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Abstract 
 
Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly 
understood, therapeutic strategy remains unclear, and prognosis is poor. We performed 
multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize 
the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that 
neither genetic profile nor transcriptome reliably correlate with specific MPAL 
immunophenotypes. However, progressive acquisition of mutations is associated with 
increased expression of immunophenotypic markers of immaturity. Using SC transcriptional 
profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from 
other acute leukemias and indicative of high differentiation potential. Further, patients with the 
highest differentiation potential demonstrated inferior survival in our dataset. A gene set 
score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA 
sequencing data and was predictive of survival in an independent patient cohort, suggesting 
utility for clinical risk stratification.  
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Introduction  
 
Mixed phenotype acute leukemia (MPAL) is characterized by leukemic blasts with both 
lymphoid and myeloid cell surface markers. Survival of patients with MPAL is poor and inferior 
to that of the more common acute lymphoid and myeloid leukemias (ALL and AML)1. The 
diagnostic definition of MPAL remains unrefined. While both ALL and AML are defined by 
genetic drivers, the 2022 WHO guidelines define MPAL largely by immunophenotype and 
include of only a handful of defining genetic abnormalities (BCR::ABL1 fusion, KMT2A, ZNF384, 
and BCL11B rearrangements)2.  Genomic alterations in MPAL are not unique and include 
mutations recurrently mutated in ALL or AML3. The biologic connection between 
immunophenotype and genotype in MPAL is unknown. Importantly, neither the 
immunophenotype nor the genotype of MPAL correlates with overall survival, suggesting that a 
more complete biologic understanding of MPAL, and subsequent disease definition and risk 
stratification, remains to be determined2,4.  
 
Due to the relative rarity and heterogeneous nature of MPAL, optimal therapeutic strategies 
remain uncertain. Emerging data suggests that sub-classification of MPAL may be needed to 
facilitate therapeutic decision making5. However, the full immunophenotypic, genetic, and 
transcriptomic changes that determine risk stratification of this complex disease have not been 
elucidated. Until recently, the technology to simultaneously determine immunophenotypic, 
genetic, and transcriptomic heterogeneity in MPAL has not existed. MPAL, with its definitionally 
‘mixed’ immunophenotype, is uniquely poised to benefit from multiomic single cell (SC) 
sequencing analysis, which can, for the first time, quantify the relationship between these 
cellular factors to better understand the biologic origin of MPAL and the mechanism of its poor 
prognosis.  
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Here, we use multiomic SC profiling on newly diagnosed MPAL samples to characterize the 
immunophenotypic, genetic, and transcriptional landscapes of MPAL. This profiling allows us to 
contradict the paradigm of MPAL as an entity on a continuum with ALL and AML, and instead 
identify MPAL as a distinct, stem-like disease that, in contrast to other leukemias, cannot be 
defined by genetics alone. We further describe a stem cell-derived gene expression signature 
for MPAL that can predict patient survival. These results broaden our understanding of MPAL 
biology and suggest a path toward novel risk stratification. Importantly, these findings have 
potential to direct treatment and, hopefully, ultimately improve the prognosis of this disease.  
 
Results 
 
The Heterogeneous Genetic Landscape of MPAL 
 
To characterize the heterogeneous genetic, transcriptional, and immunophenotypic landscape 
of MPAL, we analyzed samples from 14 patients with newly diagnosed MPAL using two SC 
technologies in parallel: DAb-Seq (SC DNA plus protein sequencing)6-8 and CITE-seq (SC RNA 
plus protein sequencing)9 (Figure 1A). Patient characteristics are in Supplementary Table 1. By 
clinical immunophenotyping via flow cytometry, our cohort included 10 patients with B/myeloid, 
3 patients with T/myeloid, and 1 patient with B and T/myeloid MPAL.  
 
For DAb-seq, we used a panel covering hotspots in 20 genes frequently mutated in leukemia 
combined with 22 antibody-oligonucleotide conjugates for cell-surface immunophenotypic 
proteins on hematopoietic cells (Supplementary Table 2, Supplementary Table 3)6-8. A total of 
58,807 individual cells were genotyped, with a median of 4,221 cells per sample (range 1,093 - 
7,245 cells/sample) (Supplementary Table 4).  
 
The mutational landscape for all patients and clones is depicted in Figures 1B and 1C. Across 
the cohort, we identified 27 pathogenic or likely pathogenic mutations within 36 genetically-
distinct clones (median 2.6 clones/patient, range 0 - 6); there was no difference in the number of 
clones between B/myeloid and T/myeloid MPAL (2.8 vs 2.3, p = 0.66) (Supplementary Table 5). 
At the clone level, the most commonly mutated genes were NRAS, present in 10 clones (28%), 
TP53, present in 8 clones (22%), and DNMT3A and IDH1, each present in 7 clones (19%).  
 
Clone-level mutational co-occurrence analysis demonstrated the strongest positive association 
between NRAS/IDH1 (Odds Ratio [OR] 8.91, p <0.0001), FLT3/ASXL1 (OR 8.58, p = 0.008) 
and PTPN11/SF3B1 (OR 4.13, p = 0.002); IDH1/IDH2 were negatively associated (OR -0.58, p 
= 0.003) (Figure 1D). Except for DNMT3A/ASXL1, mutations from the same functional class 
were infrequently co-mutated in the same single cell and clone; notably, no clones 
demonstrated more than one distinct signaling mutation.  
 
Using SC DNA sequencing, we reconstructed the evolutionary history of each patient using 
single cell inference of tumor evolution (SCITE), a probabilistic model to infer genetic phylogeny 
(Supplementary Figure 1)10. Patients demonstrated diverse phylogenetic trees with both linear 
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and branched architectures. Across the cohort, the most common functional class of founding 
mutations was epigenetic regulators, at 7/18 (38.8%). The most common functional class of 
branch mutations was activated signaling mutations, at 10/25 (40%). 
 
The Heterogeneous Transcriptional Landscape of MPAL  
 
For CITE-seq analysis, we used a particle-templated instant partitions sequencing (PIPseq) 
approach to perform SC indexing of transcriptomes and epitomes sequencing (CITE-seq) 
analysis with a panel of 19 barcoded antibodies (Supplementary Table 6)9. A total of 72,131 
individual cells from 12 patients were genotyped, with a median of 6,010 cells per sample 
(range 1,173 – 10,275) (Supplementary Table 4). Across all patients, SC transcriptional data 
was clustered by transcription and annotated (Figure 1E). Notably, all 12 patients, regardless of 
MPAL immunophenotypic subtype, contributed to the cluster annotated as leukemia 
(Supplementary Figure 2). After normalization for the number of cells isolated per patient, the 
proportion of the leukemia cluster attributed to an individual patient ranged from 4.5% - 10.4% 
(median 8.8%). Furthermore, immunophenotypic subtype was not the primary predictor of 
transcriptional variation in correspondence analysis (Supplementary Figure 3). Relative to non-
leukemic cells and clusters, the conserved leukemia cluster demonstrated a unique 
transcriptional signature (Figure 1F, Supplementary Table 7).  
 
Genotype and Immunophenotype Incompletely Associate Across Patients 
 
Using DAb-seq, we examined the association between immunophenotype and genetic clonal 
architecture. Patients with MPAL demonstrated heterogeneous immunophenotypes among both 
individual patients and MPAL subtypes (Supplementary Figure 4A, B). Across all patients, we 
observed some broad genotype-immunophenotype associations, including associations 
between JAK2 mutations and CD71 (Point-biserial correlation coefficient 0.98; p < 7.2e-8), 
NRAS and CD38 (Point-biserial correlation coefficient 0.89; p = 0.004), and IDH2 and CD11b 
and CD64 (Point-biserial correlation coefficients 0.87 and 0.80; p=0.002 and p=0.008, 
respectively) (Figure 2A, Supplementary Figure 4C).  
 
We also observed considerable inter- and intra-patient heterogeneity at the clonal level; 
genotype-immunophenotype associations were present in some, but not all, mutated clonal 
populations (Figure 2B). For instance, our cohort included 4 NRAS-mutated clones. In 3/4, 
NRAS-mutated cells had significantly increased CD34 expression relative to NRAS-wildtype 
(WT) blasts within the same patient (t-statistics 52.3, 20.1, 22.3; p = 0.0, p = 1.7e-85, p = 3e-
99); however, in one clone there was no difference in CD34 expression between NRAS-mutated 
vs NRAS-WT cells (t-statistic 1.2; p = 0.25). Increased expression of other immunophenotypic 
proteins associated with an immature cell state, including CD38, CD33, CD123, and CD117, 
was also observed among select NRAS-mutated populations. These striking relationships were 
not observed, however, among other mutations in genes associated with cell signaling, 
including KRAS, PTPN11, or FLT3 (Supplementary Figure 5A). Similarly, select DNMT3A, IDH1 
and IDH2 mutated populations were associated with markedly increased expression of CD13 
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and CD11b, both associated with myeloid/monocytic differentiation, but this pattern was not 
consistent among all clones with these mutations (Supplementary Figure 5B). 
 
Genotype and Immunophenotype Incompletely Associate Within Individual Patients 
 
The heterogeneous association between genotype and immunophenotype was further observed 
at the individual patient level. In some patients, genotype was strikingly associated with a 
distinct immunophenotype, while in other patients, genotype-immunophenotype association was 
not observed. For example, in Patient 1, we identified multiple immunophenotypically defined 
subpopulations, including a subset of cells with strong CD34 expression and a subset with 
strong CD71 expression (Figure 2C). In this patient, JAK2-mutated cells were associated with 
significantly higher CD71 expression relatively to JAK2-WT cells (median CD71 expression 6.40 
vs 3.49, p =3.4e-89), and the proportion of JAK2-mutated cells in the CD71-bright population 
was higher than in the CD34-bright population (11.1% vs 0%, p < 1e-99) (Figure 2D-F). By 
contrast, in Patient 2, genotype and immunophenotype were not associated. Like Patient 1, 
Patient 2 also had multiple immunophenotypically-defined subpopulations, including a 
population with strong CD19 and CD38 expression and a separate population with strong 
CD11b and CD123 expression (Figure 2G). Unlike Patient 1, in Patient 2, identified driver 
mutations were not associated with a specific immunophenotype, with an equal proportion of 
KRAS-mutated and DNMT3A-mutated cells in the CD19+/CD38+ population vs the 
CD11b+/CD123+ population (KRAS: 12.01 vs. 11.84%, p = 0.06; DNMT3A: 3.08 vs 3.19%, p 
=0.22) (Figure 2H-J).  
 
Further highlighting the heterogeneity among genotype-immunophenotype associations, we 
observed that the same mutation does not consistently associate with the same 
immunophenotype across patients. For example, both Patient 7 and Patient 14 harbor an IDH2 
R140Q mutation. In Patient 7, IDH2-mutated cells were significantly associated with increased 
expression of monocytic markers CD11b, CD64, CD13, and CD14 relative to IDH2-WT cells 
(median CD11b expression 4.12 vs 5.54, p = 9e-88; CD64 2.01 vs 2.89, p = 1.3e-34; CD13 3.34 
vs 4.75, p = 2.3e-58; CD14 3.38 vs 3.90, p = 8.8e-40) (Supplementary Figure 6A-B). Although 
Patient 14 had the same IDH2 R140Q mutation, IDH2-mutated cells in this patient only 
demonstrated slightly higher expression of CD11b and did not have higher expression of other 
monocytic markers (median CD11b expression 3.29 vs 3.67, p = 0.012; CD64 1.04 vs 1.11, p = 
0.12; CD13 3.06 vs 3.20, p = 0.09; CD14 2.76 vs 2.88, p = 0.21) (Supplementary Figure 6). 
 
Progressive Mutational Acquisition is Associated with Increase in Expression of 
Immunophenotypic Markers of Immaturity 
 
In addition to the association between genotype and immunophenotype, we also assessed the 
association between mutational phylogenetic progression and immunophenotypic evolution. Of 
the 14 patients in our cohort, 9 had at least 2 stepwise mutational acquisitions identified on SC 
phylogenetic analysis (Supplementary Figure 1). For these 9 patients, we measured how cell-
surface immunophenotypic protein expression changed with progressive acquisition of 
mutations (Figure 3A).  
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Across all 9 patients, the maximal change in protein expression was greatest for CD38, CD34, 
CD33, CD123, and CD117, markers associated with immaturity (hematopoietic stem cells, and 
in some cases common myeloid or granulocyte-monocyte progenitor cells). Therefore, with 
progressive mutational acquisition, there was increased expression of these 5 markers of 
immaturity. Figure 3B depicts the change in expression of these 5 immunophenotypic proteins 
for all 9 patients. Despite containing diverse mutations, all 9 patients demonstrated significant 
increase in the expression of at least 2 of these 5 proteins with mutational acquisition, and in 2 
patients (Patient 7 and Patient 11), expression of all 5 proteins increased. Furthermore, for 
patients with 3 or more stepwise mutational acquisitions, these immaturity markers often 
increased multiple times. For example, in Patient 4, CD34 expression significantly increased 
with acquisition of a TP53 mutation, and then significantly increased again with subsequent 
acquisition of a RUNX1 mutation.  Collectively, these findings suggest that in MPAL leukemic 
progression, mutational evolution is associated with transition to a more immature 
immunophenotype.  
 
While increased expression of immature markers CD38, CD34, CD33, CD123, and CD117 was 
the most common immunophenotypic change, evidence of cellular maturation and differentiation 
was seen in select genetic branches. For example, in Patient 12, acquisition of a terminal 
DNMT3A mutation was associated with increased expression of CD11b, CD13, CD14, and 
CD64, consistent with myeloid and monocytic differentiation (Supplementary Figure 7).  
 
Transcription and Immunophenotype Associate Incompletely Across Patients 
 
We next examined how gene expression was associated with immunophenotype across all 
patients. Through unsupervised clustering of immunophenotypic markers across all cells and all 
patients, we identified 13 immunophenotypically-defined subpopulations. For many of these 
subpopulations, the cell type as identified by transcription closely associated with the expected 
immunophenotype (Supplementary Figure 8). For example, transcriptionally defined normal T 
cells were composed of 87.2% CD3+/CD5+ cells, while transcriptionally defined normal B cells 
were 94.2% CD19+/CD22+ cells (Figure 4A).  
 
To contrast, the transcriptionally defined ‘leukemia’ cells were comprised of cells from 
heterogeneous immunophenotypic subpopulations, with the greatest contributions from cells 
with stem or myeloid markers, including CD34+/CD13+ cells (12.89% of leukemia population), 
CD34+/CD117+ cells (12.86%), IgG1+/HLA-DR+ cells (11.81%), CD33+/CD64+ cells (11.60%), 
and CD34+/CD33+/CD117+ cells (11.20%). Cells with lymphoid markers were also present in 
the transcriptionally defined leukemia cells, but in smaller proportions with 
CD19+/CD22+/CD30+ cells comprising 5.96% of the leukemia cluster, followed by 
CD19+/CD22+/CD45+ cells (5.49%), CD3+/CD5+/CD7+ cells (4.45%), and CD3+/CD4+/CD5+ 
cells (0.4%) (Figure 4A). While the immunophenotypic subpopulations demonstrated some 
differences in gene expression, many had similar expression patterns, reflecting that many 
individual cells had similar gene expression despite having heterogeneous immunophenotypes 
(Figure 4B).  
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Transcription and Immunophenotype Associate Incompletely Within Individual Patients 
 
On the individual patient level, the association between transcription and immunophenotype 
was heterogeneous. In some patients, immunophenotype was closely associated with a distinct 
transcriptional signature. For example, in Patient 11, immunophenotype-based clustering 
revealed distinct CD34+ and CD33+ populations (Figure 4C). In addition to having distinct 
immunophenotypes, these two populations also had distinct gene expression profiles, with the 
CD33+ population demonstrating markedly higher expression of major histocompatibility 
complex-encoding genes HLA-DQA1, HLA-DQB1, HLADPB1, HLA-DRA, and HLA-DPA1, 
relative to the CD34+ population (Figure 4D). In other patients, however, immunophenotype and 
transcriptional profile were not closely associated. For example, in Patient 2, immunophenotype-
based clustering also revealed distinct CD34+ and CD33+ subpopulations (Figure 4E). Unlike 
Patient 11, however, in Patient 2 these two immunophenotypically-distinct subpopulations did 
not have distinct gene expression profiles (Figure 4F).  
 
MPAL cells upregulate stemlike pathways and are distinct from other acute leukemias 
 
To further define the transcriptional signature of MPAL, we performed gene set enrichment 
analysis (GSEA) on all transcriptionally annotated as leukemia cells across all patients using the 
molecular signature database (mSigDB) hallmark and C2 gene sets (Figure 4G)11,12. GSEA 
demonstrated enrichment for gene sets associated with stem cells. The greatest enrichment 
was demonstrated for a gene signature first described in CD133+ stem cells derived from 
human cord blood (normalized enrichment score [NES] 2.92, q-value 0.0); genes associated 
with embryonic stem cells were also highly enriched (NES 2.41) (Supplementary Figure 9A)13,14. 
Decreased enrichment was demonstrated in gene signatures associated with immune or 
inflammatory pathways, including natural killer cell cytotoxicity, complement activation, and 
interferon gamma signaling (Supplementary Figure 9B).  
 
In addition to mSigDB gene sets, we also assessed enrichment of gene sets derived from 
transcriptional analysis of other immature leukemias. For this analysis, we included gene 
signatures associated with early T-cell progenitor (ETP) ALL, KMT2A-rearranged B-cell ALL, 
hematopoietic-stem cell (HSC)-like AML, and the leukemia stem cell (LSC)-47, a gene score 
associated with immature AML15-18. We also compared gene signatures derived from more 
differentiated acute leukemias, including granulocyte-monocyte progenitor-like AML, myeloid-
like AML, and NUTM1-rearranged ALL15,17. None of these AML or ALL-derived gene signatures 
were enriched in MPAL above a threshold of NES> +/- 0.1 (nominal p-value > 0.05) (Figure 4G), 
indicating that the MPAL transcriptional profile is distinct from known signatures associated with 
either lymphoid or myeloid acute leukemias.  
 
MPAL cells demonstrate variable differentiation potential which predicts survival  
 
Given enrichment for genes associated with stemness as well as the lack of enrichment of 
known leukemia gene signatures, we sought to apply a more recently developed metric of 
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stemness, CytoTRACE [for cellular (Cyto) Trajectory Reconstruction Analysis using gene 
Counts and Expression]19, to our SC transcriptional dataset. CytoTRACE is a computational 
framework for predicting the differentiation potential of a single cell based on transcriptional data 
about numbers of expressed genes, covariant gene expression, and local neighborhoods of 
transcriptionally similar cells. CytoTRACE provides a score for each cell representing its 
stemness within a given dataset,19 ranging from 0 to 1, with higher scores indicating greater 
stemness. When applied to our 12 patient cohort, we found high CytoTRACE scores to be 
overrepresented in our ‘leukemia’ cluster relative to non-leukemic populations (median 
CytoTRACE 0.61 vs 0.23 for leukemia vs non-leukemia populations, p < 2e-16) (Figure 5A). 
 
Across the cohort, CytoTRACE score was moderately correlated with higher CD34 expression, 
followed by HLA-DR, CD117, and CD33 expression (Spearman correlation coefficient 0.44, 
0.25, 0.20, 0.18 for CD34, HLA-DR, CD117, and CD33, respectively) (Figure 5B-C). For 
individual patients, the median CytoTRACE score of each patient’s leukemia population varied 
considerably, ranging from 0.13 (least stemlike) to 0.89 (most stemlike). When stratified by 
median CytoTRACE score of the leukemia population, a higher median CytoTRACE trends 
towards an inferior overall survival (OS) in our small cohort (p = 0.053) (Figure 5D).  
 
Relative to single cells with lower CytoTRACE scores (< 0.95), single cells with very high 
CytoTRACE scores (>= 0.95) demonstrated a distinct gene expression profile (Figure 5E). In a 
GSEA, cells with CytoTRACE scores >= 0.95 demonstrated upregulation of multiple pathways 
associated with cellular proliferation, cell cycle dysregulation, and a stem or progenitor-like cell 
state (Supplementary Figure 10).  
 
Generation of a CytoTRACE-based prognostic signature and validation in an 
independent cohort 
 
We next sought to derive and validate a CytoTRACE-based prognostic metric in an independent 
cohort of patients with MPAL. To generate a CytoTRACE-based score, we compared the 
differential gene expression of single cells with very high (>= 0.95) vs low (<0.95) CytoTRACE 
scores. Genes with greatest upregulation in the cells with high CytoTRACE scores were then 
used to compute a gene set score, which we termed MPAL95. When pseudo-bulking was 
applied to the leukemic populations of our cohort, we confirmed that MPAL95 was prognostic for 
OS while the LSC-17, a transcriptionally-based risk stratification system previously described in 
AML18, was not (Supplementary Figures 11A-B). 
 
The prognostic ability of MPAL95 was validated using external bulk RNAseq data of acute 
leukemias of ambiguous lineage from the Therapeutically Applicable Research To Generate 
Effective Treatments (TARGET) initiative, which includes expression profiles for 115 pediatric 
patients with MPAL; 69 patients with available survival data were included in this analysis20. 
Patients from the TARGET cohort demonstrated variable MPAL95 scores (Supplementary 
Figure 11C). Relative to patients with the lowest MPAL95 scores, patients with high MPAL95 
scores demonstrated significantly inferior OS with a 2-year OS of 62.6% (95%CI 50.2% - 
78.1%) for patients with high MPAL95 scores versus 88.1% (95% CI 73.9% - 99.9%) for 
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patients with low MPAL95 scores (p = 0.018; Figure 5E, Supplementary Figure 11D). This 
relationship was preserved in a multivariable Cox regression model. High MPAL95 score was 
significantly associated with inferior OS independent of patient age, sex, white blood cell count 
at diagnosis, WHO subtype, and type of frontline treatment, with a hazard ratio of 4.93 (95% 
confidence interval 1.19–- 20.3, p = 0.028) (Figure 5F). By contrast, the LSC-17 was not 
prognostic for OS in the TARGET cohort (Supplementary Figure 11E).  
 
Discussion  
 
There is a critical need for improved outcomes in MPAL. The historical lack of biologic 
understanding and subsequent confusion in defining this disease entity remain critical barriers 
to improving survival. There are no consensus guidelines for treatment. In current practice, 
patients are treated with either ALL- or AML-like chemotherapy, a decision often made arbitrarily 
rather than driven by disease biology. A recent analysis suggested matching treatment to ALL- 
or AML-like chemotherapy based on methylation profiles may improve remission rates, but this 
has not been adopted into clinical practice5. Without appropriate definition and sub-classification 
of MPAL, clinical trials to optimize therapy are challenging. Furthermore, no risk stratification for 
MPAL currently exists. In this context, we offer a dissection of the cellular genetic and 
transcriptional origin of MPAL and provide a framework for disease definition and risk 
stratification. Our SC multiomic analysis of newly diagnosed MPAL samples allows for direct 
measurement of cell surface markers comprising the ‘mixed’ immunophenotype and permits 
explicit correspondence of immunophenotype with genetic and transcriptomic profiles. 
Characterization of these relationships at the SC level has not previously been performed in 
MPAL. Our data contradicts the assumption that MPAL lies on a continuum with other acute 
leukemias, and instead classifies MPAL as a distinct leukemia with stem-like features. Unlike 
ALL and AML, which are defined and risk stratified by genetics, we distinguish MPAL with a 
transcription-based metric that correlates with patient survival and can be distilled into a score, 
MPAL95, which permits risk stratification from bulk RNAseq data.  
 
Our data provides novel insight into the biology and leukemogenesis of MPAL. The gene 
mutation panel in our study was not exhaustive, including a limited set of 20 genes commonly 
mutated in acute leukemias.  Nonetheless, we observed stepwise acquisition of mutations in 9 
patients and associate mutation phylogeny with immunophenotypic changes. Most leukemias 
are thought to be driven by a series of successive genetic alterations, culminating in 
transformation to malignant disease. This canonical road of leukemogenesis, when applied to 
MPAL, suggests that sequential mutation acquisition leads an MPAL cell to have increased 
potential for lineage plasticity. Prior investigation into MPAL biology suggested the stem-like 
nature of MPAL and proposed that mutation in a multipotent progenitor cell leads to lineage 
promiscuity3. Our data also supports the stem-like nature of MPAL. As defined by CytoTRACE, 
MPAL cells express a stem-like gene expression profile and demonstrate a large number of 
expressed genes.  
 
We have shown that, in MPAL, markers of immaturity can be gained alongside mutations over 
time. In our data, mutational acquisition was associated with increased expression of multiple 
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cell-surface proteins associated with an immature and less differentiated cell state. MPAL may, 
therefore, arise from a primitive cell, or an MPAL cell may revert to a more primitive phenotype 
with successive mutational evolution. This suggests that the MPAL cell of origin may span a 
spectrum of differentiation and supports that a cell’s leukemic potential cannot be assigned by 
immunophenotype. Microenvironmental factors or epigenetics may also influence the translation 
of the genome or transcriptome to lineage expression in individual leukemic populations 
(Supplementary Figure 12). 
 
This improved biologic understanding further demarcates MPAL as distinct from ALL or AML. 
MPAL shares many common genetic aberrations with AML and ALL. In our MPAL dataset, as in 
SC AML data, signaling mutations were not co-mutated within the same cell or clone, 
suggesting that some co-mutational patterns may be conserved across histologies 7,8,21. The 
phenotypes resulting from specific mutations, however, may be discrete to each leukemia. For 
example, across our MPAL cohort, NRAS mutations were associated with a more immature 
phenotype with increased CD34 and CD38 cell-surface protein expression. This is in contrast 
with NRAS mutations in AML, which are associated with a more monocytic 
immunophenotype22,23. Further, the gene expression signature that distinguishes MPAL is 
distinct from those previously described in ALL or AML or ALL, including stem-like AML and 
ETP-ALL, considered the most primitive pure lymphoid leukemia15-18. The distinct biology of 
MPAL likely means that it will require its own unique sub-classification, which cannot be 
extrapolated from other leukemias.  
 
Importantly, we define a novel prognostic gene signature for MPAL. Although the nomenclature 
of MPAL suggests that the ‘mixed phenotype’ is the most salient disease component, our data 
challenges this assumption. Our data suggest that the mixed immunophenotype of MPAL, while 
demonstrative of lineage derangement, may have little clinical relevance. Instead, the 
transcriptional signature and the degree of differentiation potential represented by this signature 
likely determine clinical behavior. More specifically, differentiation potential as measured by 
CytoTRACE correlates with a more proliferative, aggressive leukemia, and predicts survival. 
From SC data, we then derived MPAL95, a prognostic gene set score applicable to bulk 
RNAseq that predicts survival in an independent validation cohort.  
 
This work lays the foundation for a MPAL-specific risk stratification system, which does not 
currently exist, and supports prospective validation of transcriptionally defined stemness as a 
prognostic biomarker. Since our study is retrospective and MPAL is a rare disease, our sample 
size is small. Despite this, we have the largest cohort of adult MPAL patients assessed by SC 
analysis to date. Validation of our derived bulk prognostic score in an independent pediatric 
cohort20 spanning multiple decades and treatment strategies supports the validity of our model 
of MPAL as a disease both defined and prognosticated by differentiation potential. Further, the 
fact that our prognostic score holds in pediatric and adult patients emphasizes the importance of 
stemness over other disease factors, including genetics, treatment approach, and age3,5. Future 
clinical studies will be needed to validate CytoTRACE and MPAL95 as prognostic tools and to 
elucidate optimal treatment strategies for MPAL across the span of differentiation potential. 
Finally, further mechanistic studies will be required to characterize the true cell of origin for 
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MPAL and determine the genetic, epigenetic and microenvironment factors that drive stemness 
and disease behavior. 
 
Methods 
 
Patient Samples 
 
Cryopreserved bone marrow or peripheral blood mononuclear cells from 14 adult patients with 
newly diagnosed MPAL were included in this study. Patients were diagnosed at either the 
University of California San Francisco or the University of Pennsylvania from 2006-2020, and 
initial diagnosis was made pathologically using World Health Organization criteria operative at 
the time of diagnosis. All patients provided written informed consent for sample banking and 
analysis under protocols approved by the local Institutional Review Board and conducted in 
accordance with the ethical standard of the institution and with the Declaration of Helsinki. All 14 
samples were analyzed with simultaneous SC DNA and cell surface protein sequencing and 12 
samples were concurrently analyzed with SC RNA and cell surface protein sequencing (Figure 
1A). 
 
Single-cell DNA and Protein Sample Preparation, Library Generation, and Sequencing 
 
We performed DAb-seq on unsorted mononuclear cells from 14 patients using a microfluidic 
approach with molecular barcode technology using the Tapestri platform (MissionBio) as 
previously described6,24. Briefly, cryopreserved cells were thawed, normalized to 10,000 cells/μL 
in 180 μL PBS (Corning), and then incubated with Human TruStain FcX (BioLegend) and 
salmon sperm DNA (Invitrogen) for 15 minutes at 4C. A pool of 22 oligo-conjugated antibodies 
(CD3, CD4, CD5, CD7, CD8, CD10, CD11b, CD13, CD14, CD15, CD16, CD19, CD22, CD30, 
CD33, CD34, CD38, CD56, CD64, CD71, CD117, CD123) (Supplementary Table 3) was added, 
and cells were incubated for an additional 30 minutes. In addition, individual samples were also 
incubated with unique anti-CD45 oligo-conjugated antibodies to provide sample-level identifiers, 
and groups of 3 individual patients were pooled together for multiplexed runs. All oligo-
conjugated antibodies were generated as previously described and were run on a Bioanalyzer 
Protein 230 electrophoresis chip (Agilent Technologies, cat. no 5067-1517) to verify successful 
conjugation6.  
 
Next, pooled samples were resuspended in cell buffer (MissionBio), diluted to 4-7e6 cells/mL, 
and then loaded onto a microfluidics cartridge, where individual cells were encapsulated, lysed, 
and barcoded using the Tapestri instrument. DNA from barcoded cells was amplified via PCR 
using a targeted panel that included 127 amplicons across 20 genes associated with acute 
leukemia (Supplementary Table 2). DNA PCR products were isolated, purified with AmpureXP 
beads (Beckman Coulter), used as a PCR template for library generation, and then repurified 
with AmpureXP beads. Protein PCR products were isolated from the supernatant from 
AmpureXP bead purification via incubation with a 5’ Biotin Oligo (ITD). Protein PCR products 
were then purified using Streptavidin C1 beads (Thermo Fisher Scientific), used as a PCR 
template for library generation, and then repurified using AmpureXP beads. Both DNA and 
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protein libraries were quantified and assessed for quality via a Qubit fluorometer (Life 
Technologies) and Bioanalyzer (Agilent Technologies) prior to pooling for sequencing on an 
Illumina Novaseq.  
 
Single-Cell DAb-seq Data Processing and Analysis 
 
FASTQ files from single-cell DAb-seq samples were processed via an open-source pipeline as 
described previously6,25. This analysis pipeline trims adaptor sequences, demultiplexes DNA 
panel amplicons and antibody tags into single cells, and aligns panel reads to the hg19 
reference genome. Valid cell barcodes were called using the inflection point of the cell-rank plot 
in addition to the requirement that 60% of DNA intervals were covered by at least eight reads. 
Variants were called using GATK (v 4.1.3.0) according to GATK best practices26. ITDseek was 
used to detect FLT3 internal tandem duplication (ITD) from amplicon sequencing reads27. For 
each valid cell barcode, variants were filtered according to quality and sequence depth reported 
by GATK, with low quality variants and cells excluded based on the cutoffs of quality score < 30, 
read depth < 10, and alternate allele frequency < 20%. Cell-surface protein reads were 
normalized using centered log ratio transformation28.  
 
SNP and Antibody-Based Demultiplexing   
 
To de-multiplex individual patients combined into a single sample, we used a novel 
computational approach incorporating both patient-specific oligo-conjugated “hash” antibody 
tags as well as single nucleotide polymorphisms (SNPs) covered by the SC DNA panel29. 
Individual patient samples were stained with unique oligo-conjugated “hash” antibodies and then 
multiplexed into groups of 3. All SNPs were treated as binary (mutated or wildtype). To identify 
SNPs that maximally differ between samples, for each multiplexed group, we filtered all SNPs 
mutated in <10% or >80% of cells. For the remaining SNPs, missing data was imputed based 
on a majority vote of the binary data from the 5 nearest neighbors using the kNN function from 
the VIM package in R.  Next, we hierarchically cluster cells using cosine as the distance function 
and Ward’s method for joining clusters and cut the resulting dendogram into 3 clusters, one for 
each patient. To refine the SNPs included in clustering, Fisher’s exact test was computed 
between the SNP value and cluster membership across cells; SNPs with p-values < 10-12 were 
selected and re-clustered in the same hierarchical manner.  
 
Next, SNP-based cell clusters were refined using hash antibody data. Starting with 3 SNP-
based clusters, we add additional clusters by traversing down the hierarchical tree and splitting 
if there was a significant difference between the current cluster and subsequent split by 
Hotelling’s T2 test with a p-value cutoff of 10-5. Splitting was stopped when there were <10 cells 
per cluster.  Clusters were then assigned to a specific hash antibody by comparing the antibody 
expression of the cluster to the expected hash background distribution. For each hash antibody, 
the antibody expression for a multiplexed experiment is expected to be bimodal, with one right 
mode comprised of antibody-stained cells belonging to a single patient and one left mode 
comprised of unstained cells. To estimate the expected background antibody distribution, we 
generated a symmetric distribution by reflecting the data to the left of the left mode about the 
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mode. Clusters were assigned to a specific hash antibody and patient if >50% of cells from that 
cluster demonstrated hash antibody expression above the 95th percentile of the expected 
background distribution. A cluster was considered a multiplet if it was assigned to multiple 
patients. Cells designated as multiplets or unassignable were excluded from downstream 
analyses.  
 
Clonal Analysis and Inference of Mutational Phylogenies 
 
Following de-multiplexing, for individual patients, we analyzed all variants present in >0.1% of 
cells. Variants were assessed for known or likely pathogenicity via ClinVar and COSMIC 
databases30,31, and previously identified, nonintronic somatic variants were included in clonal 
analyses. Genetic clones were defined as >10 cells possessing identical genotype calls for the 
protein encoding variants of interest, as per prior SC DNA studies7,21. Phylogenetic trees for 
individual patients were inferred using single cell inference of tumor evolution (SCITE), a 
probabilistic model for inferring phylogenetic trees using a flexible Markov-chain Monte Carlo 
algorithm10. SCITE was employed with a global false positive rate set to 1% and a platform-
provided false-negative rate, as per prior SC DNA studies8. To define immunophenotypic 
subpopulations, unsupervised hierarchical clustering was performed using the scipy package in 
python on scaled and centered log ratio-normalized protein expression data. UMAPs derived 
from protein expression data were constructed using the umap function in python with default 
settings. 
 
We further measured how cell-surface immunophenotypic protein expression changed with 
progressive acquisition of mutations in the 9 patients of our 14 patient cohort that had at least 2 
stepwise mutational acquisitions identified on SC phylogenetic analysis (Supplementary Figure 
1). To do this, for each patient, we compared expression of each of the 22 immunophenotypic 
proteins for the founding genetic clone to all subsequent genetic clones and calculated a t-
statistic. To identify which cell-surface proteins changed the most with mutational acquisition 
across the cohort as a whole, for each patient, we determined the maximum t-statistic for each 
immunophenotypic protein (Figure 3A).  
 
Single-cell RNA and Protein Sample Preparation, Library Generation, and Sequencing 
 
We performed SC CITE-seq sequencing on unsorted mononuclear cells from 12 patients using 
a particle-templated instant partitions sequencing (PIPseq) platform9. Briefly, cryopreserved 
cells were thawed, and 1-2 million cells were incubated in 45ul of Cell Staining Buffer 
(BioLegend) per million cells with Trustain FcX block (BioLegend) for 15 minutes on ice. A pool 
of 19 oligo-conjugated antibodies (CD3, CD4, CD5, CD7, CD10, CD11b, CD13, CD14, CD19, 
CD22, CD30, CD33, CD34, CD45, CD56, CD64, CD117, IgG1, HLA-DR) were added and 
incubated on ice for an additional 60 minutes. Cells were quantified, resuspended in PBS with 
0.04% BSA, and combined in a 1:10 ratio with barcoded hydrogel templates (1000 cells/ul) and 
processed according to PIPseq Single Cell Epitope Sequencing Use Guide Rev 2.0 
(FB0002079). Briefly, Partitioning Reagent (Fluent BioSciences) was added to the cell-PIP 
mixture and vortexed on a custom vortexer (Fluent BioSciences). After removal of excess 
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Partitioning Reagent, the emulsion was placed on a dry bath (66°C for 40 minutes followed by 
4°C for 11 minutes) for cell lysis and RNA capture. Emulsions were broken with De-Partitioning 
Reagent (Fluent Biosciences), washed, and cDNA synthesis was conducted on the RNA 
hybridized to PIP templates in bulk. Double-stranded DNA libraries were then enzymatically 
fragmented and adapters for Illumina sequencing were ligated prior to amplification with 
appropriate index adapters. The resulting PIPseq libraries were pooled and sequenced using an 
Illumina NextSeq2000. 
 
Single-Cell CITE-seq Data Processing and Analysis 
 
FASTQ files from single-cell CITE-seq were processed via PIPseeker v0.52 (Fluent). This RNA 
pipeline comprises 4 basic steps: barcode identification and error correction, mapping to the 
reference transcriptome, gene expression matrix generation, and cell calling. Adapter 
sequences are trimmed, data is demultiplexed into single cells (BCL Convert, Illumina 
Basespace dashboard), matched against a list of known barcodes and mapped (Salmon alevin 
v1.4.0) against the GRCh38.p13 reference transcriptome, and putative cells are separated from 
background9. Genes were filtered if detected in <3 cells and cells were filtered based on having 
low-complexity libraries (feature count < 200) or high mitochondrial content (>15%). Similarly, 
ADT analysis was also processed via PIPseeker v0.52 (Fluent), including error correction, 
trimming of adapter sequences, mapping to a list of known barcodes, and generating a UMI 
matrix (CITE-seq Count v1.4.3). Downstream bioinformatics analysis, including scaling and log-
normalization of single-cell transcriptional data and centered-log ratio normalization of single-
cell protein expression data, was performed using Seurat 4.3.032. Across all samples, data 
integration was performed using reciprocal principal component analysis (RPCA). Unsupervised 
cell clustering on transcriptional data was performed using Seurat with resolution set to 0.6, and 
clusters were visualized using the Seurat function RunUMAP with default settings. Cell 
populations were annotated by RNA expression using a combination of scType and clustifyr 
followed by independent manual confirmation via marker genes33,34. Both annotation 
frameworks agreed on all clusters apart from a population of cells assigned as “cancer cells”, 
“pro-B cells”, “progenitor cells”, or “unknown” by scType and “CD34+” cells by clustifyr; this 
cluster was collapsed into a common “leukemia” cluster. Differentially expressed genes for each 
cluster were determined using Seurat’s FindConservedMarkers, FindAllMarkers or FindMarkers 
functions, as appropriate.  
 
Gene Set Enrichment Analyses 
 
Gene set enrichment analyses (GSEA) were performed using gsea v4.2.3 on genes pre-ranked 
by log2 fold change generated by comparing cells annotated as leukemia vs non-leukemia or by 
comparing leukemia cells with CytoTRACE ≥ 0.95 vs < 0.9535. Gene sets used in this study 
included the molecular signatures database (MSigDB) hallmark v2022.1 (50 genes) and the c2 
gene set curated from various sources in the biomedical literature (6,449 genes)11,12. To 
compare MPAL to other leukemias, in the GSEA comparing cells annotated as leukemia vs non-
leukemia, we also included the following 6 gene signatures associated with: early T-cell 
progenitor (ETP) ALL, KMT2A-rearranged B-cell ALL, NUTM1-rearranged ALL,  hematopoietic-
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stem cell (HSC)-like AML, granulocyte-monocyte progenitor-like AML, and the leukemia stem 
cell (LSC)-47, a gene score associated with immature AML15-18.  
 
CytoTRACE-Based Analyses 
 
Differentiation potential was determined using CytoTRACE v0.3.3, with 3,000 single cells sub-
sampled from the 12 individual patients19. To generate MPAL95, a CytoTRACE-derived gene 
set score, we compared the differential gene expression of single cells with a high CytoTRACE 
score (≥ 0.95) vs a low CytoTRACE score (<0.95). Genes with greatest upregulation in the cells 
with high cytoTRACE scores were used to compute a gene set score, called MPAL95, using the 
first principal component, in an approach similar to that used to compute gene set scores from 
single-cell transcriptional data in acute myeloid leukemia23. MPAL95 was then applied to bulk 
RNAseq data for 69 patients from the TARGET-ALL-P3 dataset; samples were only included if 
survival outcomes were available20. Additional clinical variables pulled from the TARGET 
dataset and included in multivariable survival analysis were patient age, sex, white blood cell 
count at diagnosis, disease classification per WHO classification, and treatment type, classified 
per TARGET as AML-like, ALL-like, hybrid, or unknown. As additional validation, MPAL95 was 
applied to pseudo-bulked RNAseq data derived from SC RNAseq data from the 12 adult 
patients in our cohort. To pseudo-bulk our data, we first sub-setted the transcriptionally-
identified leukemic cell populations, extracted raw counts after quality filtering, and then 
aggregated counts to the sample level.  
 
Statistics and Reproducibility  
Continuous variables were compared using Student’s t-test or Mann-Whitney U tests and 
categorical variables were compared using chi-squared or Fisher’s exact tests. To evaluate 
clone-level cooccurrence, a contingency table was constructed for each mutation pair and the 
log2-transformed odds ratio computed; Fisher’s exact test was used to evaluate statistical 
significance. The association between individual mutations and cell-surface antibody expression 
was determined using point-biserial correlations and the association between CytoTRACE and 
cell-surface antibody expression was determined using Spearman’s correlation. Survival 
analysis was estimated using Kaplan-Meier curves and compared using log-rank tests. Hazard 
ratios were calculated using the multivariable Cox proportional hazards model. All p-values for 
single-cell level comparisons were adjusted via the Bonferroni methods unless otherwise 
specified. All statistical analyses were performed in R (v. 4.0.2). 
 
Data and Code Availability  
 
The data discussed in this publication have been deposited in NCBI’s Gene Expression 
Omnibus36 and are accessible through GEO series accession number GSE232074 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE232074). All downstream analysis 
scripts and processed data files are available at github.com/SmithLabUCSF/MPAL. 
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Figure 1: Single-cell (SC) genetic, immunophenotypic, and transcriptomic landscape of 
mixed phenotypic acute leukemia (MPAL).  
A. Schematic depicting sample workflow.  
B. Oncoprint of 14 patients with newly diagnosed MPAL. Each column is a unique patient. 
Patients are coded on the top row based on immunophenotypic subtype and mutations are 
ordered based on biologic function. Clonal frequency is based on the total number of clones the 
mutation was present in, not accounting for zygosity.   
C. Oncoprint of 36 genetically defined clones across 14 patients with MPAL. Each column is a 
unique clone, and mutations are color-coded based on type of mutation and zygosity.   
D. Pairwise association of driver mutations identified via SC DNA sequencing across 36 clones 
in 14 patients with MPAL. For each mutation pair, cooccurrence is summarized as log odds ratio 
(OR), with positive values indicating cooccurrence and negative values mutual exclusivity. 
Statistical significance is indicated as *p, .05; **p, .01; ***p, .001.   
E. RNA-derived UMAP from SC CITE-seq analysis of 71,579 cells from 12 patients. Cells are 
color-coded by cell lineage/type as determined by gene expression data (left) and by individual 
patient (right).   
F. Heatmap of scaled expression values for top ten most upregulated conserved genes for each 
transcriptionally defined cell type as identified in 1E. 
 
Figure 2: Heterogeneous genotype-immunophenotype association in MPAL. For panels C-
J, each column represents a unique patient (Left: Patient 1; Right: Patient 2).  
A. Spearman correlation matrix across 36 unique genetically defied clones and 22 cell-surface 
antibodies. Correlation coefficient is denoted by color coding from highly correlated (red) to 
highly anti-correlated (blue), with significance denoted as *p, .05; **p, .01; ***p, .001.  
B. Heatmap of T-statistics generated by comparing cell-surface antibody expression of mutant 
vs non-mutant cell populations within an individual patient. Comparisons are only made within 
individual patients, not across patients. Rows are cell-surface antibodies with unsupervised 
hierarchical clustering applied. Columns are mutated populations color-coded by gene and 
ordered by biologic function.   
C. Immunophenotype-derived UMAP of 4,274 cells from Patient 1. Cells are color-coded based 
on CD34 expression (top left), CD71 expression (bottom left), presence of TP53 mutations (top 
right) and presence of JAK2 mutations (bottom right).   
D. Violin plot comparing expression of CD34 and CD71 for TP53-mutated vs TP53-wildtype 
(WT) cells (top) and JAK2-mutated vs JAK2-WT cells (bottom) for Patient 1. The grey half of 
the split-violin splot represents non-mutated cells and the colorful half of the plot represents 
mutated cells within the same patient.   
E. UMAP from 2C with unsupervised hierarchical clustering of cells into subpopulations 
manually annotated by immunophenotype. Clustering identified distinct CD34+ and CD71+ cell 
populations.   
F. Bar graph comparing the percentage of JAK2-mutated and TP53-mutated cells in the 
immunophenotypically-annotated populations identified in 2E.   
G.  Immunophenotype-derived UMAP of 2,848 cells from Patient 2. Cells are color-coded 
based on CD19 (top left), CD38 (top center), CD11b (bottom left), and CD123 (bottom center) 
expression and presence of KRAS and DNMT3A mutations (top right, bottom right).  
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H. Violin plot comparing expression of CD19 and CD38 for KRAS-mutated vs KRAS-WT cells 
(top) and DNMT3A-mutated vs DNMT3A-WT cells (bottom) for Patient 2.  
I. UMAP from 2G with unsupervised hierarchical clustering of cells into subpopulations manually 
annotated by immunophenotype. Clustering identified distinct CD19+/CD38+ and 
CD11b+/CD123+ cell populations.   
J. Bar graph comparing the percentage of KRAS-mutated and DNMT3A-mutated cells in the 
immunophenotypically-annotated populations identified in 2I. Statistical significance is denoted 
as *p, .05; **p, .01; ***p, .001, with all p-values adjusted via the Bonferroni method.  
 
Figure 3. Association between immunophenotypic evolution and mutational acquisition 
A. Box-and-whiskers plot with dot-plot overlain depicting maximum t-statistic for 22 cell-surface 
antibodies for each patient across all clones. For each antibody, antibody expression of all 
subsequent “branch” phylogenetic clones are compared to the founding phylogenetic clone, 
generating a t-statistic, and the maximum t-statistic for an individual antibody and patient is 
plotted. Each box represents 1 immunophenotypic protein and each overlain dot represents 1 of 
9 individual patients. Immunophenotypic proteins are ranked by maximum t-statistic across all 
patients, ranging from CD38 (greatest increase in expression with mutational acquisition across 
patients) to CD8 (lowest increase in expression).  
B. Top: Mutation phylogeny of 9 patients with MPAL with at least 2 stepwise mutational 
acquisitions identified on single-cell DNA analysis. Each oval represents a genetically distinct 
subclone and arrows represent cumulative acquisition of mutational events. Bottom: Violin plots 
depicting expression of CD38, CD33, CD34, CD123, and CD117 for each subclone represented 
in the above phylogeny. Violin plots color-coded in red indicate protein expression that has 
significantly increased with mutational acquisition; plots color-coded in blue indicate a significant 
decrease in protein-expression. Statistical significance is considered p < 0.05 after adjustment 
via the Bonferroni method. Het: Heterozygous; Hom: Homozygous. All mutations are 
heterozygous unless specified otherwise.  
 
Figure 4. MPAL is comprised of heterogenous transcription-immunophenotypic 
associations and a common, stemlike transcriptional signature 
A. RNA-derived UMAP from SC CITE-seq analysis of 71,579 cells from 12 patients with MPAL 
from Figure 1E. Cells are annotated based on transcriptionally defined cell populations. Cells 
were clustered by the expression of cell-surface immunophenotypic protein expression into 13 
immunophenotype-defined clusters; cells were then color-coded based on cluster. 
B. Heatmap of scaled expression values for top ten most upregulated genes in each of the 13 
immunophenotypic subpopulations from 4A.  
C. RNA-derived UMAP from 2,594 cells from Patient 11. Cells are color-coded based on 
expression of CD34 (left) and CD33 (right).  
D. Heatmap of scaled expression values for top ten most upregulated genes for the CD34-
positive cell population (left columns) and the CD33-positive cell population (right columns) from 
Patient 11.  
E. RNA-derived UMAP from 6,100 cells from Patient 2. Cells are color-coded based on 
expression of CD34 (left) and CD33 (right).  
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F. Heatmap of scaled expression values for top ten most upregulated genes for the CD34-
positive cell population (left columns) and the CD33-positive cell population (right columns) from 
Patient 2.  
G. Bar plot of normalized enrichment scores of 59 gene sets with false-discovery rate q-values 
< 0.00005 identified via gene set enrichment analysis (GSEA) of all cells transcriptionally 
annotated as leukemia vs non-leukemia across 12 patients with MPAL. Positively enriched gene 
sets are color-coded in red and negatively enriched gene sets are color coded in blue. As a 
comparison, 4 gene sets previously described in immature AML or ALL are also shown and 
color-coded in green; these genesets are not enriched.  
 
Figure 5. MPAL cells are stemlike and measures of stemness are prognostic of patient 
outcomes 
A. RNA-derived UMAP from SC CITE-seq analysis of 71,579 cells from 12 patients with MPAL 
from Figure 1E. Cells are color-coded based on cytoTRACE score from 0 (most differentiated) 
to 1 (least differentiated). 
B. UMAP from 5A. Cells are color-coded based on cell-surface expression of CD34 protein.  
C. Spearman correlation matrix of CytoTRACE score and cell-surface protein expression. 
Correlation coefficient is denoted by color coding.  
D. !"#$"%&'()(*+(,-)."-(,+/0+/1(*"$$+,2*1)1"$+,-*"-)0)(3+45+.(3)"%+65-/7896:+,;/*(+<=>?+1,+

@=>?+0/*+AB+"32$-+#"-)(%-,+C)-D+'E9F>+ 

E.+G("-."#+/0+,;"$(3+(H#*(,,)/%+1"$2(,+0/*+-D(+I(%(,+C)-D+I*("-(,-+2#*(I2$"-)/%+)%+,)%I$(+;($$,+

C)-D+D)ID+;5-/7896:+J@+=>K?L+Jleft columns) vs low cytoTRACE (<0.95) (right columns). 
F. Kaplan-Meier estimates of overall survival stratified by MPAL95, a gene set score derived 
from single-cell transcriptional data, for 69 pediatric patients with MPAL from the TARGET 
initiative.  
F. Multivariate Cox proportional hazards model for 69 pediatric patients with MPAL, with the 
MPAL95 gene signature included. CI, confidence interval.  
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