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Abstract

Several factors, including advances in computational algorithms, the availability of high-performance computing hardware, and the
assembly of large community-based databases, have led to the extensive application of Artificial Intelligence (AI) in the biomedical
domain for nearly 20 years. AI algorithms have attained expert-level performance in cancer research. However, only a few AI-based
applications have been approved for use in the real world. Whether AI will eventually be capable of replacing medical experts has been
a hot topic. In this article, we first summarize the cancer research status using AI in the past two decades, including the consensus on
the procedure of AI based on an ideal paradigm and current efforts of the expertise and domain knowledge. Next, the available data
of AI process in the biomedical domain are surveyed. Then, we review the methods and applications of AI in cancer clinical research
categorized by the data types including radiographic imaging, cancer genome, medical records, drug information and biomedical
literatures. At last, we discuss challenges in moving AI from theoretical research to real-world cancer research applications and the
perspectives toward the future realization of AI participating cancer treatment.
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Introduction
Artificial Intelligence (AI) has been applied extensively to
tasks in medical specialties [1]. The advent of AI tech-
nologies to basic biology, pharmacology and medicine
have led to multiple performance breakthroughs and
achieved performance comparable to human experts in
some areas [2]. In a survey about the effect of AI, AI is
expected to have a significant impact on many activities
in areas such as health and science, and there is a 50%
chance of AI outperforming human being in all tasks in
45 years [3].

Early AI approaches were dominated by traditional-
symbol-based and information-based expert systems.
Subsequently, the emergence of machine learning (ML)
brought revolutionary progress to AI. ML, as a traditional

AI technology, provides a plethora of algorithms that
can improve the determination or prediction accuracy
with abundant, high-quality data [4]. Deep Learning
(DL) is a type of algorithms developed using neural
network models to solve problems that are challenging
to solve with traditional ML. Since the first application
in image recognition in 2012 [5], DL has become the de
facto approach for the analysis of computer vision and
has been greatly improved in the accuracy of image
recognition ever since [1]. DL approaches are classified
based on the architecture, type of layers, updating
algorithms of connecting weight, feedback mechanism,
etc. The most common DL models are deep neural
networks (DNNs) [6], convolutional neural networks
(CNNs) [7] and recurrent neural networks (RNNs) [8].
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Over the past two decades, AI has regained its popular-
ity and shown promises across all dimensions of cancer
research along the explosion of digital information. With
the rapid growth of the variety and volume of data sets, a
large amount of molecular-level tumor information from
cancer patients can be readily acquired. The mission of
many public databases is to enable the data sharing
across cancer studies in support of precision medicine.
For example, The Cancer Genome Atlas (TCGA) [9], a
widely used public database for cancer research, char-
acterizes over 20 000 cancer samples spanning 33 cancer
types and generates various types of data and resources,
including genomic data and digital slide repository. More-
over, the development of high-performance computing
hardware, such as graphical processing units (GPUs), has
provided the parallel processing power for AI algorithms
in numerically intensive computations, e.g. multiple lay-
ers of abstraction and millions of computing nodes. As a
result, AI excels at handling large volumes and complex
data, and identifying characteristic from the data, which
the human brain cannot recognize.

Although AI has been rapidly incorporated into onco-
logic research, the development of AI solutions is still in
its infancy. Only a few AI-based applications have been
approved for use in practice, e.g. hospitals, pharmaceu-
tical companies, etc. It is still under debate whether AI
is capable of replacing medical experts as professionals.
Much of the popular discussion of AI focuses on progress
so far in AI application for cancer clinical research areas.

Consequently, research of AI applications has acceler-
ated and attained performance comparable to human
experts in the biomedical field. Furthermore, AI will
equip human experts with more information in decision-
making and become an essential component of the
medical team. This review provides an overview about
the key concepts of AI in cancer clinical research,
including clinical research status using AI in past
two decades, available data, techniques and current
applications. We describe the challenges faced in the
translation of AI from theoretical studies to real-world
clinical use. We hope to provide future perspectives to
help drive meaningful investigations that will ultimately
realize actual participation of AI in cancer treatment.

Cancer clinical research status using AI in
the past two decades
AI has been used in cancer research for nearly 20 years.
Significant advances in cancer research have begun to
show promise, and expert-level performance has been
reached [1]. There are thousands of papers on cancer
clinical oncology by AI models, and some key studies cov-
ered in this Review are listed in Supplementary Table S1
available online at http://bib.oxfordjournals.org/. Fur-
thermore, multiple companies and industry research
groups have joined in using AI to detect, diagnose and
treat cancer. IBM is the first company to make a major
push to bring AI to the clinic. In 2014, IBM developed

Watson to provide medical AI for cancer research
[10]. Likewise, at Microsoft’s research labs, a group of
computer scientists and researchers are trying to use
ML and Natural Language Processing (NLP) to program
biology for cancer treatment [11]. As a result, AI is
poised to make practice-changing impacts on improving
accuracy and speed of diagnosis, assisting treatment
options suggestions and recommendations, and leading
to better prognosis outcomes (Figure 1).

Consensus on AI process in the cancer
clinical research
Although some expect AI can replace human experts in
diagnostic imaging, treatment decision making, etc., AI
has only played a role in adjuvant medicine. Today, AI
needs to address many issues in the development and
validation of solutions in the cancer research domain.
The potential of AI can primarily be confirmed in care-
fully designed experiments. Hence, an ideal schema will
benefit improving practices of AI solutions.

Before beginning AI solution, it is critical to define and
characterize the issues to be addressed, and anticipate
whether it can be solved (or is worth solving) by AI
[43]. Many clinical data exhibit an unbalanced natural
distribution of samples between different classes. The
unbalanced feature may create a challenge for classifica-
tion algorithms that are generally designed for balanced
classes. The simplest re-sampling methods are random
over-sampling and random under-sampling. The former
augments the minority class by duplicating the samples
in the minority class, while the latter randomly deletes
some samples in the majority class [44]. To get an unbi-
ased assessment of AI model, all the available data are
divided into three parts, i.e. training set, validation set
and testing set. The proportion common is 60–70, 15–20
and 15–20%. Training dataset is used to train the model;
verification dataset is used to adjust parameters and
select features; and testing dataset is used to evaluate
the performance of the trained AI model.

Not all of these features are helpful for AI model
computing, while some noisy or irrelevant features may
negatively impact the performance of the classifier. Fea-
ture selection can assign values regarding which features
are most important for identifying favorable bioactivity.
Many methods are available for feature selection—t-test,
false discovery rate (FDR), recursive feature elimination
(RFE), Z-score, Wilcoxon, etc. Cross-validation is a valida-
tion technique used to evaluate an AI model on limited
samples. A given dataset is randomly split into K groups,
and one group is set for testing, and the remaining K − 1
groups are used for training. So, the procedure is often
called K-fold cross-validation. A loss function or cost
function can simply measure the absolute difference
between the prediction result and the real value and
represent some ‘cost’ associated with the event.

Choosing the most appropriate model could maximize
the chances of success in AI solution. There are three
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Figure 1. An overview of AI applications used in the clinical research of cancers. Within each data domain, there are still challenges related to the
standard of data quality and normalization of AI models.

common types of models that are used in AI: supervised
learning, unsupervised learning and semi-supervised
learning, as depicted in Figure 1. Supervised learning
can predict one or more targets associated with a
given label, typical applications including regression
and classification. Regression is the task of predicting a
continuous real number while classification is the task of
predicting a discrete class label. Popular regression algo-
rithms include decision tree, linear regression, K-nearest

neighbors (KNN), support vector regression (SVR). Mean-
while, popular classification algorithms include random
forest, logistic regression, naive Bayes and support vector
machines (SVM). There is also some algorithmic overlap,
such as neural networks, which can be used for both
classification and regression. In contrast, unsupervised
learning allows the discovery of latent rules or trends
in data, or clustering algorithms, to explore data
collections and correlations among samples [45, 46].
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Typical unsupervised learning methods include hierar-
chical clustering, affinity propagation, hidden Markov
model, k-means clustering and density-based spatial
clustering of application with noise (DBSCAN). Never-
theless, semi-supervised learning combines supervised
learning and unsupervised learning, which uses a
large amount of unlabeled data, as well as labeled
data simultaneously, for pattern recognition. Simple
self-training, co-training, label propagation algorithm,
generate semi-supervised models and semi-supervised
support vector machines (S3VM) are all semi-supervised
learning methods. An AI model development is to learn
its parameters and then make accurate predictions or
determinations on unseen data.

The model’s performance is evaluated by various met-
rics [47]. For a two-class problem, common performance
methods include sensitivity, specificity, precision, accu-
racy, Matthew’s correlation coefficient (MCC), F-value
and the area under the curve (AUC). Sometimes, to assess
the generalizability of the performance of AI model, the
model is also applied to the independent validation set to
assess the classifier’s generalizability to new data sets.

Current efforts of the expertise and domain
knowledge
Efforts of the expertise
There is an overall scarcity of expert labels available
for a generate [2]. While raw data can be fed into the
AI models directly, data sets still require manual anno-
tation or at least curation [1]. Multiple subject experts
should be involved in data annotation to provide an
accurate assessment of data labels. For example, the
annotation of medical images requires commitments
from clinical experts for extracting region of interests
(ROIs) domains in advance. Sometimes, the results of the
training model also need qualitatively evaluated by the
experts for adjusting the hyperparameters of the model.
In particular, rare cases, which are very important in
cancer research, need human experts to recognize ben-
efiting from their training and experience. For instance,
detecting lung cancer region from hematoxylin and eosin
(H&E)-stained pathology images by AI is very difficult
due to the complexity of lung cancer tissue structures.
It needs human pathologists to circle accurate tumor
boundaries and indicate all the tumor spread through air
spaces (STASs) [48].

Examples of successful cases of expertise and model-
ing the cooperation between AI and experts include work
by Fan et al. [49] and Cha et al. [37], in which cancer lesions
were manually segmented in consensus by experienced
expert radiologists and performances of models were
compared to expert radiologists. This will likely be a
common role for expertise in the near future.

Domain knowledge integration
Causal factors (e.g. relations between clinical events)
often have common determinants at multiple levels.

Integrated knowledge can enhance the quality of AI
research on individual medical events with cancers,
while also paving the way for the interpretability of
AI models. Such integration has the dual advantage
of generating greater knowledge about complicated
mechanisms of cancers, as well as improving our under-
standing of the influences of disparate causal factors.
No existing method dynamically exploits complicated
medical knowledge.

Several successful case studies have now been
published in which different knowledge domains work
together to solve problems from medical practice.
Recent advances using digital pathology images have
been applied productively to imaging tasks (e.g. grad-
ing, prognosis and prediction) across dermatology,
ophthalmology, radiology and histopathology. Nguyen
et al. [50] developed a feasibility study for predicting
optimal radiation therapy dose distributions of prostate
cancer patients from patient anatomy using deep
learning. Mobadersany et al. [51] combined histology with
genomics to improve prognostic accuracy of molecular
subtypes of glioma instead of basing on histology alone.
Esteva et al. [52] demonstrated classification of skin
lesions using CNN on a dataset of 129 450 clinical images.

Structural learning based on bio-networks
Biological networks, such as disease pathway networks,
protein–protein interactions (PPIs) networks, and disease
similarity networks, provide structured knowledge repos-
itories for discovering the interactions and properties of
biological systems [53]. Network approaches have been
used in many tasks with remarkable discoveries in biol-
ogy, including cancer diagnosis, genomic function predic-
tion and drug discovery. Furthermore, these approaches
have shown broad utility in uncovering new biology from
single-cell to population level [53].

AI on graphs is an important and ubiquitous approach
to use graph-structured data as feature information in
classification and regression problems. Graph convolu-
tional neural (GCN) network, one of these approaches,
combines the graph structure with a neural network to
solve biological and chemical problems. Rhee et al. [54]
proposed a hybrid model that integrated two key compo-
nents GCN and relation network (RN) to classify breast
cancer subtype. Li et al. [55] developed a GCN network to
predict the survival rate by rendering the optimal graph
representations of lung and brain carcinoma whole slide
images (WSIs).

Available data of AI process in biomedical
domain
To optimize the desired outcomes, it is important to
understand what kinds of datasets are needed for a
potential utility and how to obtain these datasets. As
shown in Figure 1, the sensitive and useful indicators
or features for cancer research performed with AI
commonly include: (i) radiographic imaging, (ii) cancer
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genome, (iii) medical records, (iv) drug information and
(v) biomedical literature.

Medical imaging techniques can provide a view of
internal activities inside the human body without inci-
sions by doctors, medical practitioners and researchers
[56]. Image scanning methods have an important role
in clinical research of cancers. magnetic resonance
imaging (MRI), computed tomography (CT), ultraviolet,
histopathological slides, X-ray and mammography are
the most common image scanning methods in radiology.
As a result, it is possible that AI could be used to
distinguish disease cases from healthy controls by
extracting information, such as tumor staging, tumor
size, carcinoma localization and so on, from images.

Additionally, genomic analysis has focused on improv-
ing the test accuracy by including more disease rele-
vant characteristics [22] and understanding the relation-
ships between genetic makeups and disease states. Gene
expression signatures may be used in finding potential
biomarkers or therapeutic targets, which can be obtained
from the analysis of DNA microarrays, RNA and tran-
script expression data, and have been demonstrated to be
useful in the classification of cancers at the gene expres-
sion level [33]. Oligonucleotide chips and cDNA arrays are
the two commonly used microarrays [57]. Some popular
high-dimensional cancer microarray datasets, such as
the small round blue cell tumor (SRBCT) dataset [58] and
diffuse large B-cell lymphoma (DLBCL) [59], contain large
number of experimental samples with corresponding
genes expressions. Genomics can use the genetic changes
in the patient’s tumor to determine an adequate treat-
ment plan for precision medicine [4]. Moreover, empow-
ered by the advancement of high-throughput bio tech-
nologies, the numerous novel cancer biomarkers had
been found in body-fluid proteomes [47], such as circular
RNAs (circRNAs) that serve as biomarkers for prostate
cancer and can be detected in urine [60]. Finding the
most discriminative genomic expression across different
stages of cancers is a major challenge for cancer research
in the last few years.

Meanwhile, medical records, e.g. family history, age,
diet, weight (obesity), high-risk habits (smoking, heavy
drinking) and exposure to environmental carcinogens
(UV radiation, radon or asbestos), may be relevant to the
onset and progression of cancer. However, these exist-
ing data for training models are limited and unitary.
Much ongoing clinical information in surgical pathol-
ogy reports can be used to determine the eligibility of
recruited patients for the study. For data science experts
to obtain clinical data is difficult due to lack of oppor-
tunity for clinical practice or needing the approval from
the institute. Additionally, many first-hand clinical data
were hard to incorporate into models because of the diffi-
culty in manual capture. Electronic Health Record (EHR)
data would potentially improve the results of biomedical
research. EHR systems integrate laboratory results, pro-
cedure and radiology reports and clinical narratives, such
as primary care and gastroenterology clinic notes.

Recently, several promising results have been demon-
strated using AI in drug development, drug-target
profiling and drug repurposing/repositioning [32]. Phar-
macodynamic, pharmacokinetic and toxicological can
improve target specificity and selectivity in small-
molecule design of drug. Different data types have
been used in cancer-related drug discovery literature
based on AI. Classical data types include drug chemical
structures, physicochemical properties and molecular
targets [61]. Especially, RNA microarray, single nucleotide
polymorphism (SNP) array, RNA sequencing (RNA-
Seq), reverse phase protein array, exome sequencing
and DNA methylation status are available for finding
biomarker and generating drug sensitivity predictive
models [2]. Existing resource to facilitate the cancer
drug discovery include DepMap [62], Genomics of Drug
Sensitivity in Cancer (GDSC) [63], canSAR [64], Open
Targets [65], TG-GATE [66], drugBank [67] and others.
Using these databases and resources, drug sensitivity can
be correlated and potential biomarkers of drug response
can be provided.

Moreover, the biomedical literature is large and
growing rapidly. Several successful applications of AI in
various stages of cancer research have been published.
To gather and uniformly present the available resources
from high-throughput literature retrieval of the cancer
clinical research, many centralized, freely accessible and
opened community knowledge bases, e.g. TCGA, have
been created to provide clinical and molecular data
for clinicians and researchers. These knowledge bases
integrate heterogeneous data including gene, protein
and expression information in control and tumor tissues
as well as radiographic imaging information of cancer
patients.

AI in cancer clinical research: method and
application
Coupled with increasing richness in modern biomedical
data, AI and more specifically, DL has garnered some
successes in cancer clinical research (Figure 1). AI-based
methods are increasingly being used in various fields
of cancer clinical research to improve accuracy and
efficiency. These include the use of AI in cancer imaging
recognition, genomic analysis, medical record mining,
drug discovery and biomedical literature utility. We
review below the different subareas of the cancer clinical
research, which have benefitted from incorporating AI.

Cancer imaging recognition
With the advent of increased computational capabili-
ties and algorithms, AI has been successfully applied in
radiology to help the radiologist in defining disease [30].
The raw images, before feeding into model, may need
to undergo basic preprocessing. For example, to avoid
detecting irrelevant parts of the image, ROIs are extracted
by segmenting the lesions on an image, and then only
the image information within ROIs are predicted by the
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Figure 2. Computational imaging recognition for cancer clinical research. A predictive model for cancer (green box) can be generated using AI approaches
on image data. The model uses data from clinical patient raw or preprocessed images. Once validated, the model could be used for predicting diagnosis
and/or estimating tumor progression to aid physicians significantly in making decisions about the care and treatment of cancer patients.

model. The regions can be annotated by experts [30] or
assigned by diagnosis labels [48]. Nevertheless, unlike
other common medical image types, WSIs are too large
to be processed by DL model in their entirety [68]. To
overcome this defect, WSIs are cropped into numerous
small image patches and then fuse these patch level
predictions to obtain image level prediction [69]. Some-
times, a tumor probability heatmap can be used to per-
form geometrical and morphological feature selection, as
input of a model, and to identify and characterize disease
patterns on digitized tissue slides [70]. Traditional image
recognition approaches use handcrafted, user-designed
image features, such as texture, shape, color, the density
of pixels and contrast/brightness, to capture tumor or
cell morphology [37]. These featured-based algorithms
suffer from some limitations: (i) these methods depend
on the feature-extraction step [71] and (ii) these fea-
tures are not always consistent under different scanning
conditions [1]. Automatic feature extraction, dispensing
with the initial feature-extraction step, enables the feed-
ing of raw images into the model directly (end-to-end
model) and perform image classification simultaneously
(Figure 2) [72].

Many established imaging methods have generated
good results in screening and treatment across different
cancer types by AI. For example, Trebeschi et al. [26] built
a CNN classifier using multiparametric MRI (mpMRI)
to classify each voxel into tumor or non-tumor. MRI
scans of 140 patients with locally advanced rectal
cancer were included in their analysis, and two expert
radiologists segmented each tumor. AUC of the resulting
probability maps was very high, AUC = 0.99. Fan et al.
[73] utilized a completely unsupervised Convex Analysis
of Mixtures (CAM) method to predict breast cancer
subtypes by the Decomposition of Contrast-Enhanced
MRI (DCE-MRI) from heterogeneous tissues. Cancer
recurrence proneness prediction has been identified
by Wang et al. [36]. They trained a DL network in
8917 CT images from the feature learning cohort
to extract the prognostic biomarkers of High-Grade
Serous Ovarian Cancer (HGSOC). Afterward, a DL-Cox

Proportional Hazard (Cox-PH) model was developed
to predict the individual recurrence risk and 3-year
recurrence probability of patients. Another valuable
application of AI is the prediction of cancer outcomes,
e.g. survivability, life expectancy, progression and tumor-
drug sensitivity. In many cases, the availability of
mammography has been confirmed as the main imaging
test method used to screen breast cancer by many
computational methods [74]. Li et al. [75] developed an
improved DL approach for detection of thyroid papillary
cancer in ultrasound images. In a study by Vang et al. [70],
histopathological slides, e.g. H&E stained images, have
also been used to classify multiclass breast cancer. Fan
et al. [76] developed a 3D-mask region-based CNN (3D-
Mask RCNN) Computer-Aided Diagnosis (CAD) system
for breast based mass detection and segmentation in
digital breast tomosynthesis (DBT). More recently, WSIs
have been used for pathologic analysis, such as inferring
molecular subtype, tumor grade or estrogen receptor
status [77].

Genomic analysis
Fundamentally, genomics are systematic approaches to
characterize the function of every genomic element of an
organism [78]. Genome-wide association studies (GWAS)
have successfully identified interacting genetic variants
contributing to cancer risk [29]. Additionally, molecular
profiling is essential for the identification of predictive
biomarkers associated with cancer phenotypes, prog-
nosis and clinical outcomes [79]. Single-cell resolution
enables quantitative measurements of the cell types and
molecular activity within a tumor [80]. Two computa-
tional analysis commonly used in cancer research based
on genomics include: (i) gene selection (Figure 3A) and (ii)
cancer classification (Figure 3B). Gene selection tries to
select high-regulated or differential expression gene and
remove poor ones from thousands of genes in microarray
experiments by analyzing and measuring their effects
upon constructing a classifier [81].

Recently, there has been much progress on AI in cancer
research using various types of genomic data as input
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Figure 3. Computational analysis commonly used in cancer research on genomics. AI framework can select high-regulated or differentially expressed
genes (A) in several basic cancer classification (B) tasks (such as early disease diagnostics, drug discovery or classification of tumors) using sequencing
or microarray profiling data.

data in models. Morais-Rodrigues et al. [82] developed
a modified logistic regression method to analyze the
microarray gene expression for breast cancer progres-
sion. In addition, Maros et al. [83] developed machine-
learning workflows to estimate class probabilities for
cancer diagnostics on DNA methylation microarray data.
More recently, Albaradei et al. [84] presented a DL-based
model to differentiated pan-cancer metastasis status
based on three heterogeneous data layers from TCGA,
including RNA-Seq, microRNA-Seq and DNA methylation
data. The model used convolutional variational autoen-
coder for feature extraction and DNN for classification.
The results showed that integrating data can improve the
performance compared with using mRNA data only. In
other studies, AI models have focused on cancer grade
prediction. In a study by Yamamoto et al. [17], a SVM
classifier was trained on the morphometric classification
of microenvironmental myoepithelial cells to quantita-
tively diagnose breast tumors. They quantitatively mea-
sured 11 661 nuclei on four histological types: normal
cases, usual ductal hyperplasia and low/high-grade duc-
tal carcinoma in situ (DCIS). At least three pathologists
diagnosed and scored all cases independently, and this
model was able to classify the four histological types
with 90.9% accuracy. Notably, disease-related biomarkers
can be identified from genomic data. For instance, Zeng
et al. [85] used deep forests combined with positive-
unlabeled learning methods to predict potential disease-
related circRNAs. Radhakrishnan et al. [20] combined
fluorescence imaging and deep learning to detect subtle
changes in nuclear morphometrics at single-cell resolu-
tion and opened new avenues for early disease diagnos-
tics and drug discovery.

Electronic medical record mining
Some AI-based models utilize integrated medical record
data, including genomic information, unstructured
health record and family history to improve the

performance of cancer prediction [86]. As an example,
to predict survival outcomes of lung cancer, a dataset of
observed cancer-associated characteristics of individuals
such as lung cancer pathology images, age, gender, smok-
ing status and stage, should be considered. Furthermore,
tumor shape, including area, perimeter, convex area,
filled area, major axis length and minor axis length,
have a role in causing the outcome [48]. For example,
Tseng et al. [35] applied machine learning, including SVM,
C5.0 and extreme learning machine (ELM) to predict
the recurrence-proneness for cervical cancer based on
the medical records and pathology. They found four
most important recurrence-proneness factors that are
pathologic stage, pathologic T, cell type and RT target
summary.

However, a major challenge is to extract the potential
input data from electronic medical records. NLP systems
can capture much of the information for the cancer
research project. For instance, a preprocessor integrated
with an existing NLP system (MedLEE) was done in con-
junction with an ongoing clinical research project that
assesses disparities and risks of developing breast cancer
for minority women [87]. NLP algorithm is used to iden-
tify primary and recurrent cancers by identifying and
extracting information from electronic pathology reports
[88]. In addition, NLP can improve the identification of
cancer testing in the electronic medical record [89].

Drug discovery
The development of a new drug is a very complex,
expensive and time-consuming process, while AI com-
bined with new experimental technologies is expected to
improve this process. AI may be applied for the prediction
of clinical efficiency of certain drugs and treatment
responses for individual patients (Figure 4). Much work
has been done to apply AI to screen drug candidates by
identifying a similar chemical structure computationally
from large compound libraries [2]. In addition, the
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Figure 4. Utilizing AI to support drug discovery and development. Drug research models can be generated using AI approaches on tumor or body-fluid
sample data. The model could be used for drug screening and/or design, as well as biomarker discovery and drug sensitivity prediction.

prediction of physical properties, such as bioactivity
and toxicity, greatly improves the bioavailability of a
candidate molecule [90]. For drug design, molecular de
novo design is a valuable application [2]. Meanwhile,
the 3D protein structure is extremely important for
drug design because candidate molecules are generally
designed according to the 3D chemical environment of
a target protein [91]. Furthermore, to better understand
the mechanism of action of a drug and help improve
clinical success rates, some pharmaceutical companies
have teamed up with IT companies to develop a platform
for biomarker discovery and drug sensitivity prediction
[92]. Indeed, molecular profiling data from tissue slices or
body fluid have aimed at identifying genomic biomarkers
predictive of anticancer drug response [32].

Cancer drug research can benefit from AI due to
the availability of a large amount of public databases
and resources, and have become more accurate and
sophisticated. Choi et al. [31] developed a novel deep
neural network model for improved prediction of drug
resistance and identification of biomarkers related to
drug response. Huang et al. [93] predicted the responses of
175 individual cancer patients to a variety of standard-of-
care chemotherapeutic drugs from the gene-expression
profiles (RNA-seq or microarray) of individual patient
tumors. Borisov et al. [94] predicted the clinical effi-
ciency of anti-cancer drugs for individual patients by
transferring features obtained from the expression-
based data from cell lines. Chang et al. [32] reported
Cancer Drug Response profile scan (CDRscan) to predict
anticancer drug responsiveness based on large-scale
drug screening assay data, including genomic profiles
of 787 human cancer cell lines and structural profiles of
244 drugs. Moreover, predicting and interpreting cancer
drug response in single cell data based on computational
biology approaches shows a clear significance. Yanagi-
sawa et al. [95] constructed a CNN model to predict the
efficiency of antitumor drugs at the single-cell level.

Many computational tools have been proposed in
cancer-related drug discovery based on different AI
methodologies. Examples of the applications include
DeepChem [96], DeepTox [97], gene2drug [98], STITCH

[99], AlphaFold [100] and/or DeepNeuralNetQSAR [101].
The DeepTox algorithm, for instance, based on ML
computationally predict 12 000 environmental chemicals
and drugs for 12 different toxic effects in specifically
designed assays [97]. Otherwise, AlphaFold relied on
DNNs is used to predict the 3D structure of a drug target
protein [100]. The creation of these tools has helped
reduce the cost of drug discovery.

Biomedical literature utility
In the past decades, with great effort by a few large
consortiums, several community-based knowledge bases
have been developed based on a large collection of pub-
lished literature in the cancer clinical research field. For
example, National Lung Screening Trial (NLST) [101] is
a unified data sharing platform that allows users to
search, browse, download and analyze tumor regions of
lung adenocarcinoma (ADC) patients. The National Can-
cer Institute (NCI) Genomic Data Commons (GDC) [102]
serves as a single knowledge base that unifies genomic
and clinical data from different research programs for
the cancer research community. In a typical study, a deep
CNN model takes a systematic study of the detected
tumor regions of lung cancer patients from NLST cohort
inputs and is trained to automatically recognize tumor
regions for lung cancer, whereas the model developed
from the NLST cohort is independently validated in the
TCGA cohort for prognostic performance [48].

In addition, some research teams have developed a
growing number of databases to search for compre-
hensive information. For instance, the Sheikh Khalifa
Bin Zayed Al Nahyan Institute for Personalized Cancer
Therapy (IPCT) at MD Anderson Cancer Center has
developed a knowledge base, which provides information
on the functions of common genomic alterations and
their therapeutic implications to guide personalized
treatments in oncology [78]. The literature is manually
reviewed by a precision oncology decision support
(PODS) team that includes oncologists, geneticists,
molecular biologists, computational scientists, computer
programmers and bioinformaticians [103]. Moreover,
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an integrated Precision Medicine Knowledgebase (Pre-
MedKB) has been developed by seamlessly interpreting
the four fundamental components of precision medicine:
diseases, genes, variants and drugs [104]. Furthermore,
CIVic is an expert-crowd sourced knowledgebase for clin-
ical interpretation of variants in cancer [105]. Recently,
body fluid proteome has been intensively studied as a
primary source for cancer biomarker. For this reason,
our research group have developed a new database of
human body fluid proteome (HBFP) that archived 11,827
unique proteins reported by 164 scientific publications
since 2001 [106]. By providing a wealth of information,
these knowledgebases can be excellent resources and
tools for the research community.

Challenges and future directions
AI has demonstrated comparable performance to that of
an expert in common application fields across a range
of biomedicine. However, although some AI solutions are
already available, there are still many challenges for AI to
move from theoretical studies to real-world applications.

Currently, one of the biggest challenges facing AI, in
general, is data hungry. The acquisition of sufficient
large, public, well-annotated cancer dataset is an ongoing
need for AI. Although the inclusion of images, genomic
data and clinical outcomes in some opened databases
had a significant impact on enhancing computational
clinical research. The scale, quality and diversity of the
data types, such as patient history from prior reports,
are potentially relevant to the risk and progression of
cancer, but are time-consuming to collect. Data sharing
agreement can play an important role in addressing
the challenge above. Sharing of large datasets with the
community can be enabled by cloud computing and
advanced development of the next generation of predic-
tive cancer models.

Additionally, the successful development of an AI
model is dependent on the high-quality data. Notwith-
standing the amount of available data is growing in
volume and variety, the assessment of the quality of
data is not standardized.

Moreover, some clinical tasks, such as prognosis pre-
diction, are more unstructured than traditional deep
learning tasks [107]. Sometimes, we have to give accurate
predictions (e.g. survival times) from a combination of
clinicopathologic, genomic markers and images that are
much higher resolution. Furthermore, patients span a
wide variety of cancer types, and are often missing some
form of clinical, imaging or genomic data, making it
difficult to apply AI.

Despite AI regularly achieving high performance in
medical research, the adoption of AI in real cases is
limited due to the somewhat opacity of the model. The
machine could not explain how it knew and why it got
this result. This is often referred to as the ‘black box’
problem [108]. It is difficult to present which features of

the input data contribute to the output. For example, AI
can predict the optimal treatment for a patient but not
provide the reasoning it used to make that prediction.
Interpretable DL is a trend in alleviating this limitation
[109]. In addition, the knowledge gap between clinical
and data science experts still presents significant chal-
lenges. Physicians have much experience with oncologic
workup and management versus data scientists have
high-level cognition in data science for understanding
AI mechanisms. Further collaboration should be pursued
between clinical and data science experts to bridge the
gap between them.

Another important issue for AI is its role. It is almost
impossible to run an AI without experts. AI should not
be seen as a standalone solution in a completely unsu-
pervised environment. On the contrary, it is a helpful
assistant to experts, as well as a tool that can help in
areas where human capabilities remain limited.

In the future, we believe that AI will participate in
cancer treatment clinically and will be deployed to expe-
dite diagnosis, treatment, and even a cure. Moreover, we
expect the AI technology will be more widely available
and applied to boost survival rates, improve treatment
responses and reduce side effects.
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