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A B S T R A C T   

Novel coronavirus disease 2019 (COVID-19) is an infectious disease that spreads very rapidly and threatens the 
health of billions of people worldwide. With the number of cases increasing rapidly, most countries are facing the 
problem of a shortage of testing kits and resources, and it is necessary to use other diagnostic methods as an 
alternative to these test kits. In this paper, we propose a convolutional neural network (CNN) model (ULNet) to 
detect COVID-19 using chest X-ray images. The proposed architecture is constructed by adding a new down-
sampling side, skip connections and fully connected layers on the basis of U-net. Because the shape of the 
network is similar to UL, it is named ULNet. This model is trained and tested on a publicly available Kaggle 
dataset (consisting of a combination of 219 COVID-19, 1314 normal and 1345 viral pneumonia chest X-ray 
images), including binary classification (COVID-19 vs. Normal) and multiclass classification (COVID-19 vs. 
Normal vs. Viral Pneumonia). The accuracy of the proposed model in the detection of COVID-19 in the binary- 
class and multiclass tasks is 99.53% and 95.35%, respectively. Based on these promising results, this method is 
expected to help doctors diagnose and detect COVID-19. Overall, our ULNet provides a quick method for 
identifying patients with COVID-19, which is conducive to the control of the COVID-19 pandemic.   

1. Introduction 

COVID-19 is an acute pandemic and has spread around the world. At 
present, there are 223 countries and regions in the world with the 
COVID-19 pandemic, and more than 202 million people have been 
infected with COVID-19, which has caused more than 4 million deaths 
[1]. Once infected, patients with COVID-19 may experience various 
symptoms and signs of infection, including fever, cough, and respiratory 
diseases (such as flu). In severe cases, the infection can lead to pneu-
monia, breathing difficulties, multiple organ failure and death [2,3]. 
Therefore, it seriously affects people’s production and life. In response to 
the pandemic, many countries have declared complete blockades and 
required their people to stay indoors and strictly avoid gatherings. At the 
same time, the research and development departments of different 
research centers are seeking possible solutions in the fields of medicine, 
biology, data science, and deep learning to prevent and control this 
pandemic [4–6]. 

A key and important step in combating COVID-19 is to effectively 
screen infected patients to isolate and treat those who are positive. At 
present, the main screening method used to detect COVID-19 is real-time 
reverse transcription polymerase chain reaction (RT–PCR) [7,8]. 

RT–PCR detection is the gold standard due to its high specificity. 
However, some viruses have mutated with the rapid development of the 
pandemic, and RT–PCR is not sensitive to some mutated viruses. In 
addition, RT–PCR is a very time-consuming, laborious and complex 
manual process, and it is in short supply in some countries. Another 
method can be based on chest radiographic images. Various studies 
published in the Journal of Radiology [9,10] indicate that chest scans 
may help to detect COVID-19. Researchers have found that the lungs of 
patients with COVID-19 symptoms have some fuzzy marks, such as 
ground glass-fuzzy dark spots, which can be used to distinguish 
COVID-19-infected patients from non-COVID-19-infected patients [10, 
11]. In addition, chest X-ray images have been widely used to detect 
COVID-19 [12,13]. Many deep learning-based systems have been pro-
posed and have shown promising results in terms of the accuracy of 
using chest images to detect patients infected with COVID-19. In the 
method based on deep learning, the network is first trained on the chest 
images in the training set. After training, the chest images to be checked 
are simultaneously input into the trained network, and the corre-
sponding classification results can be obtained easily. Compared with 
RT–PCR, these deep learning-based methods are faster, easier, and 
labor-saving. Moreover, these deep learning-based methods are more 
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intelligent because they automatically learn features from the data itself 
rather than based on the manual extraction of features [14]. Therefore, 
researchers believe that a system based on chest radiology could be an 
effective tool for detecting, quantifying and tracking COVID-19 cases. 

In this paper, we first review some advanced networks and propose a 
ULNet model that is constructed by downsampling, upsampling, skip 
connections and fully connected layers. The ULNet is an effective tool to 
help doctors quickly identify patients with COVID-19 by using chest X- 
ray images and thus delay the rapid spread of COVID-19. At the same 
time, the proposed model is trained on 2905 chest X-ray images, which 
are open source and can be used publicly to classify different types of 
chest X-ray images (COVID-19 vs. viral pneumonia vs. normal). In 
addition, we evaluated the performance of the ULNet model by preci-
sion, recall, F1-score, accuracy and receiver operating characteristic 
(ROC) curve and compared it with other published studies. 

The contributions of the paper are summarized as follows:  

● We build a new deep learning model (ULNet) and apply it to two 
classification and three classification tasks. Multiple experiments 
show that the use of ULNet can improve the classification accuracy. 

● We evaluate the performance of our model through different evalu-
ation metrics and an external dataset.  

● The proposed ULNet model helps researchers continue to develop 
advanced deep learning technologies for computer-aided design 
systems to respond to the COVID-19 pandemic. 

The remainder of the paper is organized as follows. In Section 2, 
some COVID-19 diagnosis systems based on deep convolution neural 
networks in recent years are reviewed. In Section 3, the proposed ULNet 
model is introduced in detail. Section 4 gives the dataset, the experi-
mental setup and the performance of our model. Section 5 describes the 
general contributions of this paper and discusses some future directions. 

2. Related work 

Recently, a number of scientists have proposed a series of systems for 
diagnosing COVID-19 from chest X-ray images based on deep learning 
models, and we reviewed some of the advanced models. Apostolopoulos 
et al. [15] developed a diagnostic method for COVID-19 based on deep 
learning. In this study, both two-class and three-class analyses were 
carried out simultaneously. The accuracy of the proposed model was 
98.75% for the two-class (COVID-19 vs. no findings) and 93.48% for the 
three-class (COVID-19 vs. no findings vs. pneumonia). Hemdan et al. 
[16] provided a COVIDX-Net model comprising seven different deep 
architectures (MobileNetV2, VGG19, InceptionV3, DenseNet201, 
ResNetV2, and Xception as well as InceptionResNetV2) to detect 
COVID-19 from chest X-ray images. In this study, the average accuracy 

Table 1 
Some published deep learning methods for detecting COVID-19 based on chest 
images.  

Study Dataset Models Performance 

Apostolopoulos 
et al. [15] 

1428 chest X-ray 
images including 
224 images with 
confirmed COVID- 
19 cases, 700 
images 
withconfirmed 
bacterial 
pneumonia cases 
and 504 images of 
normal cases. 

VGG19 Accuracy of 
98.75% for 2- 
classes and 
93.48% for 3- 
classes 

Hemdan et al. 
[16] 

50 chest X-ray 
images including 25 
cases with COVID- 
19 and 25 cases 
without any 
infections. 

COVIDX-Net Accuracy of 90% 
for 2-classes and 
F1-scores of 0.91 
for COVID-19 
and 0.89 for 
normal 

Qzturk et al. 
[17] 

1125 chest X-ray 
images comprising 
125 with COVID- 
19, 500 normal and 
500 pneumonia 
cases. 

DarkCovidNet Accuracy of 
87.02% for 3- 
classes 

Khan et al. [18] 3084 chest X-ray 
images and CT 
images comprising 
290 COVID-19, 
1203 normal, 931 
viral pneumonia 
and 660 bacterial 
pneumonia. 

CoroNet Accuracy of 95% 
for 3-classes and 
89.6% for 4- 
classes 

Sethy et al. [19] 50 chest X-ray 
images comprising 
25 cases with 
COVID-19 and 25 
cases with without 
any infections. 

Deep features from 
ResNet50 + SVM 
classifier 

Accuracy of 
95.38% 

Suat et al. [20] 2331 chest X-ray 
images including 
231 COVID-19 
cases, 1050 
pneumonia cases 
and 1050 no- 
findings cases. 

Convolutional 
CapsNet 

Accuracy of 
97.24% for 2- 
classes and 
84.22% for 3- 
classes 

J. Zhang et al. 
[21] 

1078 chest X-ray 
images comprising 
1008 non-COVID- 
19 pneumonia and 
70 COVID-19. 

Deep CNN based 
on Backbone 
network 

Sensitivity of 
96.0% and 
specificity of 
70.7% along 
with an AUC of 
95.2% 

B. Ghoshal et al. 
[22] 

5941 chest X-ray 
images including 
2786 bacterial 
pneumonia, 1583 
normal, 68 COVID- 
19 and 1504 non- 
COVID-19 viral 
pneumonia. 

Dropweights based 
Bayesian 
Convolutional 
Neural Networks 

Accuracy of 
92.90% 

Harsh Panwar 
et al. [23] 

284 chest X-ray 
images including 
142 cases with 
COVID-19 and 142 
cases of normal 

nCOVnet Accuracy of 88% 
for 2-classes and 
the accuracy rate 
of positive 
COVID-19 is 
97% 

Tawsifur 
Rahman et al. 
[24] 

18479 chest X-ray 
images including 
3616 COVID-19, 
8851 Normal and 
6012 Non-COVID. 

DenseNet201 Accuracy of 
95.11% for 3- 
classes 

S.Wang et al. 
[25] 

99 chest CT images 
including 55 viral 
pneumonia and 44 
COVID-19. 

M-Inception Accuracy of 
73.1%, along 
with a sensitivity 
of 74.0% and a  

Table 1 (continued ) 

Study Dataset Models Performance 

specificity of 
67.0% 

Zheng et al. [26] 542 chest CT 
images including 
313 COVID-19 and 
229 no-findings. 

DeCovNet Accuracy of 
90.1% 

L. Li et al. [27] 4356 chest CT 
images including 
1735 pneumonia, 
1325 
nonpneumonia and 
1296 COVID-19. 

COVNet Specificity of 
96%, sensitivity 
of 90%, and AUC 
of 0.96 

Y. Song et al. 
[28] 

275 chest CT 
images including 88 
COVID-19, 101 
bacteria pneumonia 
and 86 healthy. 

DeepPneumonia Accuracy of 
94.0% for 2-clas-
ses and 86.0% 
for 3-classes  

T. Wu et al.                                                                                                                                                                                                                                      
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rate for the binary class problem was 90%, and the F1-scores for 
COVID-19 and normal conditions were 0.91 and 0.89, respectively. 
Qzturk et al. [17] introduced a deep CNN model (DarkCovid-Net) based 

on the DarkNet model. This model was trained on chest X-ray images 
and was designed to provide accurate diagnosis for two-class classifi-
cation (COVID-19 vs. Normal) and three-class classification (COVID-19 

Fig. 1. The structure of the ULNet model.  

Fig. 2. Example of chest X-ray images in Kaggle’s COVID-19 Radiography Dataset: (first row) Normal chest X-ray images, (second row) Viral Pneumonia chest X-ray 
images, (third row) COVID-19 chest X-ray images. 

T. Wu et al.                                                                                                                                                                                                                                      
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vs. Normal vs. Pneumonia). The accuracy was 98.08% for the two-class 
model and 87.02% for the three-class model. Khan et al. [18] proposed 
the CoroNet model, which is based on the Xception architecture and 
pretrained on ImageNet, to diagnose COVID-19 using chest X-ray images 
and computed tomography (CT) images. This model achieved an overall 
accuracy of 95% and 89.6% for three classes (viral pneumonia vs. 
COVID-19 vs. bacterial pneumonia vs. normal) and four classes (pneu-
monia vs. COVID-19 vs. normal). Sethy et al. [19] used various CNN 

models along with a support vector machine (SVM) classifier to detect 
COVID-19 from chest X-ray images. The experimental results showed 
that the ResNet50 model with the SVM classifier achieved the highest 
accuracy of 95.38%. Suat et al. [20] introduced a convolutional capsule 
network, an artificial neural network for detecting COVID-19 from chest 
X-ray images. The developed model had an accuracy rate of 97.24% for 
binary-class classification (COVID-19 vs. no findings) and 84.22% for 
multiclass classification (COVID-19 vs. no findings vs. pneumonia). 
Zhang et al. [21] presented a deep CNN model based on a backbone 
network. The model was trained on chest X-ray images and achieved a 
sensitivity of 96% and specificity of 70.7% along with an AUC of 95.2%. 
B. Ghoshal et al. [22] proposed a Bayesian deep learning classifier based 
on the transfer learning method to diagnose COVID-19 from chest X-ray 
images. The experimental results showed that Bayesian inference im-
proves the detection accuracy of VGG16 from 85.7% to 92.9%. Harsh 
Panwar et al. [23] proposed the nCOVnet model to detect COVID-19 by 
using chest X-ray images. The results showed that the proposed model 
correctly detected patients with positive COVID-19 with an accuracy of 
97%, and the overall accuracy of nCOVnet was 88%. Tawsifur Rahman 
et al. [24] introduced a DenseNet201 model that was trained on chest 
X-ray images from Kaggle’s COVID-19 Radiography Database. This 
model achieved an overall accuracy of 95.11% for three classes 
(COVID-19 vs. Normal vs. Non-COVID). 

In addition, many researchers have proposed deep learning systems 
for detecting COVID-19 from CT images. S. Wang et al. [25] introduced 

Fig. 3. Example of chest X-ray images in the QaTa-COV19 dataset: (first column) Normal chest X-ray images, (second column) Viral Pneumonia chest X-ray images, 
(third column) COVID-19 chest X-ray images. 

Fig. 4. Schematic diagram of Kaggle’s COVID-19 Radiography Dataset used in the 5-fold cross-validation.  

Table 2 
Distribution of Kaggle’s COVID-19 Radiography Dataset for binary 
classifications.  

Class Number of images Training Validation Test 

COVID-19 219 158 18 43 
Normal 1341 965 107 269  

Table 3 
Distribution of Kaggle’s COVID-19 Radiography Dataset for three classifications.  

Class Number of images Training Validation Test 

COVID-19 219 158 18 43 
Normal 1341 965 107 269 
Viral pneumonia 1345 969 107 269  

T. Wu et al.                                                                                                                                                                                                                                      
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the M-Inception model, which was trained on chest CT images to classify 
viral pneumonia and COVID-19. The results of the test dataset showed 
that the overall accuracy was 73.1%, the sensitivity was 74.0%, and the 
specificity was 67.0%. Zheng et al. [26] proposed a new deep learning 
model (DeCovNet), which was trained on chest CT images and reached 
an accuracy rate of 90.1%. L. Li et al. [27] introduced the COVNet model 

Fig. 5. Confusion matrix results of our ULNet for 2-class classification. (a) Overlapping CM, (b) Fold-1 CM, (c) Fold-2 CM, (d) Fold-3 CM, (e) Fold-4 CM, (f) Fold- 
5 CM. 

Table 4 
The experimental results in fold 1 for 2 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 100% 97.67% 98.82% 99.68% 
Normal 99.63% 100% 99.81%  

Table 5 
The experimental results in fold 2 for 2 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 91.49% 100% 95.56% 98.72% 
Normal 100% 98.51% 99.25%  

Table 6 
The experimental results in fold 3 for 2 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 91.49% 100% 95.56% 98.72% 
Normal 100% 98.51% 99.25%  

T. Wu et al.                                                                                                                                                                                                                                      
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based on ResNet50 trained on chest CT images. The experimental results 
showed that the specificity of the COVNet model in the classification of 
COVID-19 was 96%, the sensitivity was 90%, and the AUC was 0.96. Y. 
Song et al. [28] developed a deep learning model (DeepPneumonia) to 
detect COVID-19 from chest CT images. The overall accuracy of the 
model for the classification of COVID-19 vs. bacterial pneumonia was 
86.0%, and the overall accuracy for the classification of COVID-19 vs. 
healthy individuals was 94.0%. More details are shown in Table 1. 

In this paper, we further improve the accuracy of classification. We 
propose that the ULNet compensates for the loss of information by 
adding new skip connections and adds a new downsampling side 
structure to extract deep-level features, which improves the classifica-
tion performance of the network. 

3. ULNet model 

In this section, we propose a new deep learning network ULNet based 
on the U-net [29] architecture to detect COVID-19 from chest X-ray 
images. The structure of the network is shown in Fig. 1. 

Since U-net [29] was proposed in 2015, it has been widely used in the 
field of medical image segmentation due to its excellent network 
structure, but no one has used it or its improved structure to deal with 
classification tasks. We propose ULNet for classification on the basis of 
U-net, which is composed of a U-shaped network on the left and an 
L-shaped network on the right, as shown in Fig. 1. The U-shaped network 
is basically the same as the U-net structure, including the downsampling 
structure, upsampling structure and skip connections, but we add a 
batch normalization layer after each convolutional layer in the 

downsampling structure and the upsampling structure. The batch 
normalization layer is very important because it normalizes the mean 
and variance of the output of each layer of the network, which can 
accelerate the convergence rate of the network, control the gradient 
explosion, prevent the gradient from disappearing, and suppress over-
fitting [30]. At the same time, the same downsampling structure as the 
U-shaped network is added behind it, and then two fully connected 
layers are added to form an L-shaped network. The downsampling 
structure of the L-shaped network increases the depth of the network to 
capture deep-level features. At the same time, we make skip connections 
between the upsampling structure of the U-shaped network and the 
downsampling structure of the L-shaped network. Different levels of 
features can be merged by these skip connections to avoid a large 
amount of information loss caused by the pooling operation. In addition, 
the last fully connected layer is forwarded to a sigmoid function in the 
two-classification task, and it is forwarded to a softmax function in the 
three-classification task. The above is the complete structure of the 
ULNet. In the following, we introduce in detail the main components of 
the proposed model, such as convolutional layers, activation units, batch 
normalization, pooling, deconvolution and fully connected layers. 

3.1. Convolutional layer 

Convolution is the basic operation of a convolutional neural 
network, and the convolutional layer is the base layer of the CNN. It is 
responsible for determining the features of the pattern. In this layer, the 
input image is passed through a filter, and the values resulting from 
filtering consist of the feature map. This layer applies some kernels that 
slide through the pattern to extract low-level and high-level features in 
the pattern. The kernel is a n× n-shaped matrix to be transformed with 
the input pattern matrix. The stride parameter is the number of steps 
tuned for shifting over the input matrix. The output of the convolutional 
layer can be given as 

xl
j = f

(
∑N

a=1
wl− 1

j * yl− 1
a + bl

j

)

(1)  

where xi
j is the j-th feature map in layer l, wl− 1

j indicates the j-th kernel in 
layer l − 1, yl− 1

a represents the a-th feature map in layer l − 1, bl
j indicates 

the bias of the j-th feature map in layer l, N is the number of total features 
in layer l − 1, and * represents the vector convolution process. 

3.2. Activation function 

The activation function is used after each convolution to introduce 
nonlinearity into the model. As an activation function, the ReLU func-
tion has become very prevalent since it was proposed due to its advan-
tages in overcoming gradient disappearance and accelerating training 
speed. The formula of the ReLU function can be expressed as 

ReLU(x)=
{

0, x < 0
x, x ≥ 0 (2) 

If the input is negative, the output is 0, and if the input is nonneg-
ative, the output is x. 

3.3. Batch normalization layer 

Given a mini batch B = {x1, x2, ..., xm} of size m, the normalized 
values (x̂1, x̂2, ..., x̂m) and their linear transformations (y1, y2, ...,

ym). Batch normalization BNγ,β refers to the transform BNγ,β : x1, x2,

..., xm → y1, y2, ..., ym and is computed as: 

Table 7 
The experimental results in fold 4 for 2 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 100% 100% 100% 100% 
Normal 100% 100% 100%  

Table 8 
The experimental results in fold 5 for 2 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 100% 100% 100% 100% 
Normal 100% 100% 100%  

Table 9 
Performance of the proposed ULNet for 2 classes on Kaggle’s COVID-19 Radi-
ography Dataset.  

Folds Precision Recall F1-score Accuracy 

Fold-1 99.82% 98.84% 99.32% 99.68% 
Fold-2 95.75% 99.26% 97.41% 98.72% 
Fold-3 95.75% 99.26% 97.41% 98.72% 
Fold-4 100% 100% 100% 100% 
Fold-5 100% 100% 100% 100% 
Average 98.26% 99.47% 98.83% 99.42%  

Table 10 
Performance of the proposed ULNet for 2 classes on the QaTa-COV19 dataset.  

Folds Precision Recall F1-score Accuracy 

Fold-1 98.51% 98.50% 98.50% 98.50% 
Fold-2 99.51% 99.50% 99.50% 99.50% 
Fold-3 99.51% 99.50% 99.50% 99.50% 
Fold-4 99.02% 99.00% 99.00% 99.00% 
Fold-5 100% 100% 100% 100% 
Average 99.31% 99.30% 99.30% 99.30%  

T. Wu et al.                                                                                                                                                                                                                                      
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μB =
1
m
∑m

i=1
xi

σ2
B =

1
m

∑m

i=1
(xi − μB)

2

x̂i =
xi − μB̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
B + ε

√

yi = γx̂i + β ≡ BNγ,β(xi)

(3)  

where μB and σ2
B are the minibatch mean and variance, respectively, β 

and γ are parameters learnable via backpropagation, and ε is a small 
positive number to avoid division by zero [28]. 

3.4. Pooling layer 

The pooling layer maintains the most relevant information while 
downsampling and compresses features to reduce the amount of calcu-
lation. In addition, the pooling layer can expand the receptive field. The 
pooling operation is a window with a size of hp × hp sliding on the 
feature map in steps. There are usually two methods: maximum pooling: 
returns the maximum value in each window; average pooling: returns 
the average value of each window. 

3.5. Deconvolution layer 

Deconvolution is a special forward convolution. It enlarges the size 
of the input image by adding 0 in a certain proportion, then rotates the 
convolution kernel and carries out forward convolution. When per-
forming forward convolution, the relationship between the input and 
output dimensions is: 

o=
i + 2p − k

s
+ 1 (4) 

When performing deconvolution, the relationship between input and 
output sizes involves two situations. If (o + 2p − k)%s = 0, at the time, 
the input and output size relationship of deconvolution is: 

o= s(i − 1) − 2p + k (5) 

If (o + 2p − k)%s ∕= 0, the input and output size relationship of 
deconvolution is: 

o= s(i − 1) − 2p+ k + (o+ 2p − k)%s (6)  

where o is the size of the output, i is the size of the input, p is the size of 
the padding, k is the size of the convolution kernel, and s is the step size. 

3.6. Fully connected layer 

Each node in the fully connected layer is connected to all of the nodes 
of the previous layer and is used to integrate the features extracted from 
the front. In the CNN network, the fully connected layer maps the 
feature map generated by the convolution layer into a feature vector of 
fixed length, which is generally the number of image categories in the 
input image dataset. This feature vector contains the combined infor-
mation of all features of the input image. Although the position infor-
mation of the image is lost, the vector retains the most characteristic 
image features in the image to complete the image classification task. 
From the perspective of the image classification task, the computer only 
needs to judge the content of the image, calculate the specific category 
value of the input image (the category probability), and output the most 
likely category to complete the classification task. 

In addition, the optimization function used in our ULNet is Adam, 
which is one of the most commonly used and effective methods in 
gradient descent optimization. At the same time, a dropout layer is 

Fig. 6. Receiver operating curve of our ULNet for 2-class classification. (a) Fold-1 ROC, (b) Fold-2 ROC, (c) Fold-3 ROC, (d) Fold-4 ROC, (e) Fold-5 ROC.  

T. Wu et al.                                                                                                                                                                                                                                      
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added after each fully connected layer to prevent overfitting. In addi-
tion, the receptive field will be too large if a large filter is used so that 
most of the extracted information is irrelevant and the details will be 
lost, resulting in poor classification accuracy. Therefore, we use the 
small filter of size 3× 3. 

4. Experiment 

In this section, we introduce the dataset used in this paper and the 
distribution of images used for training, verification and testing in 
detail. At the same time, we evaluate the performance of the proposed 

Fig. 7. Confusion matrix results of our ULNet for 3-class classification. (a) Overlapping CM, (b) Fold-1 CM, (c) Fold-2 CM, (d) Fold-3 CM, (e) Fold-4 CM, (f) Fold- 
5 CM. 

Table 11 
The experimental results in fold 1 for 3 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 84.78% 90.70% 87.64% 94.84% 
Normal 95.56% 95.91% 95.75% 
Pneumonia 95.85% 94.42% 93.65%  

Table 12 
The experimental results in fold 2 for 3 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 89.13% 95.35% 92.14% 94.32% 
Normal 96.15% 92.94% 94.52% 
Pneumonia 93.45% 95.54% 94.48%  
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ULNet model by using different evaluation indicators. In addition, we 
use an external dataset (QaTa-COV19 Dataset) [31] to evaluate the 
model. The model is used for two classifications of normal people and 
COVID-19 patients, as well as three classifications of normal people, 
COVID-19 patients and viral pneumonia patients. 

4.1. Dataset and experimental setup 

In this paper, the chest X-ray image dataset we used is Kaggle’s 
COVID-19 Radiography Dataset [32]. This dataset contains 2905 chest 
X-ray images of three different types, including 1341 normal images, 
1345 viral pneumonia images and 219 COVID-19 images. To better 
observe the differences between different types of chest X-ray images, 
we show some images of Kaggle’s COVID-19 Radiography Dataset [32] 
in Fig. 2. Kaggle’s COVID-19 Radiography Dataset is an open dataset in 
which chest X-ray images come from three different datasets: chest X-ray 
images with COVID-19 are taken from the Italian Society of Medical and 
Interventional Radiology COVID-19 Dataset (SIRM) [33] and from the 

Novel Coronavirus 2019 Dataset, which was developed by Cohen et al. 
in GitHub [34], as well as from various recently published articles. Viral 
pneumonia and normal images were collected from Kaggle’s Chest X-ray 
pneumonia dataset [35]. The metadata for this dataset can be found at 
https://www.kaggle.com/tawsifurrahman/covid19-radiography-data 
base/version/1. Another dataset, the QaTa-COV19 dataset [31], was 
compiled by researchers from Qatar University and Tampere University. 
We randomly selected 300 chest X-ray images (including 100 COVID-19, 
100 Normal and 100 Viral Pneumonia) to evaluate our model, and Fig. 3 
shows some images of the QaTa-COV19 Dataset [31]. It is worth noting 
that these 300 images from the QaTa-COV19 Dataset [31] are not 
included in the COVID-19 Radiography Dataset [32]. 

For the setting of this experiment, all images are scaled to the size of 
256 × 256 pixels, and the number of channels is 3. The ULNet archi-
tecture is implemented using Python and TensorFlow 2, which includes 
the Keras package. In addition, the experiment is performed on an Intel 
(R) Core (TM) i7–2.60 GHz processor and an NVIDIA GTX 1650 GPU 
with 4 GB of memory. 

4.2. Training and evaluation standards 

In this section, we conduct experiments to evaluate the performance 
of the ULNet model, which is used for the two classifications of COVID- 
19 and normal and the three classifications of COVID-19, viral pneu-
monia and normal. At the same time, a fivefold cross-validation method 
is used to evaluate the efficiency of the above classification problems. 
We divide Kaggle’s COVID-19 Radiography Dataset into 5 independent 
and equal sets. Four of the five sets are used for training and verification, 
and the last set is used for testing. In other words, 70% of the dataset is 
used for training, 10% for verification and 20% for testing. The distri-
bution diagram of the dataset is shown in Fig. 4. More specifically, for 
the binary classification problem, 219 COVID-19 chest X-ray images are 
used, including 158 images for training, 18 images for validation and 43 
images for testing. Furthermore, 1341 normal chest X-ray images are 
used, including 965 images for training, 107 images for validation and 
269 images for testing. The distribution of chest X-ray images for the two 
classifications is summarized in Table 2. For the three classification 
problems, the distribution of COVID-19 and normal images is the same 
as that of the binary classifications. In addition, 1345 viral pneumonia 
images are used, including 969 images for training, 107 images for 
validation and 269 images for testing. The distribution of chest X-ray 
images for the three classifications is summarized in Table 3. At the same 
time, for the two classifications problem, each fold of the trained model 
is tested on 200 chest X-ray images (including 100 COVID-19 and 100 
Normal) on the QaTa-COV19 Dataset. For the three classification 
problems, each fold of the trained model is tested on 300 chest X-ray 
images (including 100 COVID-19, 100 normal and 100 viral pneumonia) 
on the QaTa-COV19 dataset. In addition, the proposed ULNet model is 
trained for 60 epochs, and the batch size is 4. 

The performance of the ULNet model is measured for each fold using 
the confusion matrix (CM), receiver operating curve (ROC) and the 
following evaluation indices: precision, recall, F1-score and accuracy. 
The parameters used to compare performance are defined as follows: 
True Positive (TP) shows the number of correctly identified COVID-19; 
False Negative (FN) indicates the number of incorrectly identified 
COVID-19; Ture Negative (TN) shows the number of correctly identified 
non-COVID-19; False Positive (FP) indicates the number of incorrectly 
identified non-COVID-19. 

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F1 − score = 2TP/(2TP + FP + FN)

Accuracy = (TP + TN)/(TP + FP + TN + FN)

(7)  

Table 13 
The experimental results in fold 3 for 3 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 87.23% 95.35% 91.11% 95.87% 
Normal 95.94% 96.65% 96.29% 
Pneumonia 97.34% 95.17% 96.24%  

Table 14 
The experimental results in fold 4 for 3 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 97.73% 100% 98.85% 95.87% 
Normal 94.89% 96.65% 95.76% 
Pneumonia 96.58% 94.42% 95.49%  

Table 15 
The experimental results in fold 5 for 3 classes of the proposed ULNet.  

Class Precision Recall F1-score Accuracy 

COVID-19 80.39% 95.35% 87.23% 95.35% 
Normal 95.36% 99.26% 97.27% 
Pneumonia 98.40% 91.45% 94.80%  

Table 16 
Performance of the proposed ULNet for 3 classes on Kaggle’s COVID-19 Radi-
ography Dataset.  

Folds Precision Recall F1-score Accuracy 

Fold-1 92.06% 93.68% 92.35% 94.84% 
Fold-2 92.91% 94.61% 93.71% 94.32% 
Fold-3 93.50% 95.72% 94.55% 95.87% 
Fold-4 96.40% 97.02% 96.71% 95.87% 
Fold-5 91.38% 95.35% 93.10% 95.35% 
Average 93.25% 95.28% 94.09% 95.25%  

Table 17 
Performance of the proposed ULNet for 3 classes on the QaTa-COV19 dataset.  

Folds Precision Recall F1-score Accuracy 

Fold-1 95.29% 94.67% 94.73% 94.67% 
Fold-2 94.82% 94.00% 93.96% 94.00% 
Fold-3 99.02% 99.00% 98.99% 99.00% 
Fold-4 97.18% 97.00% 96.99% 97.00% 
Fold-5 98.36% 98.33% 98.33% 98.33% 
Average 96.93% 96.60% 96.60% 96.60%  

T. Wu et al.                                                                                                                                                                                                                                      

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/


Computers in Biology and Medicine 137 (2021) 104834

10

4.3. Results and discussion 

4.3.1. Results of binary classifications 
On Kaggle’s COVID-19 Radiography Dataset, for two classifications, 

the overlapping and each fold individual CM are shown in Fig. 4, and 
each fold individual ROC curve is shown in Fig. 5. Moreover, precision, 
recall, F1-score and accuracy computed for each class (COVID-19 and 
Normal) as well as for each fold are presented in Tables 4–8. It can be 
seen from Table 9 that for Fold-1, precision, recall, F1-score and accu-
racy are 99.82%, 98.84%, 99.32% and 99.68%, respectively; for Fold-2 
and Fold-3, precision, recall, F1-score and accuracy are 95.75%, 
99.26%, 97.41% and 98.72%, respectively; and for Fold-4 and Fold-5, 
precision, recall, F1-score and accuracy are all 100%. Therefore, for 

the two classifications, the average precision, recall, F1-score, and ac-
curacy are 98.26%, 99.47%, 98.83%, and 99.42%, respectively. In 
addition, on the QaTa-COV19 dataset, the performance of each fold of 
our ULNet model is presented in Table 10. The average precision, recall, 
F1-score, and accuracy are 99.31%, 99.30%, 99.30%, and 99.30%, 
respectively. 

4.3.2. Results of three classifications 
On Kaggle’s COVID-19 Radiography Dataset, for three classifica-

tions, the overlapping and each fold individual CM are shown in Fig. 6, 
and each fold individual ROC curve is shown in Fig. 7. Moreover, pre-
cision, recall, F1-score and accuracy computed for each class (COVID- 
19, normal and viral pneumonia) as well as for each fold are presented in 

Fig. 8. Receiver operating curve of our ULNet for 3-class classification. (a) Fold-1 ROC, (b) Fold-2 ROC, (c) Fold-3 ROC, (d) Fold-4 ROC, (e) Fold-5 ROC. Class 0 is 
COVID-19, class 1 is normal, and class 2 is pneumonia. 

Fig. 9. Training and validation accuracy and loss for 2-class classification.  
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Tables 11–15. It can be seen from Table 16 that for Fold-1, precision, 
recall, F1-score and accuracy are 92.06%, 93.68%, 92.35% and 94.84%, 
respectively; for Fold-2, precision, recall, F1-score and accuracy are 
92.91%, 94.61%, 93.71% and 94.32%, respectively; for Fold-3, preci-
sion, recall, F1-score and accuracy are 93.50%, 95.72%, 94.55% and 
95.87%, respectively; for Fold-4, precision, recall, F1-score and accuracy 
are 96.40%, 97.02%, 96.71% and 95.87%, respectively; for Fold-5, 
precision, recall, F1-score and accuracy are 91.38%, 95.35%, 93.10% 
and 95.35%, respectively. Therefore, for the three classifications, the 
average precision, recall, F1-score and accuracy of the proposed ULNet 
are 93.25%, 95.28%, 94.09% and 95.24%, respectively. In addition, on 
the QaTa-COV19 dataset, the performance of each fold of our ULNet 
model is presented in Table 17. The average precision, recall, F1-score, 
and accuracy are 96.93%, 96.60%, 96.60%, 96.60%, and 96.60%, 
respectively. 

Comparing the above experimental results with the data in Table 1, it 
can be seen that our ULNet model is better than the research in Table 1 
in terms of precision and accuracy for the 2-class classification task 
(COVID-19 vs. Normal) and 3-class classification task (COVID-19 vs. 
Normal vs. Viral Pneumonia). The ULNet model successfully classifies 
COVID-19, and the accuracy of binary classifications is 99.42%, which is 
higher than the highest accuracy obtained by Apostolopoulos [14]; the 
accuracy of three classifications is 95.25%, which is higher than the 
highest accuracy obtained by Khan [17]. More importantly, the accu-
racy of positive COVID-19 in our model is 99.53% for two classifications, 
which is higher than 97% achieved by Harsh Panwar [26], and the ac-
curacy of positive COVID-19 is 95.35% for three classifications. More-
over, our ULNet model also achieved good results on the QaTa-COV19 
dataset. All of these results are very important and meaningful for the 
detection of COVID-19. In summary, our model performs well in 
detecting COVID-19 for two-class classification and three-class classifi-
cation problems. Therefore, this model is expected to help doctors di-
agnose COVID-19. In addition, we performed data balancing using 
random up-and-down flipping of images, random left-right flipping of 
images, random changes in image brightness, and random changes in 
image contrast, but the accuracy of our results was essentially the same 
before and after applying data balancing solutions. 

In addition, we showed the plots of accuracy and loss of training and 
validation with the epoch of training sessions for the first fold of 2-class 
and 3-class classifications, as shown in Fig. 8 and Fig. 9 (see Fig. 10). 

4.4. Ablation experiment 

In this section, we perform ablation experiments including UNet and 
ULNet without skip connections between U-shaped and L-shaped 

Fig. 10. Training and validation accuracy and loss for 3-class classification.  

Table 18 
Performance of ULNet for 2 classes in each fold.  

Folds Precision Recall F1-score Accuracy 

Fold-1 92.19% 75.21% 80.77% 92.63% 
Fold-2 82.58% 95.73% 87.22% 92.63% 
Fold-3 97.70% 84.89% 89.92% 95.83% 
Fold-4 78.16% 88.19% 81.82% 89.74% 
Fold-5 86.73% 92.94% 89.45% 94.55% 
Average 87.48% 87.39% 85.84% 93.08%  

Table 19 
Performance of ULNet for 3 classes in each fold.  

Folds Precision Recall F1-score Accuracy 

Fold-1 94.50% 89.31% 91.55% 93.29% 
Fold-2 91.77% 88.81% 90.16% 92.60% 
Fold-3 83.01% 92.13% 85.88% 90.88% 
Fold-4 86.67% 89.56% 87.97% 90.02% 
Fold-5 84.00% 88.97% 85.97% 91.91% 
Average 87.99% 89.76% 88.31% 91.74%  

Table 20 
Performance of the proposed ULNet without skip connections between U-shaped 
and L-shaped networks for 2 classes in each fold.  

Folds Precision Recall F1-score Accuracy 

Fold-1 90.74% 93.87% 92.21% 96.15% 
Fold-2 91.35% 98.33% 94.41% 97.12% 
Fold-3 95.95% 95.95% 95.95% 98.08% 
Fold-4 93.72% 91.12% 92.36% 96.47% 
Fold-5 97.07% 96.14% 96.60% 98.40% 
Average 93.77% 95.08% 94.31% 97.24%  

Table 21 
Performance of the proposed ULNet without skip connections between U-shaped 
and L-shaped networks for 3 classes in each fold.  

Folds Precision Recall F1-score Accuracy 

Fold-1 92.80% 90.36% 91.50% 92.94% 
Fold-2 91.03% 95.66% 93.02% 93.98% 
Fold-3 91.52% 94.57% 92.91% 95.18% 
Fold-4 87.87% 94.39% 90.41% 93.12% 
Fold-5 91.19% 94.57% 92.64% 95.18% 
Average 90.88% 93.91% 92.10% 94.08%  
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networks for classification. The experimental results for UNet are shown 
in Table 18 and Table 19, and those for ULNet without skip connections 
between U-shaped and L-shaped networks are shown in Table 20 and 
Table 21. 

The experimental results show that both an L-shaped network with 
increased network depth and skip connections incorporating different 
levels of features improve the classification performance. 

5. Conclusion 

In this paper, we propose the ULNet model for detecting COVID-19 
cases by using chest X-ray images, which can accurately distinguish 
COVID-19 patients, normal people and viral pneumonia patients. This 
model was trained on a Kaggle dataset, and the classification ability of 
the ULNet model was examined. The experimental results show that 
ULNet achieves an average accuracy of 99.53% for detecting COVID-19 
in 2-class classification and an average accuracy of 99.42% for 2-class 
(COVID-19 vs. Normal), and an average accuracy of 95.35% for 
detecting COVID-19 in 3-class classification and an average accuracy of 
95.25% for 3-class (COVID-19 vs. Normal vs. Viral Pneumonia). The 
proposed model achieved 99.30% accuracy on the two classifications 
and 96.60% accuracy on the external test dataset. From these promising 
results, we can see that our ULNet model is a convolutional neural 
network with higher classification accuracy. At the same time, if 
possible, our ULNet is expected to achieve higher classification accuracy 
on a larger dataset. Therefore, our ULNet model can be an effective tool 
for doctors to quickly detect COVID-19. 

In future research, we will verify the proposed ULNet model through 
more chest X-ray images from different hospitals. At the same time, we 
will use the model to address chest CT images for detecting COVID-19. 
We will also add salience maps to improve the interpretability of the 
model, which is also important for clinical practice. Moreover, we intend 
to use this model for the detection of COVID-19 caused by mutant virus 
and other types of pneumonia. 
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