106 cells/mL) in RPMI-1640 
medium containing 10% heat-inactivated fetal bovine serum (FBS, Gibco, USA), 100 U/ml penicillin and 
100 ug/ml streptomycin (Gen-view Scientific Inc., USA) in 6-well plates with 20 ng/mL mouse granulo-
cyte macrophage-colony stimulating factor (mGM-CSF, Signalway Antibody LLC, USA), and 10 ng/mL 
mouse interleukin (IL)-4 (Signalway Antibody LLC, USA). On day 7, the cells were washed thoroughly 
and CD11c+DC was purified to > 90% using anti-CD11c immunomagnetic beads (Miltenyi Biotec, 
Bergisch Gladbach, NRW). Supernatants were assayed for AAT and IL-12p70 production by ELISA.

Generation of T cells.  T cells were isolated from the spleen, thymus and lymph nodes of control, 
OZ-treated NOD mice by anti-CD4 immunomagnetic beads (Miltenyi Biotec, Bergisch Gladbach, NRW). 
T cells (2 ×  105) were cultured for 3 days in 96-well culture plates coated with 3 μ g/mL anti-CD3/CD28 
antibodies. Transforming growth factor (TGF)-β 1, interferon (IFN)-γ , IL-4, IL-10 and tumor necrosis 
factor (TNF)-α  production were assayed in culture supernatants using ELISA.

Mixed leukocyte reaction (MLR).  DCs from NOD mice as stimulators were treated with 0.5 mg/mL  
mitomycin C to prevent proliferation, and then stimulated with allogeneic T cells labeled for 20 min with 
5-carboxyfluorescein diacetate succinimidyl ester (CFSE; 2 μ M; Sigma, USA) from NOD mice in 72 h 
MLR using 24 well rounded bottom plates as described previously.

Protein analysis.  Cells or tissues were lysed in Radio-Immunoprecipitation Assay (RIPA) buffer. 
Lysates were separated by SDS-polyacrylamide gels (SDS-PAGE) and were transferred onto polyvi-
nylidene difluoride (PVDF) membranes (BioRad). After membranes were incubated with primary anti-
bodies overnight at 4 °C, appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies 
were applied for 1–2 h at room temperature, prior to detection with an enhanced chemiluminescence 
system (Perkin-Elmer). Polyclonal antibody to anti-TLR4, anti-TAK1, anti-p-TAK1 (Ser 192), anti-JNK, 
anti-p-JNK (Thr 183/Tyr 185), anti-NF-κ B p65, anti-Iκ Bα , anti-AP-1 were purchased from Santa Cruz. 
Biotechnology. Densitometric analyses of protein abundance were determined by Image J software and 
the amount of protein expression was normalized against β -actin added to the same sample.
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Flow cytometry analysis.  Cells suspensions were prepared from spleen, thymus or lymph nodes of 
NOD mice, previously treated with OZ or PBS for 4 weeks, using standard procedures. DC single-cell 
suspensions were prepared from bone marrow following standard procedures. Single-cell suspensions 
were stained with antibodies against the following cell surface antigens: fluorescein isothiocyanate 
(FITC)-conjugated anti-CD86, allophycocyanin (APC)-conjugated anti-CD11c and phycoerythrin 
(PE)-conjugated anti-MHC-II (eBioscience, USA); w/PE-Cy5 Foxp3, FITC-CD4, PE-CD25 (eBiosci-
ence, USA). Analysis was performed on a BD LSRII flow cytometer with FACSD via software (BD 
Pharmingen). Postacquisition analysis was performed with Flowjo software version 9.1.

Cytokine quantification.  Supernatants from spleen T cell or DC cultures and serum from OZ-treated 
NOD mice or control mice were stored until quantification of mouse IL-4, IL-10, IL-12p70, TGF-β 1, 
IFN-γ , TNF-α , α 1-antitrypsin (AAT) using specific quantitative enzyme-linked immunosorbent assay 
(ELISA) kits (eBioscience, USA).

Accelerated experiment.  Nine-week-old female NOD mice were randomly divided into 3 groups of 
12 animals in each group. Accelerated autoimmune diabetes onset was studied in NOD mice receiving a 
single cyclophosphamide (CY; 200 mg/kg; Sigma-Aldrich) injection intraperitoneally (i.p.). Experimental 
groups received TAK1 inhibitor -OZ- starting 1 week before CY. OZ was administered to NOD mice 
at doses of 15 or 30 μ g/mouse once a week for 4 weeks. The development of diabetes was monitored 
according to above description.

In vitro assays.  To study the effect of OZ on DCs in vitro, DCs were generated from bone marrow 
cells of C57BL/6 mice as above. DCs were treated with GM-CSF and IL-4 from the first day. On day 7, 
cells were stimulated with fresh medium containing lipopolysaccharide (LPS; Sigma-Aldrich; 1 μ g/mL) 
for 24 h, then cells were treated with either DMSO vehicle or 5 μ M OZ for 4 h before subsequent experi-
ments. FITC annexin V/PI staining was used to detect the stimulation-induced apoptosis in OZ-treated 
DCs by FACS analysis. To detect effects of OZ on maturity and survival of DCs, single-cell suspensions 
were stained with antibodies against the following cell surface antigens: FITC-conjugated anti-CD86, 
APC-conjugated anti-CD11c and PE-conjugated anti-MHC-II (eBioscience, USA). Western blotting was 
used to analyze TLR4-induced signal transduction in DCs. The cells were treated with 1 μ g/ml LPS for 
24 h.

To evaluate the effect of OZ on Tregs generation in vitro, T cells from spleen, thymus and lymph 
nodes of C57BL/6 mice were isolated by anti-CD4 MACS. Then T cells (5 ×  105) were cultured for 72 h 
in 6-well culture plates supplementary with 3 μ g/mL anti-CD3/CD28 antibodies, and cells were treated 
with either DMSO vehicle or TAK1 inhibitor (OZ, 5 μ M) for 4 h before subsequent experiments. Mouse 
Regulatory T cell Staining Kit (w/PE-Cy5 Foxp3 FJK-16s, FITC CD4, PE CD25; Treg Kit) was used to 
detect regulatory T cells according to the manufacturer’s instructions, and then analyzed for the per-
centage of CD4+CD25+Foxp3+ Tregs by flow cytometry. Foxp3 mRNA level of T cells were determined 
by qRT-PCR.

Cytotoxicity test.  T cells and bone marrow-derived DCs were obtained from C57BL/6 mice as above 
description. Then DCs or T cells were incubated with 0–100 μ M OZ for 12 h and its cytotoxicity was 
measured using a Cell Counting Kit-8 (Dojindo Inc., Rockville, MD).

RNA analysis in vitro.  Total RNA was isolated from prepared T cells and DCs using MagZol reagent 
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. Quantitative real-time PCR 
was carried out in an ABI 7900 real-time PCR system, with all target gene primers purchased com-
mercially (Applied Biosystems). Cycling conditions were as follows: polymerase activation at 95 °C for 
10 min, 40 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C for 20 s and extension at 72 °C for 
30 s. Results were analyzed using SDS 2.4 software (Applied Biosystems). mRNA levels of target genes 
were normalized to those of β -actin. All experiments were repeated 4 times per specimen with consistent 
results.

Statistical analysis.  Data were expressed as the mean ±  standard deviation (S.D.). Each data point 
presented in scatter plots was from a single mouse. Statistical analysis was performed using SPSS soft-
ware, Version 13.0. Survival curves were compared by Kaplan Meier log-rank test. One Way ANOVA 
followed by Bonferroni’s post-hoc test (for parametric data) or Kruskal-Wallis test with Dunn’s Multiple 
Comparison post-test (for nonparametric data) were used to evaluate differences between groups. Results 
were considered statistically significant if P <  0.05.
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