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Abstract: This study aimed to construct machine learning (ML) models for predicting prolonged
length of stay (pLOS) in intensive care units (ICU) among general ICU patients. A multicenter
database called eICU (Collaborative Research Database) was used for model derivation and internal
validation, and the Medical Information Mart for Intensive Care (MIMIC) III database was used for
external validation. We used four different ML methods (random forest, support vector machine,
deep learning, and gradient boosting decision tree (GBDT)) to develop prediction models. The
prediction performance of the four models were compared with the customized simplified acute
physiology score (SAPS) II. The area under the receiver operation characteristic curve (AUROC),
area under the precision-recall curve (AUPRC), estimated calibration index (ECI), and Brier score
were used to measure performance. In internal validation, the GBDT model achieved the best overall
performance (Brier score, 0.164), discrimination (AUROC, 0.742; AUPRC, 0.537), and calibration (ECI,
8.224). In external validation, the GBDT model also achieved the best overall performance (Brier
score, 0.166), discrimination (AUROC, 0.747; AUPRC, 0.536), and calibration (ECI, 8.294). External
validation showed that the calibration curve of the GBDT model was an optimal fit, and four ML
models outperformed the customized SAPS II model. The GBDT-based pLOS-ICU prediction model
had the best prediction performance among the five models on both internal and external datasets.
Furthermore, it has the potential to assist ICU physicians to identify patients with pLOS-ICU risk
and provide appropriate clinical interventions to improve patient outcomes.

Keywords: prolonged length of ICU stay; machine learning; clinical decision rules; medical
informatics

1. Introduction

Intensive care units (ICU) provide complex and resource-intensive treatment for the
sickest hospitalized patients. The need for critical care medicine has grown substantially
over the past decade [1] and has consumed a huge portion of the income in many countries
worldwide [2]. In the US, critical care medicine costs account for approximately 13% of
hospital costs and 4% of national health expenditures [3]. Despite the huge investment
in critical care medicine, medical resources in ICU are usually insufficient to meet the
demands of ICU patients, especially in developing countries. Hospitals are under pressure
to improve the efficiency and reduce costs for critical care. Length of stay in ICU (LOS-
ICU) is a key indicator for medical efficiency [4] and critical care quality in hospitals [5];
a prolonged LOS-ICU (pLOS-ICU) generally leads to additional use of resources and
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thus increased medical costs [6,7]. A small percentage of patients with pLOS-ICU could
consume a large proportion (nearly 50%) of ICU resource use [8,9]. The early identification
of pLOS-ICU risk for ICU patients can provide not only an important reference for patient
and family counseling but also an important indicator for optimal clinical interventions.
However, ICU physicians can hardly accurately predict pLOS-ICU at ICU admission [10].
Effective pLOS-ICU prediction tools are strongly needed by the ICU physicians [4].

The present study sought to construct machine learning (ML) based models to per-
form pLOS-ICU prediction for general ICU patients. Four different ML methods, namely
random forest (RF), support vector machine (SVM), deep learning (DL), and gradient
boosting decision tree (GBDT), were used for prediction model development in this study.
The reasons that we employed the above four ML methods are as follows. Firstly, SVM
was a frequently used single ML method to deal with complex ICU data, and it showed
robust performance in handling noisy and nonlinearly classified data [11,12]. Secondly, the
ensemble learning method could combine multiple ML models to achieve better perfor-
mance and generalizability than a single one [13], while RF and GBDT are typical ensemble
learning models with different ensemble mechanisms. Thirdly, the emerging ML algorithm,
DL, also showed good performance in supporting clinical decision making in ICU [14,15].
Therefore, the above four different ML methods were used for model development. Their
prediction performance was compared with the customized SAPS II, which was used as
benchmark model.

This article is structured as follows. Section 1 introduces the background and purpose
of this study. Section 2 carries out a review of related work in the literature. Section 3
describes the datasets, study subjects, model development and evaluation methods used
in this study. Section 4 shows various results generated in this study, and the results are
then further discussed in Section 5. Finally the conclusions of this study are summarized
in Section 6.

2. Related Work

In the literature, some pLOS-ICU prediction models have been developed. Among
them, some were customized from traditional severity scoring systems, such as the simpli-
fied acute physiology score (SAPS) II [16], acute physiology and chronic health evaluation
(APACHE) III score [17], and the sequential organ failure assessment (SOFA) score [18].
Alternatively, some were developed via the logistic regression (LR) method. For example,
Zoller et al. [16] customized the SAPS II to predict pLOS-ICU based on a prospective
single-center dataset and found that the customized SAPS II showed limited accuracy and
utility. Houthooft et al. [18] customized the SOFA score to predict pLOS-ICU using a single-
center dataset in Belgium, and the corresponding sensitivity was low. Herman et al. [6]
used the LR method to develop a pLOS-ICU prediction model for patients undergoing
isolated coronary artery bypass grafting (CABG), but the model was constructed using a
single-center dataset with a small sample size. Rotar et al. [19] also developed a pLOS-ICU
prediction model for patients following CABG surgery based on least absolute shrinkage
and selection operator (Lasso) algorithm. Their model was internally tested with an area
under the receiver operation characteristic curve (AUROC) of 0.72. However, no external
validation was performed for all the above-mentioned pLOS-ICU prediction studies.

In recent years, ML algorithms have been used to develop prediction models in
complex clinical contexts, such as ICU [20–23]. Meiring et al. [24] used four ML methods
to predict ICU mortality and compared their prediction performance with APACHE-II
and the traditional LR model. They found that all the four ML models outperformed
APACHE-II and LR. Lin et al. [20] constructed three ML models, namely, artificial neural
network, SVM, and RF, together with a customized SAPS II model, to predict the mortality
of acute kidney injury patients in ICU. They found that RF model outperformed the three
ML models, and all ML models performed much better than the customized SAPS II model.
DL as an emerging ML algorithm in the past decade, and it has been broadly studied in
healthcare studies to support clinical decision-making [14,15]. Viton et al. [25] utilized a
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DL model based on convolutional neural networks (CNN) to predict the risk of in hospital
mortality using the real time series records in ICU, and their experimental results showed a
competitive accuracy. Despite its accuracy, as a black-box model, DL is hard to explain and
thus has difficulties in gaining clinicians’ acceptance. Qian et al. [13] performed comparison
study of six ML models for early prediction of acute kidney injury in ICU, and their results
showed that the GBDT model outperformed both LR and CNN models.

However, limited studies have used ML methods to develop models for predicting the
pLOS-ICU among general ICU patients. Navaz et al. [26] developed a decision tree-based
pLOS-ICU prediction model, and the results showed that the prediction performance of
the decision tree model is poor. Rocheteau et al. [27] developed a DL model by combining
temporal convolution and pointwise convolution to predict numeric LOS-ICU, but their
model showed a limited performance with a R2 of 0.40 in external validation. Ma et al. [28]
constructed a model to predict whether an ICU patient can be discharged after 10 days
by combining just-in-time learning and one-class extreme learning, but the dataset used
for model training and test was a small sample with only 4000 records and no external
validation was conducted. A rough comparison of the related work in the literature with
our proposed model is shown in Table 1.

Table 1. Characteristics of related work.

Category Study Population Sample Size Dataset Outcome Models External
Validation Performance

Traditional
regression

based
pLOS-ICU
prediction

models

Zoller et al.
[16]

General ICU
patients 110 Single-center pLOS-ICU Customized

SAPS II × AUROC:
0.70

Houthooft
et al. [18]

General ICU
patients 14,480 Single-center pLOS-ICU Customized

SOFA score × Sensitivity:
0.71

Herman et al.
[6]

Patients
undergoing

CABG
3483 Single-center pLOS-ICU LR × AUROC:

0.78

Rotar et al.
[19]

Patients
following

CABG
3283 Single-center pLOS-ICU LASSO × AUROC:

0.72

ML-based
models
in ICU

Meiring et al.
[24]

General ICU
patients 22,514 Multicenter ICU

mortality

AdaBoost,
RF, SVM, DL,

LR, and
customized
APACHE-II

× AUROC:
0.88 (DL)

Lin et al. [20]
Acute kidney

injury
patients

19,044 Single-center ICU
mortality

ANN, SVM,
RF, and

customized
SAPS II

× AUROC:
0.87 (RF)

Viton et al.
[25]

General ICU
patients 13,000 Single-center ICU

mortality DL × AUROC:
0.85

Qian et al.
[13]

General ICU
patients 17,205 Single-center Acute kidney

injury

XGBoost, RF,
SVM, GBDT,
DL, and LR

× AUROC: 0.91
(GBDT)

ML-based
pLOS-ICU
prediction

models

Navaz et al.
[26]

General ICU
patients 40,426 Single-center pLOS-ICU Decision tree × Accuracy:

0.59
Rocheteau
et al. [27]

General ICU
patients 168,577 Multicenter LOS-ICU DL

√
R2: 0.40

Ma et al. [28] General ICU
patients 4000 Single-center pLOS-ICU

Combining
just-in-time

learning and
one-class
extreme
learning

× AUROC:
0.85

Our study General ICU
patients 160,238 Multicenter pLOS-ICU

RF, SVM, DL,
GBDT, and
customized

SAPS II

√
-

The existing pLOS-ICU prediction models for general ICU patients are not effective
enough as required by ICU clinicians [18,26,27,29]. In addition, most of the existing
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pLOS-ICU prediction models have not been externally validated [4,19,28,30], and the
generalizability of these models is unknown. Therefore, more accurate prediction models
with external validation are needed for pLOS-ICU prediction. A well-developed pLOS-ICU
prediction model has the potential to assist ICU physicians to identify patients at a high
risk of prolonged ICU stay, and thus may help improve clinical decision making and family
counseling quality.

3. Materials and Methods
3.1. Datasets and Study Subjects

A publicly available critical care database, eICU Collaborative Research Database
(eICU-CRD) [31], was used for model development and internal validation. The eICU-CRD
database is a multicenter database that is maintained by the Laboratory for Computational
Physiology (LCP) at the Massachusetts Institute of Technology (MIT), which has partnered
with the eICU Research Institute. The database contains medical records of 200,859 ad-
missions for 139,367 patients admitted to 335 units in 208 hospitals from 2014 to 2015
across the United States. Data include vital sign measurements, laboratory tests, care plan
documentation, diagnosis information, treatment information, and others. All protected
health information was deidentified, and no patient privacy data can be identified.

Another publicly available critical care database, the Medical Information Mart for
Intensive Care (MIMIC) III [32], was used for external validation of the developed models.
The MIMIC-III database, which is also maintained by LCP at MIT, is a single-center
database. MIMIC-III contains 53,423 medical records of 38,597 adult patients admitted
to critical care units at the Beth Israel Deaconess Medical Center (BIDMC) in Boston,
Massachusetts between 2001 and 2012. MIMIC-III is also deidentified; variables and data
types in MIMIC-III are similar to eICU-CRD. The source hospital of MIMIC-III does not
participate in the eICU program. Thus, the MIMIC-III database is a completely independent
dataset. A brief comparison of eICU-CRD and MIMIC-III is shown in Table 2.

Table 2. Characteristics of eICU-CRD and MIMIC-III.

Items eICU-CRD MIMIC-III

Country United States United States
Data Multicenter Single-center
Year 2014–2015 2001–2012

Number of units 335 1
Number of hospitals 208 1
Number of patients 139,367 38,597

Number of admissions 200,859 53,423

Deidentification All protected health information was deidentified, and no
patient privacy data can be identified.

Data content
Vital sign measurements, laboratory tests, care plan

documentation, diagnosis information, treatment information,
and others.

In this study, all ICU records of patients between 18 and 90 years old were extracted
from the eICU-CRD. Patients were excluded if they met the following criteria: variable
missing rate was larger than 30%; or LOS-ICU was missing or an outlier, defined as a
LOS-ICU above the 99th percentile of LOS-ICU in the studied dataset [33,34]. In addition,
patients who died within ICU were also excluded, as the LOS-ICU pattern of patients
who died within ICU may be different from the patients who survived in the ICU [7]. For
patients with twice or more ICU admissions during one hospitalization in eICU-CRD, we
randomly selected one record for the corresponding patient to ensure that all observations
were independent in model development. Compared with the approach of selecting the first
admission record for a patient having multiple ICU admissions during a hospitalization,
randomly selecting one ICU record for the patient may help include patients with varying
severities [35]. In MIMIC-III, patient data were extracted following the same inclusion
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and exclusion criteria. The difference is that we kept all the ICU records for patients with
multiple ICU admissions during a hospitalization in MIMIC-III for external validation. The
flowchart of the process for the patients’ inclusion is shown in Figure 1.
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Figure 1. The procedure of study population selection.

3.2. Primary Outcome and Predictor Variables

The primary outcome of this study was having pLOS-ICU. pLOS-ICU is defined as a
length of stay longer than the reported average LOS-ICU [16,19,36], which is three days for
general ICU patients in the United States [37].

To compare the prediction performance of four ML-based models with the customized
SAPS II in an objective way, we used all predictor variables in the customized SAPS II to
construct the SVM, RF, DL, and GBDT models. A total of 17 variables are used in the SAPS
II scoring system, consisting of age, chronic diseases (metastatic cancer, acquired immunod-
eficiency syndrome, and hematologic malignancy), type of admission (scheduled surgical,
unscheduled surgical, or medical), and 12 routine physiological measurements during
the first 24 h in ICU [38]. The 12 physiological measurements include body temperature,
heart rate, Pao2/Fio2 ratio, systolic blood pressure, urinary output, white blood cell count,
serum urea nitrogen level, serum sodium level, serum potassium level, bilirubin level,
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serum bicarbonate level, and Glasgow Coma Score. Some of the physiological variables are
time-stamped variables, which have multiple time-variant measurements. Similar to the
original SAPS II [38], the time-stamped variables in the customized SAPS II, were scored
on the basis of the worst value during the first 24 h, either minimum or maximum. In
the SVM, RF, DL, and GBDT models, we used both the minimum and maximum values
during the first 24 h of time-stamped variables as parallel inputs since the minimum and
maximum values may reflect two different extreme physical conditions of one patient [20].
The chronic diseases were identified using International Classification of Diseases codes.
As to the ICU admission type, its variable and corresponding options recorded in the two
databases are different. By referring to the original SAPS-II [38], we used three different
admission types: scheduled surgical, unscheduled surgical, and medical, to categorize
the ICU admission type. In eICU-CRD, a patient would be identified as: (1) scheduled
surgical if the ADMISSION_TYPE is ELECTIVE and he or she had surgery during the
stay; (2) unscheduled surgical if the ADMISSION_TYPE is not ELECTIVE and he or she
had surgery during the stay; and (3) medical if the ADMISSION_TYPE is none of the
above. In MIMIC-III, a patient would be identified as: (1) scheduled surgical if variable
electiveSurgery equals 1; (2) unscheduled surgical if variable electiveSurgery equals 0; and
(3) medical if variable electiveSurgery is blank. The distributions of admission type in the
eICU-CRD and MIMIC-III databases were similar.

3.3. Model Development
3.3.1. Support Vector Machine (SVM)

SVM is a supervised ML algorithm that attempts to find an optimal separating hyper-
plane in the feature space for classification [39]. SVM has good prediction performance
on either linearly or nonlinearly separable datasets, especially on the latter [40]. An
SVM model can transform a nonlinearly separable dataset from the original feature space
to a high-dimensional space and find a maximum-margin hyperplane to make classifi-
cations. Suppose a nonlinearly separable dataset D with N labeled cases is available;
D = {(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xN , yN)}, where yi ∈ {−1, 1}. If φ(x) is the
function for transforming dataset D to a high-dimensional space, then the classification hy-
perplane in the high-dimensional space can be defined if it satisfies the following equation:

wTφ(x) + b = 0, (1)

where w and b are parameter vectors, w is a normal vector determining the direction, and b
is the bias. The margin ri between a case (xi, yi) and the hyperplane in the high-dimensional
space is defined as follows:

ri =

∣∣wTφ(xi) + b
∣∣

‖w‖ . (2)

The cases nearest to the hyperplane are called support vectors, which satisfy∣∣∣wTφ(x) + b
∣∣∣ = 1. (3)

The margin R between the support vector and the hyperplane is

R =
1
‖w‖ . (4)

The hyperplane that makes the margin R maximum is the optimal separating hyper-
plane (i.e., maximum-margin hyperplane). If we use ŵ and b̂ to denote the parameter
vectors of the optimal hyperplane, then the optimal hyperplane can be expressed using the
following equation:

ŵTφ(x) + b̂ = 0. (5)
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In the process of finding the optimal separating hyperplane, a kernel function is
usually used to deal with the high computational cost. Commonly used kernel functions
include the polynomial, linear, exponential and radial basis function kernels. A new
instance xnew is then classified by the trained SVM model with an optimal separating
hyperplane as follows:

ynew =

{
1, i f f (xnew) > 0
−1, i f f (xnew) < 0

. (6)

We used the sklearn.svm package in Python to construct the SVM model [41], and a
set of optimal parameters of the SVM model were found using grid search, which is an
exhaustive searching method that uses a manually specified subset of hyperparameter
space to find the optimal parameters of a learning algorithm [42]. The SVM model obtained
in this study had the following parameters: the kernel function was a radial basis function
kernel. Gamma in the kernel function was 0.04, and the penalty parameter C was 1.

3.3.2. Random Forest (RF)

RF is an ensemble learning model consisting of a multitude of decision trees [43].
Compared with single basic classifiers, ensemble learning models can combine the outputs
of multiple basic classifiers and achieve an improved prediction performance [44]. An RF
model is trained as follows: First, K (a tunable parameter, K = 100 in our study) subsets of a
training dataset D, {D1, D2, . . . , DK} are generated using the bootstrap sampling method.

The sampling proportion is 1−
(

1− 1
N

)N
, where N is the total number of cases in the

entire training dataset. Second, K decision trees {T1, T2, . . . , TK} are generated from the
K subsets of training dataset separately. In decision tree induction, a total of M predictor
variables is assumed, and F (a tunable parameter with F < M) out of M variables would be
randomly selected for each node splitting based on the minimum impurity principle. Gini
index is an indicator to measure information impurity, and it is frequently used in decision
tree training [20]. For each tree, a variable or feature should not be used for node splitting
any more if it has already been used for previous node splitting. For a dataset D containing
samples with J classes, the Gini index of D is defined as follows [45]:

Gini(D) = 1−
J

∑
j=1

p2
j , (7)

where pj is the frequency of the jth class in the dataset D. If a dataset D can be split into
two subsets D1 and D2 by the variable V, then the decrease in Gini index S caused by this
variable V is

S(V) = Gini(D)−Gini
(

D1
)
−Gini

(
D2

)
. (8)

The variable with a maximum decrease in Gini index is then used for node splitting in
a decision tree growth. After all the K trees have been generated, an RF model forms. In
a RF-based inference or classification, the clinical data of a new patient are inputs to the
model, the outputs of all the K decision trees are aggregated through a voting algorithm,
and then the majority vote is declared as the final classification.

RF model training has two types of randomizations: randomization of training
datasets and randomization of feature subsets in its basic decision tree growth. This
classification helps reduce the scale and dimension of the training dataset in generating de-
cision trees. These two randomizations enable an RF model to deal with high-dimensional
and large-scale data.

We used the sklearn.RandomForestClassifier package in Python to construct the RF
model in this study [41]. A set of optimal parameters of the RF model were found using
grid search. The RF model obtained in this study had the following parameters: the number
of decision trees K was 100; the number of variables selected for each node splitting F was
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the square root of the number of input variables, sqrt(M); and the minimum number of
samples required to split an internal node was 2.

3.3.3. Gradient Boosting Decision Tree (GBDT)

GBDT is also a kind of ensemble learning model that uses decision trees as the basic
classifier [46]. In contrast to parallel decision trees in an RF model, decision trees in a
GBDT model are serially generated. A decision tree in a GBDT model is trained based on
the bias of all the previous decision trees in the model. In its inference process, a GBDT
model synthesizes outputs of the serial decision trees through an addition algorithm to
make classifications.

The training of a GBDT model proceeds as follows: suppose a training dataset D with
N labeled cases is available; D = {(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xN , yN)}, where
yi ∈ {−1, 1}. The decision trees are generated iteratively in a GBDT model training, and
each tree in the model is trained based on the bias between the observed outcomes and
the predicted probabilities generated by all its previous trees. Therefore, we need to set an
initial predicted probability f0(xi) for a training case (xi, yi) before the generation of the
first decision tree in a GBDT model. The initial predicted probability of the case (xi, yi) is
defined as

f0(xi) =
1
2

ln
P(y = 1|x)

P(y = −1|x) , (9)

where P(y = 1|x) is the frequency of class y = 1 in the dataset D, and P(y = −1|x) is the
frequency of class y = −1 in the dataset D. The bias between the probability f0(xi) and yi,
i.e., the observed outcome of xi, is defined as residual r0,i, which is calculated using the
following equation:

r0,i =
2yi

1 + exp(2yi f0(xi))
. (10)

In the first round of iteration, the training dataset for the first tree training is con-
structed as D1 = {(x1, r0,1), (x2, r0,2), . . . , (xi, r0,i), . . . , (xN , r0,N)} and a decision tree
stops growing when no more decrease occurs in its prediction error or it has achieved a
preset threshold of max depth. Then, the generated decision tree can be used to predict the
bias between the initial probability and the actual outcome for all cases and obtain results
T1 = {t1,1, t1,2, . . . , t1,i, . . . , t1,N} Afterward, the predicted probability for xi, f1(xi) based
on the first decision tree can be calculated as

f1(xi) = f0(xi) + t1,i . (11)

After prediction results have been generated using the first decision tree, a second
residual r1,i between the predicted probability and the actual outcome can be generated,
and then a second training dataset D2 = {(x1, r1,1), (x2, r1,2), . . . , (xi, r1,i), . . . , (xN , r1,N)}
can be constructed for the second decision tree training.

Similarly, in the kth round of iteration, the kth (k = 1, 2, . . . , K; K is the total number
of decision trees and is a tunable parameter; K = 100 in our study) decision tree is generated
based on the bias of the previous (k − 1) decision trees.

rk−1,i =
2yi

1 + exp(2yi fk−1(xi))
. (12)

Then, the training dataset for the kth tree Dk = {(x1, rk−1,1), (x2, rk−1,2),
. . . , (xi, rk−1,i), . . . , (xN , rk−1,N)} can be constructed. The kth generated tree predicts the
bias for all cases and obtains Tk =

{
tk,1, tk,2, . . . , tk,i, . . . , tk,N

}
. The predicted probability

for (xi, yi) after the kth round of iteration fk(xi) is calculated as

fk(xi) = fk−1(xi) + tk,i. (13)
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After all the K decision trees have been generated using a forward stage-wise algo-
rithm, a GBDT model forms. For a trained GBDT model, when a new instance xnew is
inputted into the model, each tree makes a prediction about the bias between the actual out-
come and the predicted probability, given by all its previous trees for the new instance, and
obtains

{
t1,new, t2,new, . . . , tk,new, . . . , tK,new

}
. Then, the model combines the predictions

of all K decision trees using an addition algorithm, as follows:

F(xnew) = f0(x) +
K

∑
k=1

tk,new. (14)

The final predicted probability for xnew generated by the GBDT model is

Pnew =
1

1 + exp(−2F(xnew))
. (15)

In addition, a GBDT model can provide a variable importance ranking based on the
variable importance weight generated by all its basic decision trees.

We used the sklearn.GradientBoostingClassifier package in Python to construct the
GBDT model in this study [41]. A set of optimal parameters of the GBDT model were found
using grid search. The GBDT model obtained in this study had the following parameters:
the fraction of samples used for each decision tree was 0.7, the number of decision trees
K was 100, the number of variables selected for each node splitting was the square root
of the number of input variables, the maximal depth of each decision tree was 6, and the
minimum number of samples required to split an internal node was 200.

3.3.4. Deep Learning (DL)

DL models [47] were developed from artificial neural networks. A DL model was
constructed with a greedy layer-by-layer method, where multiple layers were used to
progressively extract higher-level features from the raw input and pick out features with
high predictive value. DL models have been broadly used in healthcare studies to support
clinical decision-making, such as diagnosis [48], prognosis prediction [49], and resource
allocation [50].

General architecture of a DL model consists of an input layer, multiple hidden layers,
and an output layer. Each layer contains a set of neurons, and is fully connected with its
adjacent layers. A neuron receives a signal, processes it, and then signals neurons connected
to it. Signals travel from the first (input), to the last (output) layer. In the input layer, the
number of neurons was determined by the number of input features. Each neuron in the
input layer represents an input feature. In the hidden layer, neurons transform the signals
from the input layer (or the previous hidden layer) with a weighted summation followed
by a non-linear activation function. Starting from initial random weights, the weights
between neurons were repeatedly updated using optimization algorithm to minimize the
loss function. The process of weight training stops when it reaches a preset maximum
number of iterations, or when the improvement in loss is below a certain number. At
last, the output layer receives values from the last hidden layer and transforms them into
outcome values.

In this study, a multilayer perceptron algorithm (MLP) was employed to construct a DL
model. MLP is the most typical DL algorithm. Compared to complex DL architecture such
as CNN, MLP has a relatively small number of parameters and is less complex. Prediction
models based on MLP is expected to be more acceptable in clinical practice than CNN [51].
The sklearn.MLPClassifier package in Python was used for model development [41]. A
set of optimal parameters of the DL model were found using grid search. The DL model
obtained in this study had the following parameters: the optimization algorithm was
Limited-memory BFGS (L-BFGS); the number of hidden layers was 2, the number of
neurons in each hidden layer was (100, 100); and the penalty parameter was 10.
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3.3.5. Customized SAPS II

The SAPS II model is a commonly used scoring tool in ICU to assess the severity of
illness, and it is frequently used as a benchmark model for performance comparison in
prognosis prediction model development [20,52,53]. SAPS II was developed by LeGall
et al. [38] in 1993 on the basis of the clinical dataset of 12,997 ICU patients. As the original
SAPS II tool was developed from a clinical dataset of 1993 via traditional logistic regression,
clinicians and researchers usually use newly collected dataset to customize the coefficients
for target population [54,55]. In the literature, some studies have carried out the work
of customizing SAPS II for pLOS-ICU prediction [16,18]. By referring to those studies,
we developed a customized SAPS II model for pLOS-ICU prediction using the eICU-
CRD database, and then used the customized SAPS II as the benchmark to evaluate the
prediction performance of ML models developed in this study.

The algorithm behind the SAPS II model is the LR algorithm. A total of 17 predictor
variables are used in the SAPS II scoring system, and each variable is assigned a different
score between 0 and 26 according to each patient’s condition. The coefficient of each
variable obtained from a multivariate LR analysis, is used as a criterion for assigning a
score to the variable. Then, the assigned score can be used to rank variable importance. In
SAPS II, the in-hospital mortality probability of an ICU patient can be calculated based on
the overall score using the following formula:

z = β0 + β1 × Score + β2 × ln(Score + 1), (16)

Pmor =
1

1 + e−z , (17)

where Score is the overall SAPS II score of a specific ICU patient; β0, β1, and β2 are the
coefficients generated via the LR algorithm; and Pmor is the mortality probability of the
ICU patient.

We developed a customized SAPS II model for pLOS-ICU prediction using the eICU-
CRD database. In model customization, the coefficients β0, β1, and β2 were re-estimated
based on the eICU-CRD training dataset, and a new set of coefficients β′0, β′1, and β′2
were generated. In our customized SAPS II model, the probability of pLOS-ICU for a
patient PpLOS−ICU can be calculated as follows:

znew = β′0 + β′1 × Score + β′2 × ln(Score + 1), (18)

PICU−LOS =
1

1 + e−znew
. (19)

The customized SAPS II model used in this study is as follows.

znew = −1.88 + 0.06× Score− 0.27× ln(Score + 1), (20)

PICU−LOS =
1

1 + e−znew
. (21)

3.4. Model Validation

We randomly split the eICU-CRD dataset into two parts: 70% as training dataset
and 30% as test dataset for internal validation. The entire MIMIC-III dataset was used for
external validation. In model training, we used five-fold cross validation to find optimal
parameters for the four ML-based models.

3.5. Analysis

We used PostgreSQL 10.5 (The PostgreSQL Global Development Group, Berkeley,
California, United States) to extract data from the eICU-CRD and MIMIC-III databases.
In the two extracted datasets, the missing value of each predictor variable was filled up
using the median value after excluding unqualified patient records. Descriptive data are
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presented either as mean ± standard deviation or actual numbers (percentages). The
prediction performance of the five models were measured using AUROC [56], area under
the precision-recall curve (AUPRC) [25], estimated calibration index (ECI) [57], and Brier
score [56]. AUROC measures the discrimination power of a prediction model, representing
the ability of distinguishing between the positive and negative samples. A high AUROC
value represents a strong discrimination power. AUPRC also measures the discrimination
power of a model, while AUPRC pays more attention to the ability of identifying positive
samples. Compared with AUROC, AUPRC is more sensitive to data imbalance. It should
be noted that the baseline value of AUPRC for a model is equal to the fraction of positives
in a classification task [58]. This means that the higher the AUPRC is (compared to the
fraction of positives), the better performance a model can achieve. In this study, the fraction
of positives (pLOS-ICU) is around 25%, and thus the baseline AUPRC is 0.25. Therefore,
obtaining an AUPRC of more than 0.50 means a good pLOS-ICU prediction. ECI measures
the calibration power of a model, representing the average difference between the predicted
probability and the observed probability of each ICU patient. A low ECI suggests a strong
calibration power. The Brier score is an overall performance measure, and a low Brier score
suggests a superior overall performance. Another issue worth mentioning here is that the
training dataset is imbalanced as patients with pLOS-ICU are the minority in eICU-CRD.
To remove the effect that an imbalanced dataset may have on trained prediction models, a
comprehensive performance measure considering both sensitivity and specificity instead of
just prediction accuracy should be used as criteria for model evaluation. The AUROC value
meets this need. A calibration plot was used to illustrate the calibration power of a model
visually. The ideal calibration curve for a perfect model is a diagonal, which indicates that
the predicted probabilities are consistent with the observed probabilities. The model with
the best prediction performance was used to generate variable importance ranking, and
the top five important predictor variables were presented.

4. Results

Overall, 117,306 ICU patients in eICU-CRD and 42,932 ICU patients in MIMIC-III
were included for model derivation and validation. The characteristics of the ICU patients
were similar in both databases (Table 3). The proportion of ICU patients with pLOS-
ICU was 26.7% in eICU-CRD and 34.8% in MIMIC-III. In eICU-CRD, the proportion
of male patients was 54.8%, and the age of all ICU patients was 61.6 ± 16.6 years. In
MIMIC-III, the proportion of male patients was 57.6% and the age of all ICU patients was
62.0 ± 16.5 years.

Table 3. Characteristics of ICU patients in eICU-CRD and MIMIC-III.

Items eICU-CRD MIMIC-III

Total number 117,306 42,932
Age/years 61.6 ± 16.6 62.0 ± 16.5

Gender, n (%)
Male 64,244 (54.8%) 24,740 (57.6%)

Female 53,049 (45.2%) 18,192 (42.4%)
SAPS II score 30.0 ± 13.3 32.7 ± 12.7

LOS-ICU (IQR1)/day 1.8 (1.0–3.2) 2.1 (1.2–4.0)
PLOS-ICU, n (%) 31,296 (26.7%) 14,951 (34.8%)

IQR1, interquartile range.

The prediction performance of the five models on the internal and external validation
datasets are compared in Table 4. On eICU-CRD (internal validation dataset), the GBDT
model achieved the best overall performance (Brier score, 0.164), discrimination (AUROC,
0.742; AUPRC, 0.537), and second-best calibration (ECI, 8.224). On MIMIC-III, the external
validation dataset, the GBDT model also achieved the best overall performance (Brier score,
0.166), discrimination (AUROC, 0.747; AUPRC, 0.536), and calibration (ECI, 8.294). The
prediction performance of all the five models on eICU-CRD (internal validation dataset)
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was superior to that on MIMIC-III. On the internal dataset, the RF and GBDT models per-
formed better than the customized SAPS II, but the SVM model performed slightly worse
than the customized SAPS II in Brier score and ECI though it had better discrimination.
Meanwhile, all the four ML models performed better than customized SAPS II on the
external validation dataset.

Table 4. Prediction performance of the five models on eICU-CRD (internal) and MIMIC-III (external).

Models

eICU-CRD MIMIC-III

Brier
Score AUROC AUPRC ECI Brier

Score AUROC AUPRC ECI

Customized
SAPS II 0.181 0.667 0.439 9.028 0.175 0.669 0.402 8.742

RF 0.166 0.735 0.530 8.317 0.169 0.745 0.530 8.469
SVM 0.183 0.690 0.480 9.137 0.172 0.716 0.482 8.577
DL 0.164 0.742 0.536 8.223 0.171 0.743 0.527 8.551

GBDT 0.164 0.742 0.537 8.224 0.166 0.747 0.536 8.294

Figure 2 shows the calibration plots of the five models on MIMIC-III (external val-
idation dataset). The calibration curve of the GBDT model was an optimal fitting. The
customized SAPS II and SVM model tended to overestimate probabilities of pLOS-ICU in
most ICU patients, whereas the DL model tended to underestimate probabilities of pLOS
in most ICU patients, the RF model tended to underestimate the probabilities of pLOS-ICU
in low-risk patients and overestimate the probabilities of pLOS-ICU in high-risk patients.
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Top five predictive variables identified by GBDT and SAPS II models are listed in
Table 5. Three variables, namely Glasgow Coma Score, systolic blood pressure, and white
blood cell count, were ranked among top five important variables by both models.
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Table 5. Top five important variables identified by GBDT and SAPS II.

Ranks GBTD SAPS II

1 Pao2/Fio2 ratio Glasgow Coma Score
2 Glasgow Coma Score Age
3 Serum urea nitrogen level Chronic diseases
4 Systolic blood pressure Systolic blood pressure
5 White blood cell count White blood cell count

5. Discussion

In this study, we used four ML methods, namely, SVM, RF, DL, and GBDT, to con-
struct pLOS-ICU prediction models on the basis of eICU-CRD. Furthermore, we used
MIMIC-III to validate the developed models externally. The four ML-based models were
compared with the customized SAPS II, which is based on the traditional LR algorithm.
The comparison results showed that the GBDT outperformed the other four models in
terms of discrimination, calibration, and overall performance in either internal or external
validation. The main contribution of this study was an optimal data-driven ML model for
predicting pLOS-ICU risk, and the model had the following characteristics. First, although
some pLOS-ICU prediction models have been developed in the literature [6,16,26], the
GBDT-based model developed in this study showed better prediction performance than
the state-of-the-art pLOS-ICU prediction models for general ICU patients. Second, most
published pLOS-ICU prediction models have not been externally validated, while the
GBDT-based prediction model developed in this study was externally validated and the
validation results showed a satisfied prediction performance. Third, if clinical application
is taken into consideration, a pragmatic pLOS-ICU prediction model could help physicians
identify patients at high risk and thus may provide timely individualized interventions,
and finally, patients’ prognosis may be improved. Therefore, from application perspective,
the pLOS-ICU prediction model developed in this study is an innovational tool though it
has limited contributions from the perspective of the ML method.

The RF model has the second-best prediction performance on both datasets. The
good prediction performance of the GBDT and RF models may be due to the fact that
both models are ensemble learning models, which make predictions by combining the
outputs of corresponding basic classifiers, and thus can help reduce the bias that occurs in
a single classifier. Our results also verified that ensemble models are usually superior to
single models [44,59,60]. The GBDT model is slightly superior to the RF model in terms
of all performance measures, probably since the basic decision trees in the two models
were trained by two different approaches. In an RF model, decision trees are grown in
a parallel way. In a GBDT model, trees are trained iteratively, and each decision tree is
trained to correct the discrepancy of all its preceding decision trees. Thus, it helps generate
a growing forest with decreasing prediction errors. Our results are consistent with previous
studies [61–63], which indicated that the GBDT models outperform RF models in terms of
prediction. All the four ML models yield superior performance over the customized SAPS
II in external validation, although the performance of the customized SAPS II and SVM
models slightly differ in internal validation. The possible reason is that ML algorithms
have better generalizability compared with traditional LR models [64,65].

Application of ML techniques in healthcare has led to an increased emphasis for
ML explainability. For most ML systems, an improved predictive accuracy may often
be achieved through increased model complexity [66]. The prime example is the DL
paradigm. However, explainability is highly associated with acceptance and promotability
of a ML system in clinical practice. There is usually a trade-off between performance
and explainability of a ML model. Compared to DL or SVM, GBDT based pLOS-ICU
prediction models are less complex and more explainable. The decision trees in the GBDT
model can be transformed to understandable decision rules, and thus GBDT may be more
acceptable for clinicians. In addition, GBDT has the mechanism to rank the importance
of predictable variables from a population perspective, and the importance ranking is
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intuitionistic for physicians to understand the association of clinical signs and symptoms
with pLOS-ICU risk. However, explainability of GBDT is still limited in terms of individual
prediction as it is hard to identify predictable variables for each individual prediction.
In the literature, some studies have been carried out to improve ML explainability. For
example, Ribeiro et al. [67] proposed a local interpretable model-agnostic explanations
(LIME) method to generate explainability for individual prediction given by any black-box
model. In LIME, an explainable model (such as a decision tree) can be developed based
on neighboring instances (identified by the black-box model) of an individual instance.
Lundberg et al. [68] proposed a Shapley additive explanations (SHAP) method to enhance
explainability by computing the importance value of each feature based on the average
marginal contribution to individual predictions. Therefore, ML explainability can be taken
into consideration in future pLOS-ICU prediction model development.

The overall prediction performance of all five models on eICU-CRD (internal valida-
tion dataset) is superior to that of MIMIC-III. This result suggests that a possible degrada-
tion of prediction performance occurs when the models are applied to a new dataset. The
internal and external validation datasets exhibit a slight difference in performance in our
study, demonstrating a strong generalizability of the developed pLOS-ICU prediction mod-
els. Such strong generalizability may be attributed to the fact that the pLOS-ICU models
were trained on the basis of a multicenter dataset, which is more population representative
than a single-center dataset.

The top five important variables identified by the GBDT model include Pao2/Fio2
ratio, Glasgow Coma Score, serum urea nitrogen level, systolic blood pressure, and white
blood cell count. Three variables (i.e., Glasgow Coma Score, systolic blood pressure, and
white blood cell count) are also ranked among the top five by the SAPS II model. The
Glasgow Coma Score is used to assess the level of consciousness in patients [69], and
patients with decreased levels of consciousness tend to have poor prognosis [70,71]. The
independent capabilities of systolic blood pressure and white blood cell count in predicting
the prognosis of ICU patients have also been verified by existing studies [72,73]. The top
five important variables identified by the two models only show a slight difference. As
identified by the GBDT model, Pao2/Fio2 ratio and serum urea nitrogen level, in addition
to Glasgow Coma Score, systolic blood pressure, and white blood cell count, may have
potential influence on the prognosis of ICU patients. This finding may provide a clue for
future research. Studies focusing on the detailed association between the prognosis of ICU
patients and the Pao2/Fio2 ratio or serum urea nitrogen level are limited [74–76].

This study has several strengths. First, the database used to derive the prediction
models is a large, multicenter database with a relatively representative population. Second,
a large, single-center database (i.e., MIMIC-III) was used for external validation and helped
assess the generalizability of the developed prediction models. Third, all the predictor
variables used to construct prediction models are routinely collected during the first 24 h in
ICU, thereby ensuring the feasibility of applying the prediction models in clinical practice
to assist physicians in decision making.

However, this study has limitations. First, the eICU-CRD database contains only data
of ICU patients admitted between 2014 and 2015 in the US, and the MIMIC-III dataset
contains only data of ICU patients admitted to the BIDMC from 2001 to 2012. No data
from other countries were used for model validation. Therefore, the clinical utility of
the pLOS-ICU prediction models needs further assessment before application in other
regions. Second, selection bias may exist since we excluded patients who died in the ICU.
Accordingly, the pLOS-ICU prediction models developed in this study may not apply to
patients who die in ICU. Third, to compare the prediction performance of four ML-based
models with the customized SAPS II in an objective manner, we only included the predictor
variables used in the customized SAPS II for model training. Other potential predictor
variables may have been neglected in our study.
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6. Conclusions

In summary, this study demonstrates that the GBDT model outperforms the other four
developed models in pLOS-ICU prediction. As all the predictor variables can be available
during the first 24 h in ICU, the GBDT-based pLOS-ICU prediction model has potential to
assist ICU physicians in identifying patients with pLOS-ICU risk and thus make optimal
clinical intervention decisions. This study lays a foundation for the future application of a
GBDT-based pLOS-ICU prediction model in ICU clinical practice.
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