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Antiproliferation and proapoptosis are twomajor molecular mechanisms of action of drugs
used for the treatment of multiple myeloma. Proteasome inhibitors, such as bortezomib
(PS-341), and immunomodulatory drugs (IMiDs), such as lenalidomide, are the two drug
types approved for the treatment of myeloma. Bortezomib and lenalidomide activate
caspase-8 and promote the apoptosis of myeloma cells. However, caspase-8 inhibition
potentiated the antiproliferative effect of lenalidomide and bortezomib in myeloma cells,
suggesting that caspase-8 could regulate proliferation and apoptosis in the opposite
pathway. In this mini-review, I summarized recent advances in determining the molecular
mechanisms of caspase-8 in bortezomib–lenalidomide-based therapy for myeloma and
explored the possible functions of caspase-8 in the proliferation and apoptosis of
myeloma cells. Furthermore, future directions of caspase-8-based therapy for myeloma
have been discussed.
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INTRODUCTION

Caspase-8, as an initiator caspase, is essential for death receptor-dependent apoptosis (1, 2) and is
activated in multiple pharmacological treatments for myeloma (3, 4). However, we have previously
shown that caspase-8 activation attenuates the anti-myeloma effect of bortezomib and lenalidomide
(5, 6).

Thalidomide and its analogs lenalidomide and pomalidomide directly bind to the cereblon
(CRBN) (7) and subsequently recruit neo-substrates IKZF1/3 to the CRL4CRBN E3 ligase, thereby
inducing ubiquitination and degradation of IKZF1/3 and exhibiting an anti-myeloma effect (8, 9).
The indispensability of CRBN for the anti-myeloma effect (10, 11) indicates that upregulation of
CRBN can potentiate the anti-myeloma effect of lenalidomide (12–14). Recently, we discovered that
the proteasome inhibitors bortezomib and MG-132 could induce CRBN cleavage, which possibly
attenuates the anti-myeloma effect of lenalidomide (5, 6). However, combination therapy with
lenalidomide and bortezomib is the first-line pharmacotherapy for multiple myeloma (15, 16) and
has led to the paradoxical therapeutic mechanisms that mediate the action of lenalidomide and
bortezomib in myeloma (17).

In myeloma cells, bortezomib inhibits the functioning of the 26S proteasome and affects multiple
molecular pathways, including oxidative stress, NF-kB, and DNA damage and repair pathways, as
well as classical intrinsic (mitochondria-dependent) and extrinsic (death receptor-dependent) cell
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death cascades, inducing the apoptosis of myeloma cells (4, 18–
20). Lenalidomide exhibits an anti-myeloma effect by increasing
apoptosis and inhibiting the proliferation of myeloma cells (3,
21, 22).

In this minireview, the caspase-8-involved extrinsic cell death
cascade in bortezomib and lenalidomide therapy for myeloma
was evaluated. First, I introduce the caspase-8 signaling pathway
in myeloma treatment. Second, I summarize the recent advances
in bortezomib and lenalidomide treatment in multiple myeloma
and survey the different biological roles of caspase-8 in the
treatment of myeloma. Finally, I discuss future perspectives on
caspase-8-based therapy for myeloma.via cereblon IKZF1/
3 cascade.
CASPASE-8 AND “PROGRAMMED”
CELL DEATH

The Fas ligand (FasL, CD95 L) and tumor necrosis factor (TNF)-
a bind to the relative cell surface Fas receptor (CD95/Apo-1) and
the tumor necrosis factor receptor, and then recruit the adaptor
protein FADD and procaspase-8 to form the death-inducing
signaling complex (DISC), thereby activating caspase-8 through
cleavage, which is the extrinsic or death receptor apoptotic
pathway (Figure 1A) (23). The activation of caspase-8 for
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death receptor-mediated apoptosis occurs via two different
molecular pathways. TNF-a cotreatment with cycloheximide
activates caspase-8 by eliminating c-FLIP, whereas TNF-a
cotreatment with a Smac mimetic activates caspase-8 by
triggering the degradation of cIAP1/2 followed by the release
of receptor-interacting serine-threonine kinase 1 (RIPK1/RIP1),
thereby inducing apoptosis (24). Furthermore, lysosomal
cathepsins might activate caspase-8 in a death receptor- and
mitochondria apoptotic pathway-independent manner (25).
Besides its apoptotic functions, caspase-8 affects other
“programmed” cell death-necroptosis pathways by cleaving the
death domain kinase RIP1 (RIPK1)/RIP3 (RIPK3) (Figure 1B)
(26, 27) to regulate embryonic development (28); thus, caspase-
8-mediated apoptosis and necroptosis compete with each other
by cleaving different downstream substrates. In addition to being
activated in the “programmed” cell death DISC, which is
involved in apoptosis and necroptosis, caspase-8 is also
activated in inflammasome complexes and controls
inflammasome activation (29) to induce microglial activation
(30). Accordingly, caspase-8 deficiency in humans causes defects
in the activation of lymphocytes and natural killer cells,
indicating the critical role of caspase-8 in the immune
activation of lymphocytes (31, 32). Moreover, the DISC
components FADD and caspase-8 regulate NLRP3
inflammasome priming and activation (Figure 1C) (29, 33,
A

B

D

C

FIGURE 1 | Caspase-8 was involved in multiprotein platforms. (A) Caspase-8 regulated the exterior and interior pathway-mediated apoptosis after the death-
signaling challenge. (B) The loss of caspase-8 resulted in necroptosis. (C) Caspase-8 cleaved RIP3 and subsequently regulates the NLRP-3 inflammasome, thereby
modulating the immune response after the infective signaling challenge. (D) Caspase-8 controlled the proliferation of lymphoid cells by interacting with the ATG5-
ATG12 platform. C, cytochrome C; P, phosphorylation.
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34), suggesting that DISC and inflammasome complexes might
intercross with each other.
CASPASE-8 ACTIVATION BY
BORTEZOMIB AND LENALIDOMIDE
IN MYELOMA CELLS

Bortezomib (PS-341), a reversible proteasome inhibitor, was
approved by the FDA for the treatment of multiple myeloma
in 2003 (35). Similarly, lenalidomide and pomalidomide have
been approved by the FDA, in 2005 and 2013, respectively, for
the treatment of multiple myeloma (36). Since then, the
bortezomib–lenalidomide combination has been used as the
first-line treatment for multiple myeloma (37–39); however,
there is a therapeutic paradox associated with lenalidomide
and bortezomib treatment in myeloma (17). Bortezomib could
potentiate the anti-myeloma effect of lenalidomide by stabilizing
CRBN after short-term treatment in myeloma cells (13).
Furthermore, although bortezomib blocks the degradation of
IKZF1/3, ubiquitinated IKZF1/3 might not have transcriptional
activity, and thus could mediate the anti-myeloma effect of
lenalidomide (17).

Bortezomib activates caspase-8 in myeloma cells, thereby
inducing apoptosis of myeloma cells (4). Bortezomib induced
oxidative stress in human hepatoma HepG2 cells and
subsequently activated JNK, thereby activating caspase-8 by
increasing the FasL expression (40), which is dependent on the
death receptor. Moreover, bortezomib could induce autophagy
and then activate caspase-8 in a death receptor-independent
manner (41). Interestingly, the relationship between autophagy
and caspase-8 was first identified in T lymphocytes (42), and low
activated caspase-8 was required for T-cell proliferation
(Figure 1D) (42, 43).

Lenalidomide recruits the neo-substrate IKZF1/3 onto CRBN
and promotes ubiquitination and subsequent degradation by the
CRL4CRBN E3 ligase, thereby exhibiting an anti-myeloma effect
(7–9). Although the anti-proliferative effect constitutes the major
anti-myeloma effect of lenalidomide, a caspase-8 fluorometric
assay indicated that lenalidomide and pomalidomide could
activate caspase-8 (3, 44, 45). Nonetheless, active caspase-8-
mediated apoptosis of myeloma cells might be an edge effect of
lenalidomide, because cleaved caspase-8 was not detected after a
lenalidomide challenge in myeloma cells (5, 44, 45), which
indicated that lenalidomide might promote the activities of
caspase-8 to low levels that are non-lethal for myeloma cells.

Caspase-8 might participate in different multiprotein
platforms to regulate apoptosis, necroptosis, pyroptosis, and
proliferation (Figure 1) (46). The above mentioned cellular
responses were regulated by the enzymatic and nonenzymatic
activities of caspase-8, which depended on different cell types and
drug-mediated induction. To dissect the enzymatic and
nonenzymatic activities of caspase-8, conditional caspase-8
knockout mice and derived cells were employed to investigate
the possible functions of caspase-8 in cellular responses (47, 48).
Necroptosis in caspase-8-deficient mice was rescued by the
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deletion of Rip3 (49, 50) or Cyld (51), suggesting that caspase-
8 exerted an antinecroptotic effect by cleaving RIP3 or CYLD.
Mechanistically, the mixed-lineage kinase domain-like protein
(MLKL) was phosphorylated by RIP3 and mediated TNF-a-
induced necroptosis (52–54). Embryos of enzymatically inactive
caspase-8 (C362S) mice died after necroptosis and pyroptosis,
which demonstrated that the enzymatic activity of caspase-8 was
crucial for suppressing necroptosis and pyroptosis and further
underscored the suppressive effect of caspase-8-mediated
apoptosis on necroptosis and pyroptosis (46, 55, 56). The Mlkl
deficiency rescued the necroptosis of caspase-8 (C362S) mice but
resulted inpyroptosis (46), which indicated that caspase-8-
mediated necroptosis might inhibit pyroptosis, thereby
controlling normal embryonic development and adult tissue
homeostasis (57).

The relatively high level of expression of caspase-8 in
lenalidomide-resistant RPMI-8226 cells suggested that the
expression of caspase-8 might affect lenalidomide sensitivity in
myeloma cells (Figure 2A); however, this hypothesis has not
been investigated yet. The relatively low expression or loss of
A

B

FIGURE 2 | Caspase-8-regulated apoptosis and proliferation of myeloma
cells. (A) FADD, Caspase-8, RIP1, and RIP3mRNA expression in lymphoid
cell lines. Data were obtained from the Human Protein Atlas (https://www.
proteinatlas.org/). (B) Bortezomib (Btz) and lenalidomide (Len) could activate
caspase-8 and then cleave CRBN, thereby inducing apoptosis in myeloma
cells. When caspase-8 decreased after bortezomib and/or lenalidomide
treatment, the CRL4CRBN E3 ligase promoted ubiquitination-mediated
degradation of IKZF1/3, thereby inhibiting the proliferation of myeloma cells.
Due to the low expression of RIP3 in myeloma cells, necrosomes could not
be formed and, therefore, necroptosis was inhibited.
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RIP3 expression in myeloma cells (Figure 2A) suggests that
necroptosis and pyroptosis might be harder to induce than
apoptosis, although this needs to be further investigated.
Therefore, bortezomib and lenalidomide might not induce
necroptosis and pyroptosis in myeloma cells (Figure 2A).

With continuous exposure to bortezomib and lenalidomide,
bortezomib- and lenalidomide-resistant myeloma cells could be
generated from their parental sensitive myeloma cells (58, 59).
An examination of the relative expression levels of FADD,
caspase-8 , RIP1 , and RIP3 in the lenalidomide- and
bortezomib-resistant myeloma cells and their parental
myeloma cells might help identify a possible programmed cell
death pathway to overcome drug resistance.
CASPASE-8-INDUCED CLEAVAGE
OF CRBN IN MYELOMA CELLS

CRBN is a lenalidomide-binding protein that mediates the anti-
myeloma effect of lenalidomide (8, 9, 60). However, CRBN was
not required for bortezomib-induced apoptosis in multiple
myeloma (10). Nonetheless, bortezomib could potentiate the
anti-myeloma effect of lenalidomide (16, 59), suggesting that
bortezomib may regulate the CRBN–lenalidomide–IKZF1/3
signaling pathway. Accordingly, short-term bortezomib
treatment inhibited the ubiquitination-mediated degradation of
CRBN in myeloma cells, thereby potentiating the anti-myeloma
effect of lenalidomide (13). Interestingly, long-term bortezomib
treatment blocked the lenalidomide-induced degradation of neo-
substrate IKZF1/3 (61) and induced CRBN cleavage (6), which
might attenuate the anti-myeloma effect of lenalidomide
(Figure 2B). Furthermore, as lenalidomide induced low
activities of caspase-8, we demonstrated that lenalidomide
could regulate the protein level of CRBN by inducing low
expression of active caspase-8 (5). Therefore, these studies
suggested that short-term bortezomib treatment potentiated
the benefits of lenalidomide-based therapy of myeloma
patients, whereas long-term bortezomib treatment attenuated
the anti-myeloma effect of lenalidomide.

Caspase-8 regulated NF-kB activation in an enzymatic
activity-dependent or an enzymatic activity-independent
manner, which might be a cell type-or drug treatment-specific
effect (47, 62, 63). The enzymatic activity of caspase-8 induced
the release of DED-prodomain fragments, thereby activating NF-
kB signaling in mouse embryonic fibroblasts following poly(I:C)
stimulation (64). However, caspase-8 bound to TRAF2 and
FLASH, and thus mediated TNF-a-induced NF-kB activation
in NIH3T3, HeLa, HEK293, and T cells, in an enzymatic activity-
independent manner (65). Interestingly, the protein levels of
CRBN and its neo-substrate IKZF1/3 were unaffected in TRAF2
knockout myeloma cells, although these TRAF2 knockout cells
were resistant to both lenalidomide and pomalidomide (66),
which suggested that the nonubiquitin functions of CRBN were
crucial for cellular responses, such as proliferation. This
hypothesis was underscored by the observations that CRBN
inhibited NF-kB activation by directly binding to TRAF6 (67,
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68), thereby exhibiting nonubiquitin-mediated functions (69).
Both caspase-8 and CRBN contributed to NF-kB activation,
which further indicated an overlap between caspase-8 and
CRBN activities. However, the subsequent functions of CRBN
cleavage by caspase-8 on NF-kB activation and cellular responses
have not been investigated.
CASPASE-8-MEDIATED REGULATION
OF LYMPHOID CELL PROLIFERATION

FADD and caspase-8 are essential for the cell-cycle progression
of T cells, suggesting that caspase-8 also regulated cell
proliferation (Figure 1D) (43). In line with the above
statement, low caspase-8 activities were observed during
normal T cell clonal expansion (42). Mechanistically,
autophagy was activated in T cells after mitogenic ligand
challenge and subsequent recruitment of caspase-8 to FADD :
Atg5-Atg12 multiprotein platforms, thereby promoting T cell
proliferation (Figure 1D) (42). In caspase-8-deficient T cells,
autophagy was hyperactivated (42), suggesting that
physiologically low activated caspase-8 suppressed the
activation of autophagy. Conversely, autophagy could activate
caspase-8 (41), indicating the presence of a feedback loop in
caspase-8 and autophagy activation in T cell expansion. Notably,
the activation of caspase-8 in proliferative T cells did not cause T
cell death (43, 70), indicating that caspase-8 was less activated
during T cell proliferation. Thus, the sublethal activation of
caspase-8 regulated cell-cycle progression, whereas the
elevation of active caspase-8 expression following the blocking
of protein degradation by bortezomib would be lethal for cells.
Taken together, these data suggested that caspase-8 was required
for lymphocyte development and activation. Given that myeloma
is a cancer of plasma cells, which are differentiated lymphocytes,
the possible functions of caspase-8 in the proliferation of
myeloma cells need to be further investigated.
FUTURE PERSPECTIVES

Caspase-8 plays a central role in “programmed” cell death, such
as apoptosis, necroptosis, and pyroptosis, which is cell type- and
drug treatment-specific (46, 71). Furthermore, caspase-8 could
enhance or attenuate the tumor malignancy, which is also a cell
type- and drug treatment-specific function. Bortezomib and
lenalidomide activate caspase-8 and then cleave CRBN, thereby
decreasing the sensitivity of the combination-treatment regimen
of bortezomib and lenalidomide (5, 6). The inhibition or genetic
depletion of caspase-8 then stabilized CRBN, thereby promoting
the antiproliferative effect of bortezomib and lenalidomide (6).
The necrosome comprises RIP1, RIP3, and MLKL (72, 73).
However, myeloma cells might not contain sufficient RIP3
(Figure 2A), suggesting that caspase-8 inhibition and genetic
depletion blocked not only apoptosis but also necroptosis and
pyroptosis in myeloma cells (Figure 2B). Given that
lenalidomide exerts an anti-myeloma effect by suppressing the
March 2022 | Volume 12 | Article 861709
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proliferation of myeloma cells (8, 9), a physiologically low
threshold concentration of active caspase-8 cleaves CRBN and
attenuates the anti-myeloma effect of bortezomib and
lenalidomide, which is detrimental for myeloma patients.
Clinically, it is possible to block the activity of caspase-8 in
myeloma patients, thereby enhancing the anti-myeloma effect of
lenalidomide; however, no clinical study has evaluated the
beneficial effect of caspase-8 inhibition in myeloma patients.
Therefore, the inhibition or genetic depletion of caspase-8 might
be beneficial for myeloma patients receiving lenalidomide-
based therapy.
Frontiers in Oncology | www.frontiersin.org 5
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