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Abstract: Acute kidney injury (AKI)—-the sudden loss of kidney function due to tissue damage and
subsequent progression to chronic kidney disease—-has high morbidity and mortality rates and is
a serious worldwide clinical problem. Current AKI diagnosis, which relies on measuring serum
creatinine levels and urine output, cannot sensitively and promptly report on the state of damage.
To address the shortcomings of these traditional diagnosis tools, several molecular biomarkers have
been developed to facilitate the identification and ensuing monitoring of AKI. Nanosized membrane-
bound extracellular vesicles (EVs) in body fluids have emerged as excellent sources for discovering
such biomarkers. Besides this diagnostic purpose, EVs are also being extensively exploited to
deliver therapeutic macromolecules to damaged kidney cells to ameliorate AKI. Consequently, many
successful AKI biomarker findings and therapeutic applications based on EVs have been made.
Here, we review our understanding of how EVs can help with the early identification and accurate
monitoring of AKI and be used therapeutically. We will further discuss where current EV-based AKI
diagnosis and therapeutic applications fall short and where future innovations could lead us.

Keywords: acute kidney injury; extracellular vesicles; exosomes; microvesicles; apoptotic bodies;
biomarkers; liquid biopsy; mesenchymal stem cells; injury repair

1. Introduction

Unceasingly ridding the blood of metabolic waste and reabsorbing essential molecules
into our body, the kidney controls body fluid volume, osmolarity, acid–base balance, elec-
trolyte concentration, and toxic substance removal. In playing such vital roles, however,
the kidney is often exposed to various endogenous or exogenous insults that can disturb
this exquisitely maintained body-fluid homeostasis [1,2]. One such disordered clinical con-
dition, acute kidney injury (AKI) is characterized by a sudden decline in normal function,
resulting from injury to cells in the nephron [1,3]. Prevalent in hospitalized patients, AKI
poses a serious clinical problem worldwide with high mortality and morbidity [1,3]. Devel-
oping a reliable AKI diagnosis and prognosis, therefore, must be actively pursued [4,5].

Fluids such as blood and urine hold numerous membrane-bound, nanosized vesicles
that are secreted by many cell types [6–8]. Such extracellular vesicles (EVs) contain a set of
macromolecules that reflect the properties of the cells from which they are generated [6–8].
Shielded by the vesicle membrane from the hydrolyzing activity abundant in biological
fluids, EV cargo macromolecules can also elicit biologically relevant responses when
transported to proximate or remote target cells for uptake [6]. These characteristics of EVs
have thus been exploited not only to examine the physiological or pathological states of
EV-producing cells in varied biological contexts but also to deliver therapeutically potent,
bioactive molecules, enclosed within EVs, to desired target cells [9]. Accordingly, recent
advances on AKI research have also benefited from developments in biomarker discovery
and engineering such as using EVs [10].
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In that regard, we summarize our current understanding of how AKI is variously
diagnosed; how EVs help us come up with better diagnoses and prognoses, apply EV
knowledge to ameliorate AKI, and prepare EVs for translational and therapeutic purposes.
We further discuss challenges associated with isolating and analyzing EVs.

2. A Growing Demand for a Better Diagnosis of Acute Kidney Injury (AKI)

A considerably large share of mortality and morbidity around the world is attributed
to impaired kidney functions, and AKI is a dire form of such renal failure manifested as
an abrupt reduction of the normal kidney function, resulting from an injury to cells in
the nephron. A wide variety of intrinsic and extrinsic factors such as oxidative stress and
drug abuse are known to cause AKI to develop within days [11]. It poses a serious clinical
problem worldwide as it afflicts 10–15% of patients admitted to a hospital and more than
50% of patients in an intense care unit [12–14].

Even though the kidney is thought to have some ability to regenerate itself after
injury [2], most AKI patients do completely recover but proceed to develop tubulointersti-
tial fibrosis and chronic renal inflammation, ultimately leading to chronic kidney disease
(CKD) [11,15–17]. Moreover, AKI often complicates the clinical courses of the patients
by requiring dialysis and prolonged hospitalization leading to high morbidity and mor-
tality [3]. Therefore, early detection of AKI with accurate staging is crucial for selecting
the proper treatment, which is currently limited to supportive care to prevent AKI from
becoming aggravated.

AKI is typically diagnosed and staged by measuring changes in serum creatinine and
urine [18,19]. Serum creatinine levels can be found elevated in AKI due to a diminished
glomerular filtration rate (GFR), but they cannot sensitively report on damage to the kidney.
In fact, since AKI predominantly affects the tubules in the nephron, such glomerular
measurements as GFRs and their proxy, serum creatinine levels, would only indirectly
indicate an injury in the tubule [5]. Thus, only after either GFR declines substantially
or a tubular injury progresses considerably, will serum creatine levels noticeably rise.
Importantly, alterations in serum creatine levels, per se, cannot account for how GFR
declines or how AKI occurs [20]. Likewise, reduced urine output (oliguria), which is
frequently found in AKI patients, can neither notify us of injury incidence promptly nor
inform us of the underlying process.

Using such indirect AKI indicators as serum creatinine levels and urine output could
further convolute AKI diagnosis and prognosis, for these measurements could easily
be influenced by a patient’s age, gender, diet, muscularity, hydration, and medication
profile [21,22]. These current diagnostic limitations have thus prompted studies to dis-
cover and evaluate more sophisticated molecular biomarkers that would enable a timely
diagnosis accurate, precise staging, and a better prognosis [21,22].

3. Uncovering AKI Biomarkers

Advances in state-of-the-art mass spectrometry analysis and other related molecular
methodologies have led to uncovering several AKI molecular biomarkers. All these
efforts aimed at discovering such candidate macromolecules would enable sensitive, early
detection; help predict clinical courses of treatment; and facilitate therapeutic decisions [23].
Consequently, while not yet globally commonplace, select biomarkers have entered the
clinical use stage in some countries. For example, L-FABP (liver-type fatty acid-binding
protein) and NGAL (neutrophil gelatinase-associated lipocalin) are approved for use in
Japan and Europe, respectively. The United States Food and Drug Administration (FDA)
has authorized the use of a combination of TIMP-2 (tissue inhibitor of metalloproteinase-2)
and IGFBP-7 (insulin growth factor binding protein-7) [24]. The FDA has also permitted
a panel of such urinary biomarkers as KIM-1 (kidney injury molecule-1), Cystatin C,
Clusterin, and β-2-microglobulin for preclinical use to detect nephrotoxicity [25]. Notably,
many of these molecular AKI biomarkers can be acquired and analyzed in a non-invasive
manner, for these are released into urine in response to injury [5].
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Alongside such a procedural advantage, these AKI biomarkers can also inform us of
the site of injury in the nephron, albeit roughly. For example, KIM-1, L-FABP, IGFBP-7, and
TIMP-2 are known to come from the proximal tubule; UMOD (Uromodulin, also known
as Tamm Horsfall Protein) from the loop of Henle; and NGAL from the distal tubule and
the collecting duct [5]. As diverse tissue responses likely accompany AKI in the kidney,
studies have also discovered biomarkers that report inflammation (e.g., MCP-1, OPN,
and IL-18), fibrosis (e.g., TGF-β, and PIINP), and repair (e.g., EGF, YKL-40, and OPN) [5]
in addition to those that indicate injury. Although these biomarkers can account for the
presence or progression of injury in a manner rather non-specific to AKI, the information
gained from them can complement what is attainable from using injury-reporting urinary
AKI biomarkers.

The discoveries of the biomarkers described above have already shed light on improv-
ing the diagnosis and prognosis of AKI. The appropriate practice of these biomarkers can
help predict the progression of AKI to CKD, discern kidney dysfunction and injury, and
manage the clinical courses of AKI patients. It can also guide the selection of homogeneous
patient groups to plan better clinical trials aimed at AKI. Nonetheless, one should still
be cautious when interpreting the performance of these biomarkers, for their temporal
profiles can fluctuate with such factors as time after injury, baseline renal injury, and sub-
clinical kidney disease [20,26]. Hence, while improving the implementation of the known
biomarkers, recent investigations have moved on to an alternative biomarker discovery
basis, namely, extracellular vesicles in body fluids, for these likely hold and concentrate
potentially informative macromolecules [27,28].

4. Extracellular Vesicles as a Basis for Biomarker Discovery

The extracellular milieu consists of a myriad of macromolecule species that are pro-
duced and released by many cell types. While some macromolecules disperse only locally
from the source cell after release, others can travel to distant locations, complicating tracing
of the producing cell. Furthermore, certain macromolecule species, such as albumin and
immunoglobulin in the blood plasma, are known to dominate the molecular profile of
the body fluid [29], making the identification of other significant macromolecules at low
levels challenging. Moreover, the hydrolyzing activity that degrades macromolecules with
varying susceptibility abounds in the extracellular milieu [29]. Hence, complexity in the
molecular composition of the extracellular space and the instability of extracellular macro-
molecules have impeded efforts to discover biomarkers in body fluids [29]. In this regard,
the nanosized, membrane-bound extracellular vesicles (EVs) have intrigued researchers
in various fields [30–32], for these may not only concentrate a subset of extracellular
macromolecules to reduce the molecular population complexity but also shield them from
hydrolyzing activity to permit consistent recovery.

Generated and released by most cell types in our body, EVs can be recovered from a
variety of body fluids, including blood, urine, saliva, and cerebrospinal fluid [30–32]. Earlier
studies revealed that some cell types such as erythrocytes can remove obsolete membrane
proteins by excreting them on EVs, thereby remodeling intracellular membranes [33,34].
Adding to such a somewhat simple cell pruning role, recent studies have also ascribed
numerous intercellular communication roles to EVs. Thus, they are now thought to mediate
biological processes between cells, ranging from body patterning and immune response to
tissue repair and tumor development [35,36], by transporting a set of proteins and nucleic
acids to target cells.

Cell biological studies on EV biogenesis mechanisms have broadly categorized EVs
into three major classes (Figure 1). The smallest exosomes (30–100 nm in diameter),
are known to emerge through intricate intracellular membrane trafficking. The formation
of the multivesicular endosomes (MVE, also known as the multivesicular bodies, MVB)
is the key step in exosome-generating membrane trafficking (Figure 1) [37,38]; that is, the
membrane of the late endosomes invaginates and pinches off, giving rise to numerous
intraluminal vesicles (ILVs) inside the resulting outer surrounding vesicle, MVE. A specific
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set of macromolecules are thought to board ILVs during this process. Charged with these
constituents, ILVs are eventually secreted as exosomes when the outer MVE membrane
fuses to the plasma membrane [37,38]. Numerous factors are known to regulate exosome
generation and release, including membrane trafficking proteins [39–41], the Rab fam-
ily of small GTPases [42,43], the ESCRT-III (the endosomal sorting complex required for
transport-III) machinery [44], the Sirtuin family of deacetylases [45,46], the tetraspanin
family of membrane proteins [47], and certain lipids such as ceramide [48].

Figure 1. Generated by multiple mechanisms, extracellular vesicles (EVs) carry a set of macro-
molecules that reflect the normal and the pathological (e.g., acute kidney injury) states of the produc-
ing cells. EVs can also be engineered to deliver therapeutically potent, bioactive macromolecules to
desired target cells. MVE, multivesicular endosome. ILV, intralumenal vesicle, uEV, urinary EV.

In contrast to this complexity of exosome biogenesis, the second EV class, microvesi-
cles, is known to develop through a simpler process: the outward budding of the plasma
membrane (Figure 1) [31,49]. While larger in size (100–1000 nm in diameter) than exosomes,
microvesicles also pack and release a specific set of macromolecules as cargo. The third
EV class, apoptotic bodies, are known to form when the membrane of an apoptotic bleb
wraps many parts of the cell in relatively large vesicles of up to 4000 nm in diameter
(Figure 1) [50]. To make matters more complex, recent studies are still uncovering novel
EV classes as well as subclasses of a known EV type [51–54].

Existing in a continuum in size, density, and content [51], discerning these vesicles in
the extracellular space seems difficult, however. The term EV is instead suggested to refer
to all these vesicle types in the aggregate [30–32]. Nevertheless, one can still distinguish
individual EV classes by using characteristic molecular markers (Figure 1). For example,
Annexin V appears on the membrane of apoptotic bodies [52,55]; and CD40 ligand [56,57]
and Annexin A1 [52] on that of medium-to-large EVs. Small EVs such as exosomes, on the
other hand, are known to contain Rab proteins: Flotillin-1, the ESCRT-III machinery, ALIX,
TSG101, and VPS4. Also, tetraspanins such as CD9, CD63, and CD81 are known to curve
biological membranes, thereby favoring their existence on small EVs [31]. Furthermore,
lipid composition also varies among EV classes, with sphingolipids such as sphingomyelin
and ceramide existing mostly on small EVs [58].
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EVs can deliver donor cell information to either proximate or remote cells. Not only
individual macromolecules but also a subcellular organelle in its entirety such as a mito-
chondrium can be transferred via an EV to a target cell [59,60]. Several mechanisms, such
as endocytosis and membrane fusion are known to unload EV contents in the target cell
interior. The delivered macromolecules can, in turn, induce phenotypic alterations of the
target cell. For example, certain transported messenger RNA (mRNA) molecules are trans-
lated into proteins, inducing de novo expression of the proteins in the target cell. On the
other hand, microRNAs (miRNA) are also delivered via EVs to recipient cells to reduce
the level of the target mRNAs, thereby decreasing their expression [61–64]. Phenotypic
alterations can also be induced by unpacking proteinaceous EV cargos in the target cell
interior. For example, proteins transported via EVs can confer the ability to either promote
or suppress immune responses upon the receiving cell [65].

5. Urinary Extracellular Vesicles Containing Information on the Kidney

Urine fascinates EV researchers, for urinary EVs can be isolated and analyzed eco-
nomically and conveniently in a non-invasive manner outside our body [66]. Moreover,
mass spectrometry studies have found that urinary EVs can serve as an excellent source for
biomarkers [67]. A majority of urinary EVs are released apically from the epithelial cells
facing the tubular lumen. Urinary EVs can also come from other parts of the kidney that
drain urine such as the collecting duct cells, podocytes and other glomerular, progenitor,
and infiltrated inflammatory cells [68–72].

Studies have revealed that urinary EVs carry typical exosome markers, including
tetraspanins (CD9, CD63, and CD81), Flotillin-1, HSP70, and ALIX (Apoptosis-linked gene-
2-interacting protein X), among others (Figure 1) [73]. Moreover, urinary EVs also express
markers that denote the kidney origin such as CD24 (Figure 1) [74]. Other macromolecules
in urinary EVs can further inform us of where in the kidney individual EVs originated,
for example: Podocin and Podocalyxin come from podocytes in the glomerulus [75];
Megalin, Cubilin, Aminopeptidase [76], and Aquaporin-1 (AQP-1) come from the proximal
tubule [77]; UMOD, CD9, and NKCC2 (Type 2 Na–K–2Cl co-transporter) are from the thick
ascending limb of the Henle’s loop; and AQP-2 (Aquaporin-2) and Mucin-1 are from the
collecting duct (Figure 1) [71,78]. Moreover, the urinary EVs coming from renal progenitor
cells can also be identified by detecting CD133 expression (Figure 1) [79,80]. In addition to
these proteinaceous markers, urinary EVs harbor RNA molecules. While the majority of
these RNAs are ribosomal and non-encoding [81], miRNAs and protein-coding mRNAs in
urinary EVs are also implicated in regulating kidney functions (Figure 1) [82].

In addition to simply reflecting the status of the producing cells, urinary EVs may
also mediate information exchange between cells in the nephron [83]. Since urine flows
unidirectionally, EVs produced by proximal tubule cells may travel down the road along
the tubule to induce phenotypic alterations in cells in the distal tubule and the collecting
duct [84]. For example, EVs released from the proximal tubule cells treated with a dopamine
receptor agonist can reduce radical production in the recipient distal tubule cells, thereby
spreading an anti-inflammatory response across the nephron [84].

6. Urinary Extracellular Vesicles in Acute Kidney Injury and Recovery

Given the convenience and feasibility in uncovering biomarkers, urinary EVs are
revealing several potentially useful macromolecules that report on AKI. Unlike serum
creatinine levels and urine output, these macromolecules carried by urinary EVs appear to
mirror promptly the injured state of the kidney, enabling more accurate disease staging,
diagnosis, and prognosis (Figure 1). This advantage is exemplified by the ATF3 (Activating
transcription factor 3) protein in urinary EVs, the level of which substantially increases in re-
sponse to an acute injury induced by either cisplatin or ischemia-reperfusion (Figure 1) [69].
Interestingly, the ATF3 protein level increases in response to AKI specifically in urinary
EVs but not in the urine per se [69], demonstrating the utility of EVs in concentrating and
stabilizing extracellular macromolecules. Moreover, the rise of the ATF3 level in urinary
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EVs precedes that of serum creatinine, with the elevated level staying for 24–48 h [69],
which suggests that timely registration of the damage can be achieved by measuring ATF3
protein levels in urinary EVs. The level of mRNAs encoding ATF3 was also elevated in
urinary EVs after AKI induction [85]. Other potentially useful proteins in urinary EVs,
the levels of which increase in response AKI prior to the rise in serum creatinine, include
Fetuin-A [86] and NGAL [87]. On the other hand, the level of AQP-1 in urinary EVs,
a marker of the proximal tubule, declines in response to ischemia–reperfusion-mediated
acute kidney injury in rats as well as kidney transplantation in human patients [77].

Importantly, the content of urinary EVs changes while the damaged kidney is re-
covering from AKI as shown by phenotypic alterations in the nephron (Figure 1) [82].
For example, in rat kidney such miRNA cargo as miR-16, miR-24, and miR200c are released
right after an acute ischemia-reperfusion injury [82]. In the following early recovery stage,
a different set of miRNAs such as miR-9a, miR-141, miR-200a, miR-200c, and miR-429,
which commonly target Zeb1/2 mRNA, are released, thereby engaging TGF-β-mediated
fibrosis in the nephron during recovery from the injury [82]. The induced TGF-β signaling,
in turn, causes another set of miRNAs, miR-125a and miR-351, to be released [82].

The CD133-expressing progenitor cells in the kidney epithelium play key roles not
only in continuous renewal of the kidney epithelium but also in recovery from AKI through
regeneration of the damaged tissue (Figure 1) [88–91]. The number of CD133-expressing
cells increases in response to an acute damage of the kidney [92,93]. Thus, the increase
in cell number likely accounts for the increase in the number of CD133-containing EVs
in urine [93]. These CD133-containing urinary EVs are thought to engage a certain gene
expression program to promote cell cycle progression and survival, possibly transporting
such cargo as Cyclin D1 and Decorin mRNAs (Figure 1) [94].

7. Extracellular Vesicles from Mesenchymal Stem Cells for Treating AKI

The utility of EVs goes beyond just cataloguing the contents and identifying informa-
tive molecules that report on disease features and progression. To keep abreast of such
basic biological endeavors, various translational research fields also use EVs as a vehicle to
deliver therapeutic molecules to specific, desired target cells. Accordingly, a great deal of
research has explored the possibility of ameliorating renal diseases such as AKI by making
use of EVs released from a homogeneous cell source: principally, mesenchymal stem cells
(also known as mesenchymal stromal cells, MSCs), that can supply EVs quite consistently.

Derived from a variety of tissues such as bone marrow, adipose tissue, and the
umbilical cord, MSCs commonly express such surface markers as CD44, CD73, CD90,
CD105, and CD146 [95] and have been used in the treatment of various diseases, mainly
through helping tissue regeneration [96]. However, attempts to implant MSCs stably in a
targeted tissue have proven difficult to achieve [97–102]. Instead, it has become evident that
a conditioned culture medium of MSCs can have therapeutic effects comparable to those
of the transplanted cells, themselves [103–105]. Among the conditioned culture media of
MSCs, EVs were proven to have therapeutic potential for a variety of diseases, including
AKI (Figure 1) [106–109]. A recent meta-analysis of 31 independent preclinical rodent AKI
models confirmed the therapeutic potential of MSC-derived EVs in treating AKI [110].

MSC-derived EVs appear to exert therapeutic effects through conferring upon the
kidney cells the ability to resist the apoptosis of healthy epithelial cells [111,112], stimu-
late the recovery process such as cell-cycle reentry [111,112], and suppress inflammatory
responses [107]. These effects are presumably based on transferring certain critical cargo
molecules in the MSC-derived EVs to the injured tissue. In fact, delivering such factors as
the IGF-1 (Insulin-like growth factor 1) protein and mRNA via MSC-derived EVs are well
documented for their ability to regenerate a damaged kidney [113]. In addition, miRNAs
transported by MSC-derived EVs may also play a crucial role in eliciting therapeutic effects
for AKI. In MSCs, the knockdown of Drosha, an essential component in primary miRNA
processing [114], can prevent therapeutic effects [115].
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While EVs from a variety of MSC sources can assist recovery from AKI [116–122], this
complexity of cell origin and the varied culture conditions may confound the efforts to pu-
rify or enrich EVs from the conditioned culture medium. Co-isolating substances present in
the conditioned culture medium may lead to a wrong conclusion about the therapeutic po-
tential expected from the EVs. Moreover, the adequate effective amount, route of delivery,
and biodistribution of MSC-derived EVs need to be determined more definitively [123,124].
Even so, EVs derived from MSCs provide us with several advantages such as low immuno-
genicity [125–127], high biological tolerance [128], and rapid internalization into target
cells [129].

8. Preparing Extracellular Vesicles for Treating AKI

When using EVs to treat diseases such as AKI, one should make careful decisions
about where to obtain EVs, how to load EV cargos, and how to enrich EVs from heteroge-
nous mixtures with consistent quality. While several MSC types may produce EVs of
comparable effects, those that have similar characteristics to the renal system will likely be
better at treating AKI. In the same vein, EVs derived from either renal progenitor cells or
their differentiation progenies may excel those from other cell sources (Figure 1). The recent
development of the protocol to differentiate human pluripotent stem cells into the kidney
organoid could be utilized to generate a large quantity of homogenous EVs (Figure 1) [130].
Since pluripotent stem cells can be induced from somatic cells obtainable from the patient
who would later want to receive an EV therapy, the EVs prepared using this approach could
avoid many obstacles such as unwanted immune responses and ethical issues. Moreover,
CRISPR/Cas9-mediated genome editing has shown its utility by precisely altering the
genome of the pluripotent stem cells and, subsequently, that of their differentiated proge-
nies in diverse research fields [131]. Employing this approach in AKI studies, therefore,
would not only reveal definitively how individual genetic factors can modulate EVs and
contribute to amelioration of AKI but also enable production of EVs tailored to the genetic
make-ups of individual patients.

On the other hand, a great deal of engineering effort is being made to improve EV
cargo loading and EV delivery to target cells (Figure 1). For example, the MSCs engineered
to express the miRNA Let7c were found to localize preferentially to the injured kidney,
resulting in an efficient transferring of Let7c in EVs to the damaged tissue to repress
expression of the genes involved in TGF-β-mediated fibrosis [132]. EV engineering studies
targeting other organs illuminates how to address AKI with engineered EVs. These include
a fusion of the exosome membrane protein LAMP2B to the neuron-specific RVG peptide 3
to improve neuronal delivery [133], an enhanced stable retention of exosomes in circulation
by expressing CD47 in MSCs [134], and the development of a novel molecular platform
called ARMS (Arrestin domain containing protein 1-mediated microvesicles) to improve
cargo packaging and delivery [135]. In this vein, a recent development of the specific
delivery of erythrocyte-derived EVs charged with therapeutic small interfering RNAs
(siRNAs) to the damaged kidney with AKI is remarkable [136]. The key to this feat was
the development of synthetic peptides that bound to the AKI biomarker KIM-1 [136].
Expressing the peptides on the EVs derived from erythrocytes delivered the EVs charged
with therapeutic siRNAs specifically to the AKI kidney, ameliorating tubulointerstitial
inflammation and fibrosis [136].

In addition to utilizing intrinsic cell mechanisms of EV cargo loading, macromolecules
of potential therapeutic values can also be introduced by incubating with isolated EVs in a
test tube condition (Figure 1). Multiple methods have been explored to achieve this, includ-
ing simple incubation, electroporation, and saponin-assisted loading [137]. Among these,
simple incubation appears to work well for loading hydrophobic compounds [138] and
proved its utility in delivering the organic compound curcumin [139]. On the other hand,
electroporation was shown to be useful for loading exogenously prepared miRNAs [140]
and long non-encoding RNA [141]. Moreover, the saponin-assisted encapsulation showed
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an enhanced delivering efficiency of the CRIPR/Cas components to the target cells, thereby
facilitating precise genome editing [142].

9. Challenges in Isolating and Analyzing Extracellular Vesicles

Both basic biological and translational EV studies critically rely on methods to isolate
EVs with high purity and consistency. While a variety has been developed, each has
relative strengths and weaknesses. One should, therefore, understand what each method
can offer and how to use them appropriately.

The most widely accepted method for EV isolation is multiple rounds of differen-
tial centrifugation and pelleting exosomes at the last ultracentrifugation step [143,144].
While this approach promises to isolate EVs at the purest level among the current meth-
ods, the whole process is laborious, time consuming, and limited in scalability. Also,
ultrahigh gravitational forces can also cause EVs to aggregate, thereby potentially impair-
ing their integrity [145]. Notably, ultracentrifugation of the conditioned culture medium
may also pellet a substantial number of particles unrelated to EVs. In preparing EVs
from a molecularly complex fluid, therefore, one might also consider further fractionating
the EV fraction of ultracentrifugation by using another method such as density gradient
centrifugation [146].

Separating particles by size is another approach for isolating EVs at a relatively pure
level with varying scalability. This includes methodologies such as relying on either
ultrafiltration concentration [147] or tangential flow filtration [148], often followed by size
exclusion chromatography to purify EVs. In addition, various affinity capturing methods
are widely used to isolate EVs, such as immunoaffinity capturing with anti-EpCAM and
anti-CD63 antibodies [149]. However, immunoaffinity methods can only capture a subset
of EVs, which express the antigen on the EV surface [150,151]. A similar affinity capturing
method uses the interaction between phosphatidylserine on the surface of some EVs
and Tim4 (T cell immunoglobulin and mucin domain protein 4) on capturing magnetic
beads [151]. A recently developed affinity-based capturing method using lipid nanoprobes
holds great promise in that it can isolate highly pure EVs with a much shorter processing
time relative to differential centrifugations and with scales conducive for high-throughput
screening and analysis [152]. On the other hand, polymer-mediated precipitation also
appears useful for isolating EVs, particularly to confirm EV biomarker performance [153].
The high yield of EV isolation by this method, however, comes at a cost in that it can also
precipitate a large amount of particles unrelated to EVs [154].

To be used in clinics, EVs must lack contaminating xenogeneic substances, which can
be avoided through culturing the EV-producing cells in a defined culture medium [9]. EVs
prepared for therapeutic purposes should also pass a high purity threshold to preserve
the physical and functional integrity [155]. Moreover, for consistent production, EV iso-
lation scales should be adjustable without compromising quality [155]. To this end, EV
manufacturing processes are being devised by combining the advantages that different
EV isolation methodologies can provide. For example, an EV isolation procedure with
tangential flow filtration and size exclusion chromatography in succession might promise
high purity, scalability, and reproducibility.

10. Conclusions

Although AKI remains as a serious clinical problem that threatens the lives of countless
patients worldwide, the recent development in biomarker discovery and regenerative
therapy based on EVs is rapidly advancing our understanding and treatment of this
dreadful disease. However, we still need to upgrade our EV biomarker inventory by further
discovering and detailing where the disease-reporting macromolecules are generated in
the nephron, when and how each of these is released via EVs, and how the levels of these
biomarkers change over time. This new information should not only enable a more precise
diagnosis and prognosis of AKI patients, but in turn help us design better therapeutic
applications of EVs. The continuous methodological innovations in cell culturing, vesicle
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isolation, cargo loading, specific delivery to the damaged kidney will gradually solve
many obstacles remaining in utilizing EVs with adequate quantity and quality for AKI
therapy. Rapid developments in precise genome editing with the CRISPR/Cas system and
in patient-derived kidney organoids from the induced pluripotent stem cells will further
accelerate our endeavors to treat this hard-to-cure disease.
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