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Chromosome 11q loss and
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with checkpoint kinase 1
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1Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands,
2Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit,
Amsterdam, Netherlands, 3Department of Pharmaceutical Sciences, University Utrecht,
Utrecht, Netherlands, 4Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney,
Kensington, NSW, Australia, 5School of Women’s and Children’s Health, Faculty of Medicine, UNSW
Sydney, Kensington, NSW, Australia
Neuroblastoma is the most common extracranial solid tumor found in children

and despite intense multi-modal therapeutic approaches, low overall survival

rates of high-risk patients persist. Tumors with heterozygous loss of

chromosome 11q and MYCN amplification are two genetically distinct

subsets of neuroblastoma that are associated with poor patient outcome.

Using an isogenic 11q deleted model system and high-throughput drug

screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic

target for 11q deleted neuroblastoma. Further investigation reveals MYCN

amplification as a possible additional biomarker for CHK1 inhibition,

independent of 11q loss. Overall, our study highlights the potential power of

studying chromosomal aberrations to guide preclinical development of novel

drug targets and combinations. Additionally, our study builds on the growing

evidence that DNA damage repair and replication stress response pathways

offer therapeutic vulnerabilities for the treatment of neuroblastoma.

KEYWORDS

pediatric cancer, neuroblastoma, checkpoint kinase 1 (CHK1), chromosome 11q
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Introduction

Neuroblastoma (NB) is a malignancy of the sympathetic

nervous system and is the most common extracranial solid

tumor found in children (1). Based on clinical and molecular

features, such as MYCN amplification, NB can be classified as

low-, intermediate- or high-risk (2). Contrasting with the

standard of care procedure for low-risk NB, which includes

observation and sometimes surgery, high-risk patients undergo

intensive chemotherapy, surgery, radiation therapy and

immunotherapy (3). While most high-risk NB tumors initially

respond to treatment, relapse and therapy resistance remain

major clinical obstacles. Approximately 50% of high-risk

patients eventually succumb to the disease, thus there is an

absolute need for more effective therapeutic approaches for these

patients (1).

Over the last decades, intense efforts have been made to

develop targeted therapies for NB patients; however,

breakthroughs have been hindered by the paucity of recurrent

somatic mutations. Activating mutations of the ALK tyrosine

kinase receptor remain the only targetable recurrent somatic

variant observed in NB at diagnosis (4). Although targeted

inhibition of ALK is a promising approach for ALK mutated

NB specifically, only 8-10% of tumors harbor this aberration,

thereby limiting the practical application of these inhibitors (5).

Rather than a mutationally driven (M class) landscape, a

remarkable number of NB tumors are driven by chromosomal

aberrations, which groups them with the copy number driven

(C class) tumor entities (6). Hemizygous loss of chromosome 11q

is observed in approximately 35-45% of all NB tumors and

represents a subgroup of patients with a poor prognosis (7–10).

Using whole genome sequencing (WGS) and single-nucleotide

polymorphism (SNP) analysis, recent studies have investigated the

impact that 11q loss has on NB and suggest that 11q deletion leads

to an undifferentiated cell state by altering the expression of

candidate tumor suppressor genes DLG2 and SHANK2 (11, 12).

However, due to the difficulty in modeling large-scale

chromosomal copy number aberrations using conventional

molecular biology techniques, the effects of these structural

variants and the potential therapeutic vulnerabilities mediated

by them remain relatively unexplored.

In this study, we used an isogenic 11q deleted NB model

system together with high-throughput drug screening to

uncover checkpoint kinase 1 (CHK1) as a potential drug target

for 11q deleted NB. Further investigation revealed MYCN

amplification (MNA) as a potential additional biomarker for

CHK1 inhibition and high-throughput combination drug

screens identify WEE1 kinase (WEE1) inhibition as a

synergistic candidate across all 11q and MYCN phenotypes.

Altogether our study demonstrates the potential of using
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chromosomal aberrations to guide preclinical development of

targeted therapeutic approaches and adds to the mounting

evidence that CHK1 might be an effective therapeutic target

for the treatment of NB (13).
Methods

Cell lines

The cell lines IMR-32, NGP, SJNB-6, CHLA-90, SKNAS,

Gimen, SKNBE, SJNB-8, KCNR, SJNB-12, Shep2, SH-SY5Y and

SKNSH were obtained via the American Type Culture

Collection (ATCC) and Shep21n cells were obtained via

historic collaboration. The identity of all cell lines was

validated by short tandem repeat (STR) analysis and

phenotypic observation. For all cell lines except for CHLA-90,

cells were cultured in Dulbecco’s Modified Eagle Medium

(DMEM; Thermo Fisher Scientific, #41965) supplemented

with 10% (v/v) fetal bovine serum, 2 mM L-glutamine, 1% (v/

v) non-essential amino acids and 100 U/mL penicillin and 100

mg/mL streptomycin. CHLA-90 was cultured in Iscove’s

Modified Dulbecco’s Medium (IMDM; Thermo Fisher

Scientific, #12440) supplemented with 1% (v/v) insulin-

transferrin-selenium (Thermo Fisher Scientific, #41400), 10%

(v/v) fetal bovine serum, 2 mM L-glutamine and 100 U/mL

penicillin and 100 mg/mL streptomycin.

Patient-derived neuroblastoma tumoroid NB139 was grown

in DMEM-GlutaMAX (Thermo Fisher Scientific, #21885)

supplemented with 25% (v/v) Ham’s F-12 nutrient mixture, B27

supplement minus vitamin A, 100 U/mL penicillin, 100 mg/mL

streptomycin, 20 ng/mL epidermal growth factor (EGF) and 40

ng/mL fibroblast growth factor-basic (FGF-2). AMC772, NB129

and NB059 were grown in DMEM-GlutaMAX (Thermo Fisher

Scientific, #21885) supplemented with 20% (v/v) Ham’s F-12

nutrient mixture, B27 supplement minus vitamin A, N-2

supplement, 100 U/mL penicillin, 100 mg/mL streptomycin,

20 ng/mL epidermal growth factor (EGF), 40 ng/mL fibroblast

growth factor-basic (FGF-2), 200 ng/mL insulin-like growth

factor-1 (IGF-1), 10 ng/mL platelet-derived growth factor-AA

(PDGF-AA) and 10 ng/mL platelet-derived growth factor-BB

(PDGF-BB). Additionally, NB059 was supplemented with 10%

(v/v) human plasma (Thermo Fisher Scientific, P9523). EGF,

FGF-2, PDGF-AA and PDGF-BB were obtained from

PeproTech, IGF-1 was obtained from R&D Systems, and B27

minus and N-2 supplement were obtained from Thermo

Fisher Scientific.

Chromosome 11q status of all in vitro models was verified

via whole genome sequencing (WGS; NovaSeq 6000; https://

www.ebi.ac.uk/ena/browser/view/PRJEB54725).
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SKNSH clones

SKNSH 11q deleted clones (clones 4, 7 and 10) and SKNSH

11q wild type clones (clones 1, 8 and 11) were generated as

previously described (14). In short, deletion of 11q was induced

using CRISPR-Cas9 and single clones were selected and grown

out to establish SKNSH cell lines with and without 11q loss (14).

Cell lines were maintained in Dulbecco’s Modified Eagle

Medium (DMEM; Thermo Fisher Scientific, #41965)

supplemented with 10% (v/v) fetal bovine serum, 2 mM L-

glutamine, 1% (v/v) non-essential amino acids and 100 U/mL

penicillin and 100 mg/mL streptomycin. The chromosome 11q

status of these in vitro models were verified via PCR (primers

provided in Supplementary Table 1).
Compound screening

Using the Multi-drop™ Combi Reagent Dispenser (Thermo

scientific), classical cell lines and patient-derived tumoroids were

seeded in duplicate in black 384-well plates (Corning, 3764) at a

density of 400-20000 cells per well depending on the line being

used. Following a 24h-period given to allow cells to attach, cells

were treated with compounds.

For high-throughput screens, screening experiments and

processing were performed by the high-throughput screening

facility of the Princess Máxima Center (https://research.

prinsesmaximacentrum.nl/en/core-facilities/high-throughput-

screening). The Echo550 dispenser was used to add a library of

197 drugs in dose ranges of six concentrations between 0.1 nM

and 10 µM, with a final DMSO concentration of 0.25%

(Supplementary Table 2). Several drugs were tested at

additional lower concentrations (up to 10 pM) or higher

concentrations (up to 200 µM).

For monotherapy and combination validation, 0.03-10 µM

of prexasertib (Cat: HY-18174), adavosertib (Cat: HY-10993),

SN-38 (Cat: HY-13704) and/or topotecan (Cat: HY-13768A)

were added using the D300e Digital Dispenser (TECAN). After

72 hours of drug treatment at normal culture conditions, cell

viability of classical lines was measured using the 3-(4,5-

dimethylthiazol-2yl)-2,5-diphenyltetrazolium (MTT) assay and

patient-derived tumoroid viability was measured using

CellTiter-Glo 3D® (Promega) according to the manufacturer’s

instructions (15).
Western blot analysis

Following protein harvest using Laemmli lysis buffer, protein

concentrations of whole cell extracts were measured using DC
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loaded onto a Bio-Rad Mini-Protean® TGX™ 4-20% gel.

Proteins were subsequently transferred onto polyvinylidene

difluoride (PVDF) membranes, after which membranes were

blocked using ECL advance blocking agent (GE Healthcare) in

TBS-Tween 0.1%. Proteins of interest were detected using the

following antibodies: anti-N-myc (Cell Signaling, Cat: 9405),

anti-CHK1 (Cell Signaling, Cat: 2360), anti-phospho-CHK1

S296 (Cell Signaling, Cat: 2349), anti-WEE1 (Cell Signaling,

Cat: 13084), anti-CDC2 (Cell Signaling, Cat: 9116), anti-

phospho-CDC2 Y15 (Cell Signaling, Cat: 4539), anti-gH2AX

(Abcam, Cat: ab26350), anti-alpha-tubulin (Cell Signaling, Cat:

3873), anti-beta-actin (Cell Signaling, Cat: 4967). Following

treatment with HRP-link secondary antibodies (Invitrogen),

detection was performed using Bio-Rad Chemidoc™

Touch (BioRad).
Cell cycle analysis

Cells were treated with 3.2 or 5 nM prexasertib and/or 16

nM adavosertib for 0-72 hours. Next, floating and adherent cells

were harvested, washed with PBS and resuspended in PBS with

2-4 mM EDTA. Prior to FACS measurement, cells were either 1)

fixed with 100% ethanol and then resuspended in PBS with 0.1

mg/ml propidium iodide and 1 mg/mL RNAse for 45 minutes or

2) stained with Vybrant Dyecycle violet (1:1000, Thermo Fisher)

for 30 minutes. Lastly 20000 cells were measured via flow

cytometry and data was analyzed using FlowJo software

(FlowJo) and CytExpert software (Beckman).
Benchwork dataset and
statistical analysis

Drug sensitivity data generated using CellTiter-Glo

(Promega) cell viability assay (GDSC2) was downloaded from

the Genomics of Drug Sensitivity in Cancer website (16). The

11q status of the included neuroblastoma cell lines was screened

using copy number variation data obtained from the Sanger

Institute Catalogue of Somatic Mutations in Cancer website,

http://cancer.sanger.ac.uk/cosmic (17). Students T-test were

performed to determine the significance of differences in IC50

between 11q wild-type and 11q deleted neuroblastoma cell lines.

The Mann-Whitney U test was used to make comparisons

between the average IC50 of two groups. For all statistical

analyses, a p-value > 0.05 was deemed non-significant and p ≤

0.05 (*), p ≤ 0.01 (**), and p ≤ 0.001 (***) were considered to be

statistically significant.
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Results

Chromosome 11q loss induces sensitivity
to CHK1 inhibition

To investigate potential drug vulnerabilities mediated by

chromosome 11q deletion, we used an isogenic model system

that was developed using the 11q wild type NB cell line,

SKNSH (14). CRISPR-Cas9 was used to induce a large

chromosome 11q deletion, recapitulating the most frequently

observed 11q loss in NB (ch11q13.4-25) and single cells were

isolated and grown to establish the monoclonal SKNSH lines

used in our study (14). Following confirmation of heterozygous

loss of 11q using two independent PCR primer sets

(Figure 1A), three SKNSH clones with wild type 11q and

three SKNSH clones with proven 11q deletion were exposed

to a drug library containing 197 compounds that are approved

or in (pre)clinical development for pediatric cancer. To select
Frontiers in Oncology 04
compounds that were overall more effective in clones with 11q

loss, we calculated the average log fold change in the area under

the curve (AUC) between 11q deleted and 11q wild type clones

for each compound. Of the entire compound library, CHK1

inhibition with prexasertib resulted in the largest negative fold

change in AUC, indicating improved efficacy in 11q deleted

SKNSH clones (Supplementary Figure 1). Considering our goal

of identifying novel therapeutics for the treatment of NB, we

selected hits to include only compounds that are currently

being clinically investigated in NB (Supplementary Table 3). Of

the targets currently in clinical trials for NB, CHK1 and MDM2

were the only two targets that demonstrated improved

sensitivity in the presence of 11q loss (Figure 1B). Since

MDM2 inhibitors have been extensively studied in vitro in

NB (18–20), we proceeded with validation of our top hit of

targeted inhibition of CHK1 with prexasertib (LY2606368).

Following testing with a wider range of concentrations on the

generated SKNSH cell lines, we observed that clones harboring
A B

C

FIGURE 1

CHK1 identified as a therapeutic target in 11q deleted NB. (A) Agarose gel electrophoresis of PCR products from 11q wild type (black) and 11q
deleted (blue) SKNSH clones using primer set A + B (left) to amplify the wild type copy of 11q, and primer set A + C (right) which only yields a
product if 11q deletion was induced. Shown below is an ideogram of chromosome 11q with the approximate location of primer targets and the
gRNA recognition sites for CRISPR-Cas9 directed 11q deletion (red). (B) Median log fold change in area under the curve (AUC) for 11q deleted
and wild type SKNSH clones following 72-hour incubation with compounds targeting the proteins listed on the y-axis. (C) Dose-response
curves for three SKNSH clones with chromosome 11q deletion (Clone 4, 7, 10; blue) and three SKNSH clones with a normal chromosome 11q
locus (Clone 1, 8, 11; grey). Average dose-response curves for each phenotype are indicated in bold. All curves represent the average of
replicates (n=2), and error bars indicate the standard error of the mean (SEM).
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an 11q deletion had IC50 values that were on average nearly 300

times lower (average IC50 = 9.1 nM) compared to that of

SKNSH clones with a wild type 11q locus (average IC50 =

2508.4 nM; Figure 1C). As SKNSH is a heterogenous cell line, it

is likely that the expanded subclones represent different

phenotypes of the SKNSH cell line, which could potentially

influence sensitivity to CHK1 inhibition (21, 22).

To further explore differences in sensitivity to CHK1 inhibition

and to validate our observation that 11q deletion is correlated with

sensitivity to CHK1 inhibition, we tested prexasertib in a panel of 12

NB cell lines (outlined in Figure 2A) that were selected based on the

presence or absence of 11q loss as determined by WGS. Following

prexasertib treatment, we observed that cell lines with an aberrant

11q locus had a significantly lower average IC50 value (3.1 nM)

compared to the average IC50 of 11q wild type cell lines (64.2 nM;

Figure 2B; Supplementary Table 4). Further validation using

propidium iodide staining and cell cycle analysis was consistent

with these observations: cell lines with an 11q deletion had a greater

proportion of sub G1 cells (>25%) compared to 11q wild type cells

(10%; Figure 2C).

To exclude the possibility that our observations were due to

off-target effects specific to prexasertib, we made use of the
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publicly available dataset from the Wellcome Trust Sanger

institute, which includes two different CHK1 inhibitors (MK-

8776 and AZD7762). Using this dataset, we observed that NB

cell lines with 11q loss were significantly more sensitive to CHK1

inhibition than 11q wild type cells (Figures 3A, B). Additionally,

the dataset included a WEE1 inhibitor which also targets CHK1

(Wee1 Inhibitor). Again, 11q deleted cell lines demonstrated

superior sensitivity to this compound, despite the fact that our

results presented in Figure 1B suggest that 11q deleted cells are

less sensitive to specific WEE1 inhibition (using adavosertib).

Altogether, our observations indicate that the improved efficacy

associated with 11q deleted cells is likely an effect related to

specific targeting of CHK1.
MYCN amplification induces sensitivity to
prexasertib in 11q wild type cells

Intriguingly, we observed two clearly distinct groups in the

11q wild type cell lines after exposure to prexasertib—one which is

insensitive to prexasertib treatment and one which has IC50 values

comparable to 11q deleted cell lines (Figure 2B). This response
A B

C

FIGURE 2

Cells with 11q loss are more sensitive to prexasertib treatment. (A) Ideogram of chromosome 11q and approximate deletions (represented by the
absence of a colored bar) in the panel of NB cell lines used in this study. (B) Box plot of IC50 values following 72-hour prexasertib treatment in
11q del (blue) and 11q wild type (grey) cell lines. Statistical significance is reached (Mann Whitney U test, p=0.03). (C) Cell cycle distribution of
11q deleted (CHLA-90 and Gimen) and 11q wild type (SH-SY5Y) cells following 72-hour incubation with 5 nM of prexasertib.
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dichotomy suggests the presence of other biomarkers and

prompted us to consider other genetic abnormalities frequently

observed in NB. MNA is one of the most common aberrations,

observed in approximately 25% of NB tumors, and is associated

with a poor prognosis (23–25). MNA has been shown to increase

replication stress and render cells more vulnerable to targeted

inhibition of proteins involved in replication stress response

pathways, one of which is CHK1 (26, 27). Closer examination

of the dose response curves revealed that MYCN status had no

substantial additional effect on prexasertib sensitivity in 11q

deleted cell lines (Figure 4A), but that MNA was associated with

prexasertib sensitivity in 11q wild type cells (Figure 4B).
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To further explore this involvement of MNA in prexasertib

sensitivity, we used an isogenic model of the Shep21n cell line

(28). This is a cell line derived from theMYCN and 11q wild type

Shep2 cell line with induced constitutive MYCN expression that

can be downregulated with tetracycline treatment (Figure 4C).

Using this model system, we indeed observed that constitutive

expression of MYCN induced prexasertib sensitivity in Shep21n

cells (IC50 = 7.3 nM versus 579.1 nM in Shep2 cells) and that this

effect could be abrogated with tetracycline treatment (IC50 = 22.1

nM; Figure 4D). These results strongly suggest that MNA could

be a biomarker for CHK1 inhibition in 11q wild type tumors and

warrants further investigation.
A

B

FIGURE 3

Validation of correlation between 11q loss and CHK1 inhibitor sensitivity. (A) Volcano plot of differential drug sensitivities in 11q deleted versus
11q wild type neuroblastoma cell lines included in the Wellcome Trust Sander Institute dataset. The y-axis shows the inverted p-value (-log10)
as derived by student’s t-test and the x-axis shows the effect magnitude (mean IC50 of 11q deleted – mean IC50 of 11q wild type cell lines).
Each dot represents one compound and those targeting CHK1 are highlighted in red. (B) Box plot of IC50 values of NB cell lines included in the
Wellcome Trust Sanger Institute dataset after exposure to CHK1 inhibition with MK-8776 (p = 0.0002), AZD7762 (p = 0.0003) or Wee1 Inhibitor
(p = 0.0071). Statistical significance is reached (Mann-Whitney U test).
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Combined CHK1 and WEE1 inhibition
is synergistic in all 11q and
MYCN phenotypes

Since monotherapy often leads to the emergence of resistance,

we next focused on identifying potential combination strategies.

To identify compounds that are synergistic with prexasertib in an

11q deleted phenotype, we performed a high-throughput drug

screen, combining prexasertib treatment with a library of 197

cytotoxic and targeted compounds using the prexasertib sensitive,

11q deleted SKNSH clone 10 cells. Following combination

treatment, cell viability was calculated and synergy was

evaluated using the bliss independence model (29). In our

experiment, 29 compounds had a bliss independence score

greater than 0.2 when combined with prexasertib, indicating

synergism (Supplementary Table 5). As synergy alone does not

always translate to efficacy, we use cell viability (final cell viability

<20%) as an extra selection criterium to identify combinations

with relevant therapeutic effects. Using this strategy, we found that

topotecan, SN-38 (the active metabolite of irinotecan), cytarabine

and adavosertib demonstrated synergism and efficacy when

combined with prexasertib (Figure 5A).
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The strongest hit in our high-throughput drug combination

screen, combining synergy and efficacy, was the WEE1 inhibitor,

adavosertib (bliss score = 0.47; final cell viability = 12.7%; Figure 5A).

To validate this observation, we screened this combination using a

larger concentration range across a wider panel of NB cell lines

representing different 11q and MYCN phenotypes (11q del/MYCN

wt: SKNAS, CHLA-90; 11q del/MNA: NGP, SJNB-6; 11q wt/MYCN

wt: SJNB-12, SH-SY5Y; 11q wt/MNA: SJNB-8, SKNBE). Consistent

with our high-throughput data, we observed strong synergism (bliss

score = 0.45) and efficacy when prexasertib was combined with 80

nM of adavosertib to treat 11q deleted, MYCN wild type cell lines.

Interestingly, this combination also resulted in strong synergy (bliss

score = 0.41-0.49) in all other cell lines, regardless of 11q or MYCN

status, suggesting a general applicability of this combination in NB

(Figures 5B, C; Supplementary Figures 2-3). To investigate the on-

target effects of prexasertib and/or adavosertib treatment, we

interrogated the phosphorylation status of CHK1 and the

downstream target of WEE1, CDC2. Following 6- or 24-hour

treatment with prexasertib or adavosertib monotherapy, we

observed a decrease in pCHK1 (S296) and pCDC2 (Y15),

respectively, and very minor induction of DNA damage as

evidenced by gH2AX staining (Figure 5D). Following combination
A B

C D

FIGURE 4

MYCN amplification induces sensitivity to prexasertib treatment in 11q wild type cells. (A) Dose-response curves of two 11q deleted cell lines
with MNA (dark blue; NGP and SJNB-6) and two MYCN wild type cell lines (light blue; CHLA-90 and SKNAS) following 72-hour treatment with
prexasertib. (B) Dose-response curves of two 11q wild type cell lines with MNA (red; SKNBE and SJNB-8) and two MYCN wild type cell lines
(orange; SH-SY5Y and SJNB-12) following 72-hour treatment with prexasertib. Average dose-response curves are indicated in bold, and all
curves represent the average of replicates (n=2) where error bars indicate the standard error of the mean (SEM). (C) Western blot of N-myc
expression for Shep21n and Shep2 cells without tetracycline treatment and for Shep21n with 50 ng/ml tetracycline treatment for 24, 48 and 72
hours. (D) Dose-response curves for 72-hour prexasertib treatment in the cell lines Shep2 (orange), Shep21n (red) and Shep21n with 50 ng/ml
tetracycline (grey).
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A B
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FIGURE 5

Combined CHK1 and WEE1 inhibition is strongly synergistic. (A) High-throughput screening hits that resulted in a bliss independence score > 0.2
when combined with prexasertib treatment for 72 hours in the 11q deleted SKNSH clone 10 cells. Compounds that induced > 80% cell killing are
represented in purple (cytotoxic compounds) and blue (targeted inhibitors). (B) Dose-response curves for 11q del/MYCN wild type (SKNAS and
CHLA-90), 11q del/MNA (NGP and SJNB-6), 11q wild type/MYCN wild type (SJNB-12 and SH-SY5Y) and 11q wild type/MNA (SJNB-8 and SKNBE)
cell lines following 72-hour prexasertib treatment (black) or in combination with 80 nM adavosertib (blue). Average dose-response curves are
indicated in bold, and all curves represent the average of replicates (n=2) where error bars indicate the standard error of the mean (SEM).
(C) Heatmaps indicating the average bliss independence scores for 11q del/MYCN wild type (SKNAS and CHLA-90), 11q del/MNA (NGP and
SJNB-6), 11q wild type/MYCN wild type (SJNB-12 and SH-SY5Y) and 11q wild type/MNA (SJNB-8 and SKNBE) cell lines following combination
treatment with 0.03-10 µM prexasertib and adavosertib. (D) Protein expression of CHK1, pCHK1 (S296), WEE1, CDC2, pCDC2 (Y15) and gH2AX in
SJNB6 cells following 6- or 24-hour treatment with 0.64 nM prexasertib and/or 80 nM adavosertib.
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therapy with prexasertib and adavosertib, phosphorylation of CDC2

is nearly entirely inhibited and a large accumulation of DNA damage

is observed.

Being that irinotecan and topotecan are standard chemotherapy

modalities used in the clinic for the treatment of recurrent or

refractory NB, we specifically further explored these hits in SKNAS

(11q del/MYCN wt), NGP (11q del/MNA), SH-SY5Y (11q wt/

MYCN wt) and SKNBE (11q wt/MNA) cells. When prexasertib is

combined with SN-38 or topotecan, additive/minor synergistic

effects are observed across all 11q and MYCN phenotypes and no

relevant antagonism is measured (Figures 6A, B; Supplementary

Figures 4-6). To further evaluate how CHK1 inhibition interacts

with other standard-of-care compounds used in the treatment of

NB, more robust preclinical studies should be performed.

Nonetheless, the observed additive effects in all NB phenotypes in

our study suggest that the addition of CHK1 inhibition could

potentially be used to lower the required dose of classic

chemotherapeutics and thereby limit the toxic side effects that are

often associated with these therapies.
CHK1 inhibition is effective in patient-
derived neuroblastoma model systems
and demonstrates synergy when
combined with WEE1 inhibition

Next, we used our generated patient-derived NB tumoroids to

explore our findings further. Tumoroids more closely recapitulate
Frontiers in Oncology 09
the genomic background and phenotype of NB tumors than

classical cell lines and provide additional in vitro evidence to

support further studies using combined CHK1 and WEE1

inhibition in NB (30). Following treatment with prexasertib, we

observed the same effects as in the classical NB cell lines—

tumoroids with an 11q deletion and/or MNA were more

sensitive to prexasertib treatment than lines that harbor neither

aberration (Figures 7A, B; Supplementary Figure 7). Additionally,

we observed synergism in all tumoroids when treated with

combined CHK1 and WEE1 inhibitors (Figure 7C). The

synergistic effects were further validated by evaluating

phenotypic and cell cycle changes in tumoroids. Consistent with

our previous observations, combination treatment with

prexasertib and adavosertib induced greater cell killing

compared to monotherapy (Supplementary Figure 8).
Discussion

In our study, we use the characteristic hemizygous loss of

chromosome 11q in NB to explore targetable vulnerabilities that

can be used for therapeutic purposes. Being a copy number

driven (C class) tumor, the development and practical

application of targeted inhibitors for the treatment of NB has

been challenging as there are few targetable recurrent somatic

mutations in these tumors at diagnosis (6). By using specific

large-scale chromosomal aberrations to guide the selection and

validation of potential drug targets, we hope to expand the
A B

FIGURE 6

CHK1 inhibition combined with SN-38 treatment demonstrates additive effects. (A) Dose-response curves for classical for 11q deleted/wild type
cell lines with and without MNA following 72-hour exposure to prexasertib alone (prex, black) or in combination with 3.2 nM of SN-38 (purple).
All curves represent the average of replicates (n=2) where error bars indicate the standard error of the mean (SEM). (B) Heatmaps indicating the
calculated bliss independence scores for cell lines treated with 0.03-10 µM prexasertib and SN-38.
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clinical applicability of novel targeted therapies and help develop

better treatment options for children with NB.

Following high-throughput screening of a drug library

including targeted inhibitors that are clinically approved or

in (pre)clinical development, we identify CHK1 as a potential

target for 11q deleted NB. Interestingly, this is not the first time

that CHK1 has been proposed for the treatment of NB. Using

RNAi loss-of-function screens, CHK1 was identified as a

potent target in NB and further preclinical validation studies

have demonstrated exceptional in vitro and in vivo efficacy of

the CHK1 inhibitor, prexasertib (31–33). While there is an

ongoing phase I clinical trial for prexasertib in pediatric

patients (NCT02808650; Supplementary Table 3), including

those with NB, a clear biomarker for CHK1 inhibition has yet

to be identified. Until now no associations have been made

between copy number aberrations and CHK1 inhibition. By

further investigating drug sensitivity in cell lines, patient-

derived tumoroids and a publicly available dataset—which

altogether encompass many different sizes of 11q loss—our

study clearly demonstrates that hemizygous deletion of 11q can

be used as a biomarker for single compound treatment

with prexasertib.
Frontiers in Oncology 10
Additionally, we observed an increased sensitivity to prexasertib

in the presence of MNA, which is a genetically distinct subtype of

NB that is associated with poor patient outcome (23–25).While 11q

loss and MNA are very different from one another on a genomic

level, literature suggests that cells with these aberrations have one

thing in common: replication stress. Previous studies have shown

that 11q loss induces in haploinsufficiency of key DNA damage

repair genes, which results in the accumulation of DNA damage

and thus, replication stress (34). Independently, it has been shown

that MNA is also capable of inducing the accumulation replication

stress by activating dormant origins of replication (27, 35). Despite

being very different genomic aberrations, these studies have shown

that increased replication stress associated with 11q loss or MNA

induces increased sensitivity to inhibition of key replication stress

proteins (27, 34–38). As CHK1 is essential to the replication stress

response via its role in replication fork stabilization andmodulation

of the S-phase and G2-M cell cycle checkpoints during DNA

damage repair, it is perhaps unsurprising that we observe effective

cell killing when CHK1 is inhibited in cells with genomic

aberrations that are known to cause additional replication stress.

The dependency of NB cells on replication stress response pathways

for survival is further elucidated in a recently published study where
A B

C

FIGURE 7

Patient-derived NB tumoroids are sensitive to CHK1 inhibition and improved in vitro efficacy is observed with the addition of WEE1 inhibition.
(A) Dose-response curves of 11q deleted, MYCN wild type NB tumoroids (NB059 and AMC772) following 72-hour treatment with prexasertib
only (prex, solid line) or in combination with 16 nM adavosertib (ada, dashed line). (B) Dose-response curves of 11q wild type NB tumoroids with
MYCN amplification (NB129, orange) and without MYCN amplification (NB139, red) following prexasertib treatment (prex, solid line) or
prexasertib in combination with 16 nM of adavosertib (ada, dashed line). All curves represent the average of replicates (n=2) where error bars
indicate the standard error of the mean (SEM). (C) Bliss independence heatmaps for NB tumoroids following combination treatment with 0.03-
10 µM prexasertib and adavosertib.
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it is demonstrated that MNA-driven NB is resistant to replication

stress via overexpression of ribonucleotide reductase subunit M2

(RRM2) (35).

Investigation into compounds that act synergistically with

prexasertib further support our hypothesis that CHK1 sensitivity

is related to inherent replication stress driven by genomic

aberrations in NB. In our study, the most synergistic

combination observed was when prexasertib was combined with

adavosertib, a WEE1 inhibitor. WEE1 kinase regulates cell cycle

progression by inhibiting mitotic progression at the G2

checkpoint. Considering that CHK1 also plays an important

role in cell cycle progression, it is not unexpected that

abrogation of both CHK1 and WEE1 signaling pathways would

be exceptionally lethal as cells with DNA damage would

inexorably be forced into mitosis. In fact, the potency of

combined CHK1 and WEE1 inhibition has been explored in

NB and a mechanism governed by DNA damage accumulation

and mitotic catastrophe has been elucidated (39). Taking our

monotherapy results into account, we further hypothesized that

with the inherent dependency on cell cycle checkpoints induced

by 11q loss or MNA, these cell lines would be the most sensitive to

combined CHK1 and WEE1 inhibition. Consistently,

combination therapy in 11q deleted or MYCN amplified cells

resulted in strong synergy and improved in vitro efficacy; however,

cells with a normal 11q locus and wild type MYCN also

demonstrated strong synergism. A next step would be to further

investigate the molecular consequences of 11q loss and test the in

vivo effects of combined CHK1 and WEE1 inhibition in this

context. Regardless of the mechanism, our results suggest that 11q

loss and MNA—two distinct patient groups which encompass 70-

80% of high-risk NB—might create a dependency on cell cycle

checkpoints for survival, leading to a targetable vulnerability

which can be exploited for therapeutic purposes (40–42).

In addition to combined targeted inhibitors, we also observed

additive to minor synergistic effects when prexasertib was

combined with the topoisomerase inhibitors topotecan and

irinotecan. Using CHK1 as a chemotherapeutic potentiator is

not entirely novel, however, it is interesting in the context of the

standard-of-care treatment protocols for NB patients with

relapsed or refractory disease (43). As per the SIOP-European

Neuroblastoma (SIOPEN) and Children’s Oncology Group

(COG) studies, topotecan and irinotecan have been introduced

into the treatment protocols for patients with relapsed or

refractory NB (44, 45). Furthermore, a recent study has

presented combined CHK1 and topoisomerase inhibition as an

effective combination in KRAS mutant colon cancer (46).

Aberrations within the RAS-MAPK pathway are well-known in

relapsed NB and finding the topoisomerase inhibitors topotecan

and irinotecan as synergistic candidates in our study suggest that

adding CHK1 inhibition to existing treatment protocols could

potentially be beneficial for relapsed or refractory NB patients

(47). To develop better therapeutic options for these patients, we

believe this combination should also be investigated further.
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Altogether our study highlights how we can use characteristic,

large genomic aberrations to guide the development of novel drug

targets and increase the potential applicability of these inhibitors

in the clinic. Additionally, our data builds on the existing evidence

that CHK1 is an effective therapeutic target for the treatment of

NB that should be investigated further.
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