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Background: It is time-consuming for oncologists to delineate volumes for radiotherapy treatment in
computer tomography (CT) images. Automatic delineation based on image processing exists, but with
varied accuracy and moderate time savings. Using convolutional neural network (CNN), delineations of
volumes are faster and more accurate. We have used CTs with the annotated structure sets to train
and evaluate a CNN.
Material and methods: The CNN is a standard segmentation network modified to minimize memory usage.
We used CTs and structure sets from 75 cervical cancers and 191 anorectal cancers receiving radiation
therapy at Skåne University Hospital 2014-2018. Five structures were investigated: left/right femoral
heads, bladder, bowel bag, and clinical target volume of lymph nodes (CTVNs). Dice score and mean sur-
face distance (MSD) (mm) evaluated accuracy, and one oncologist qualitatively evaluated auto-
segmentations.
Results: Median Dice/MSD scores for anorectal cancer: 0.91–0.92/1.93–1.86 femoral heads, 0.94/2.07
bladder, and 0.83/6.80 bowel bag. Median Dice scores for cervical cancer were 0.93–0.94/1.42–1.49
femoral heads, 0.84/3.51 bladder, 0.88/5.80 bowel bag, and 0.82/3.89 CTVNs. With qualitative evaluation,
performance on femoral heads and bladder auto-segmentations was mostly excellent, but CTVN auto-
segmentations were not acceptable to a larger extent.
Discussion: It is possible to train a CNN with high overlap using structure sets as ground truth. Manually
delineated pelvic volumes from structure sets do not always strictly follow volume boundaries and are
sometimes inaccurately defined, which leads to similar inaccuracies in the CNN output. More data that
is consistently annotated is needed to achieve higher CNN accuracy and to enable future clinical
implementation.

� 2020 The Author(s). Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Positron emission tomography/computer tomography (PET-CT),
is performed at our center for diagnostic and radiation therapy
planning in all cases of cervical and anorectal cancer scheduled
for radiotherapy. Using CT images, a radiation oncologist routinely
performs the segmentation of the tumor with margin (clinical tar-
get volume (CTV)), clinical target volume of lymph nodes (CTVN))
and organs at risk (OAR) (for radiation toxicity).

Although guidelines exist, manual segmentations are subjective
and time consuming, and an automated approach would make it
possible to increase reproducibility, improve clinical workflow,
and improve cancer care locally [1,2] and globally [3]. According
to reviews on radiation oncology and automated segmentation
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based on artificial intelligence (AI), there are indeed clinical bene-
fits, but there are also challenges including inaccurate or incom-
plete auto segmentation due to software performance or
unrecognized anatomical variations [1,2,4,5].

In the last few years, interest in AI has increased dramatically in
medical imaging and radiation oncology. More specifically, the
interest is directed towards a specific family of models called con-
volutional neural networks (CNNs). The parameters of a convolu-
tional neural network are updated through a general learning
procedure using input data [6].

CNN-based methods have proven highly accurate for auto-
mated segmentation in magnetic resonance imaging (MRI) of the
prostate, CT of the liver and bladder, and PET/CT images of skeletal
structures [7–11]. Furthermore, in the field of radiation oncology,
studies on head and neck cancer have adhered to the fact that cor-
rectly implemented AI techniques generates better efficiency and
standardization of treatment for patients with head and neck can-
cer [12–14]. In the case of rectal cancer, a previous study evaluated
the auto-segmentation of target volume and OAR, and showed
varying segmentation accuracy based on the Dice similarity coeffi-
cient ranging from 61.8% (colon) to 93.4% (bladder) [15]. Recently
on cervical cancer, Liu et al [16] described a method for OAR (but
not CTVN) segmentation using CNNs, with structure sets as ground
truth. Their method used a modified version of 2D U-Net, hence
not fully utilizing the 3D nature of the data.

Two general but important concerns about the application of AI
to segmentation in radiation oncology are the limited size of data-
sets available for research and the use of human evaluation of a
network as a gold standard [2,4]. To address these issues, this study
takes advantage of existing segmented structure sets for compar-
ison to the CNN segmentation [15,16], thus eliminating the need
for time-consuming renewed manual segmentation for research
purposes [8] and allowing for larger sample populations. Further-
more, using an existing treatment plan gives an image of the gen-
eral performance of manual segmentation in daily clinical practice
(since it is performed by several radiation oncologists). This may be
preferable to using the evaluations by a single radiation oncologist
as a gold standard.

The aim of this project was to develop a CNN-based method for
automated segmentation of OARs (left/right femoral heads, blad-
der, bowel bag), and CTVNs (cervical cancer only) for patients with
anal, rectal, and cervical cancer, to test its overlap against manually
segmented structure sets, and to evaluate the performance
qualitatively.
2. Material and methods

2.1. Study design

The eligible cases comprised 75 cases of cervical cancer and 191
cases of anorectal cancer with available PET-CT as part of radiation
therapy planning at the Department of Oncology, Skane University
Hospital, Lund, Sweden, from 2014 to 2018. In this study, only CT-
images was used for analyses. The study population was divided
into one group for training and validation (65 cases and 161 cases
for cervical cancer and anorectal cancer, respectively) and one test
group (10 cases and 30 cases for cervical cancer and anorectal can-
cer, respectively). The test group was used for a final evaluation of
the trained network and was not in any way used during training.

CNNs were trained to segment five volumes automatically: the
left and the right femoral heads, the urinary bladder, the bowel bag
[17], and CTVNs (cervical cancer only in the latter case). Three PET-
CT scanners were used during the time frame: Philips Gemini TF,
GE Discovery 690, and GE Discovery MI. CT images (supine treat-
ment position) were obtained with intra-venous contrast for
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cervical cancer cases and without intra-venous contrast for anorec-
tal cases according to clinical standards. The number of abdominal
CT images per examination was approximately 150 images (+/- 10
images). The pixel size was 0.977 mm for all patients. Slice thick-
ness was 2.5 mm or 3 mm. The study has received ethical approval
(Dnr 2016/417 and 2018/753).

2.2. Automated segmentation

The network is a fully-convolutional 3D segmentation network
described in [18]. The output from the network is one channel per
organ class with softmax activation plus one channel for the back-
ground class.

As preprocessing, the HU values were truncated to [-800, 800]
and divided by 800, resulting in input values between –1 and 1.
Postprocessing is performed to remove noisy pixels; only the lar-
gest connected component (26-connected neighborhood) of each
label is kept, and morphological hole filling (26-connected neigh-
borhood) is applied to the resulting segmentation.

2.3. Training the network

A single CNN was trained on 226 manually segmented CT scans
using a negative log-likelihood loss. Labels missing in the annota-
tions are merged with the background label, resulting in the same
loss if a pixel is classified as background or the missing label. The
model was trained using CT patches of size 136 � 136 � 72 pixels
and a batch size of 50. The patches were augmented using moder-
ate rotations (�0.15 to 0.15 rad), scaling (�10% to +10%) and inten-
sity shifts (�100 to +100 HU) to enrich the training data.

As usual in machine learning, the images were divided into a
training set for direct parameter estimation (80% of the images)
and a validation set (the remaining 20%). The optimization was
performed using the Adam method [19] with Nesterov momen-
tum. The learning rate was initialized at 0.0001 and when the val-
idation loss reached a plateau. After 50 epochs (with 500 batches
per epoch), the model was evaluated on the training group. Patches
whose center points were classified as false positives were sam-
pled more frequently (10% of the samples) when the training was
restarted. This cycle was performed fifty times, varying the valida-
tion set to allow for all 226 images to be used for direct parameter
estimation.

2.4. Manually segmented structure sets

As part of radiation therapy planning, manually segmented
structure sets linked to CT images are created by a radiation oncol-
ogist and saved in Aria (ARIA Oncology Information System (Varian
Medical Systems, Inc.)) which is the program where structure sets
are performed and stored. All structure sets from clinical practice
have delineations performed by senior radiation oncologists. The
target volumes and OAR were outlined in accordance with national
guidelines for the particular diagnoses, based on international con-
sensus recommendations [20–22]. Due to the heterogeneously seg-
mented structure sets in anorectal cancer (CTVNs are delineated
differently depending on the level of the primary tumor), CTVNs
were not eligible for auto-segmentation. Original contours used
in the treatment of the patients were retrieved and used as the
gold standard.

2.5. Qualitative evaluation

For the qualitative evaluation, a radiation oncologist rated the
quality of the automated segmentations, using a slightly modified
version of a previously described qualitative evaluation method
[23]. The auto-segmentations were evaluated structure by
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structure and patient by patient. The rating was performed using
four categories: excellent (almost no modification necessary), good
(limited number of slices to be corrected), acceptable (automatic
segmentations can be used but require modification of several
slices), and not acceptable (useless). The radiation oncologist
(MB) performing the qualitative evaluation have over twenty years
of experience in radiation oncology.
2.6. Quantitative evaluation

The distribution of Mean Surface Distance (MSD) (mm) and Dice
scores [24,25] is illustrated descriptively per patient (separately for
cervical cancer cases and anorectal cancer cases) and summarized
with mean and median values. A Dice value of 1 indicates perfect
overlap between manual segmentations and auto-segmentations.
On MSD, for each surface voxel in the AI-segmented volume the
Table 1a
Overlap (Dice values) for OAR and CTVN in cervical cancer.

Cervical Femoral Head Femoral Head
R L

0.96 0.89
0.78 0.74
0.93 0.85
0.90 0.95
0.95 0.93
0.89 0.92
0.95 0.97
0.96 0.97
0.89 0.93
0.94 0.94

Mean 0.92 0.91
Median 0.94 0.93

Table 1b
Overlap (Dice values) for OAR in anorectal cancer.

Anorectal Femoral Head Femora
R L

0.83 0.86
0.91 0.91
0.87 0.86
0.95 0.95
0.93
0.89 0.90
0.92 0.88
0.92 0.93
0.94 0.92
0.77 0.84
0.94 0.91
0.94 0.92
0.93 0.92
0.91 0.97
0.91 0.95
0.72 0.93
0.88 0.91
0.92 0.92
0.94 0.91
0.95 0.95
0.91 0.90
0.86 0.87
0.90 0.88
0.92 0.94
0.93 0.94
0.81 0.82
0.92 0.90
0.88 0.89
0.92 0.95
0.91 0.91

Mean 0.90 0.91
Median 0.92 0.91
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nearest surface voxel in the manually segmented volume was
found and an average Euclidean distance between all voxel-pairs
was calculated, with the non-isotropic voxels taken into consider-
ation. The same procedure was performed starting with the manu-
ally segmented volume and the MSD was calculated as the average
of the two average distances. The qualitative evaluation is illus-
trated descriptively (n (%)) per group (excellent/good/acceptable/
not acceptable) and shown separately for cervical and anorectal
cancer cases.
3. Results

3.1. Comparison between CNN results and the structure sets

The distribution of Dice scores per case is illustrated in Tables
1a and 1b and Figs. 1a and 1b with cervical and anorectal cancer
Bladder Bowel bag CTVN

0.83 0.91 0.82
0.87 0.92 0.82
0.85 0.91 0.80
0.94 0.88 0.78
0.77 0.86 0.84
0.95 0.89 0.83
0.78 0.71 0.81
0.78 0.84 0.71
0.91 0.74 0.82
0.61 0.94 0.84
0.83 0.86 0.81
0.84 0.88 0.82

l Head Bladder Bowel bag

0.90 0.76
0.95 0.89
0.92 0.83
0.90 0.79
0.82 0.74
0.93 0.93
0.95 0.75
0.95 0.79
0.94 0.89
0.93 0.90
0.94 0.88
0.95 0.80
0.93 0.84
0.83 0.89
0.95 0.88
0.94 0.91
0.95 0.82
0.91 0.84
0.89 0.83
0.95 0.85
0.93 0.84
0.93 0.72
0.94 0.71
0.92 0.83
0.96 0.87
0.95 0.82
0.93 0.86
0.89 0.82
0.96 0.81
0.95 0.62
0.93 0.82
0.94 0.83



Fig. 1a. Overlap (Dice values) for OAR and CTVN in cervical cancer (median/range).

Fig. 1b. Overlap (Dice values) for OAR in anorectal cancer (median/range).
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cases presented separately. In the test set, there were 30 cases with
anorectal cancer and 10 cases with cervical cancer. For anorectal
cancer, the overall range of Dice scores was smaller. The urinary
bladder had the highest median Dice scores (0.94), followed by
the femoral heads (0.91 and 0.92 for the left and right femoral
heads, respectively) and bowel bag (0.83). For cervical cancer cases,
the femoral heads had the highest median Dice scores (0.93 and
0.94 for the left and right femoral heads, respectively). The median
Dice score for the other evaluated organs at risk were 0.84 for the
urinary bladder and 0.88 for the bowel bag. For the target volume
(CTVN), the median Dice score was 0.82.

The distribution of MSD (mm) per case is illustrated in Tables 2a
and 2b and Figs. 2a and 2b with cervical and anorectal cancer cases
presented separately. For anorectal cancer, the femoral heads had
an MSD of 1.93 mm (left) and 1.86 mm (right), the urinary bladder
2.07 mm, and bowel bag 6.80 mm. For cervical cancer cases, the
femoral heads had a median MSD of 1.42 mm (left) and 1.49 mm
(right). The median MSD for the other evaluated organs at risk
were 3.51 mm for the urinary bladder and 5.80 mm for the bowel
bag. For the target volume (CTVN), the median MSD was 3.89 mm.
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3.2. Qualitative evaluation of the auto-segmentations

The qualitative performance of the auto-segmented organs is
illustrated in Table 3. For cervical cancer (n = 10) and anorectal
cancer (n = 30), there was ‘‘excellent” performance for the bladder
and femoral heads auto-segmentation in the majority of the cases
according to the radiation oncologist. For CTVN (cervical cancer
only, n = 10), the largest group (40%) was ‘‘not acceptable” and
would have needed to be redone completely, but the second most
common group was ‘‘good” (30%) with a limited number of slices
to be corrected. For the bowel bag, the results were more mixed,
with a more varying distribution between the groups of ‘‘good,”
‘‘acceptable,” and ”not acceptable.”

4. Discussion

In this study, we have presented a CNN-based method for the
automated segmentation of OAR in anorectal cancer, and OAR,
and CTVNs in cervical cancer. Using a separate test set, we found
that the CNN-based method performed well overall in the selected



Table 2a
Overlap (mean surface distance (mm)) for OAR and CTVN in cervical cancer.

Cervical Femoral Head Femoral Head Bladder Bowel bag CTVN
R L

0.95 1.93 3.62 5.53 4.20
2.92 3.39 2.53 4.77 3.57
1.58 2.79 3.82 4.77 4.04
2.31 1.29 2.35 6.42 3.95
1.15 1.35 3.40 6.07 2.97
2.36 1.41 1.64 5.09 3.42
1.27 0.86 5.18 9.85 4.09
1.10 0.92 6.12 10.26 6.22
1.98 1.64 2.69 6.35 3.55
1.40 1.42 5.82 3.34 3.83

Mean 1.70 1.70 3.72 6.25 3.98
Median 1.49 1.42 3.51 5.80 3.89

Table 2b
Overlap (mean surface distance (mm)) for OAR in anorectal cancer.

Anorectal Femoral Head Femoral Head Bladder Bowel bag
R L

3.33 3.15 2.62 8.29
2.09 2.04 2.07 5.42
2.98 3.08 2.33 10.83
1.17 1.33 3.16 10.41
1.76 4.18 13.04
2.29 2.16 2.08 4.20
1.98 2.88 1.43 9.23
1.97 1.88 1.72 8.21
1.57 1.92 2.58 6.36
4.00 2.94 2.28 5.01
1.35 1.93 1.76 5.05
1.71 2.25 1.91 7.62
1.65 1.99 2.38 6.27
2.06 0.88 3.56 4.97
1.94 1.47 1.70 5.02
6.24 1.83 2.50 7.09
1.80 1.40 1.73 6.51
1.87 1.64 3.12 7.25
1.25 1.82 2.34 5.92
1.27 1.44 1.88 8.26
1.85 2.50 2.03 8.00
2.85 2.64 2.59 9.84
2.14 2.12 1.99 9.07
1.62 1.16 2.46 6.17
1.74 1.64 1.57 5.41
3.70 4.23 1.48 6.42
1.77 2.09 1.84 5.67
2.44 2.04 3.88 8.19
1.77 0.97 1.35 5.45
1.54 1.76 1.92 10.57

Mean 2.19 2.04 2.28 7.32
Median 1.86 1.93 2.07 6.80
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OAR and CTVNs, but the majority of organs/volumes would have
needed to be manually corrected to some degree according to
the qualitative evaluation.

A well-defined ground truth is needed to evaluate the CNN. This
is a challenge considering that all human segmentations are sub-
jective by nature [26], and an actual ground truth is difficult to
establish. At our institution, radiation oncologists strive to adhere
to international guidelines for manual segmentations, but the
manually segmented organs and volumes from structure sets do
not always strictly follow the organ and volume boundaries and
are sometimes also inaccurately defined. This inevitably leads to
similar inaccuracies in the CNN output, which is a problem for
CNN performance.

More data, and more consistently annotated data, are needed to
achieve higher CNN accuracy and to enable future clinical imple-
mentation. Overall, there will always be variations and even inac-
41
curacies in manually segmented structure sets if and when they
are used as the ground truth. However, we believe that the upsides
of using available structure sets (based on the performance of sev-
eral radiation oncologists at a large university hospital), which pro-
vide the possibility of scaling up study populations, will outweigh
the downside of segmentation variations.

A quantitative evaluation of the CNN is needed, and the most
commonly used in the literature is Dice making this overlap score
particularly valuable for comparison with previous studies. In this
study, all auto-segmented structures received a median Dice
score � 0.8. Previous studies on auto-segmentation, using different
systems, have shown moderate to high levels of overlap (as mea-
sured with the Dice score). The segmentation of femoral heads is
highly concordant in general according to previous literature, with
a Dice score range of 90–95% [15,16,27–29]), which is in line with
the results in this present study (median: 0.91–0.94). The reason



Fig. 2a. Overlap (mean surface distance (mm)) for OAR and CTVN in cervical cancer (median/range).

Fig. 2b. Overlap (mean surface distance (mm)) for OAR in anorectal cancer (median/range).
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for this high overlap is probably the femoral heads having good
contrast with the surrounding tissue and often being regular with
a well-defined shape. Further, the auto-segmentation of femoral
heads in this study showed high performance not only with Dice,
but also illustrated with MSD and with qualitative evaluation (for
both cervical and anorectal cancer patients). Considering the blad-
der, which may be more varied in fill level and shape, showed a
wider range of published accuracy (Dice range in previous studies:
67–93%[15,16,23,27–31]), and our results were in the higher inter-
val (0.84 and 0.94 for cervical and anorectal cancers, respectively).
Furthermore, the intestine is even more difficult to delineate, and
the difference from the surrounding tissue may be vague. This fact
yielded a lower accuracy for auto-segmentation of the intestines,
both in our study (bowel bag 0.83–0.88), Liu et al., (0.79–0.83),
and lastly a study by Men et al., which had even lower accuracy
(60–65%) [15]. However, the intestinal outlines are not directly
comparable between the studies.

In our study, CTVN (cervical cancer group only) had the lowest
Dice score (0.82). A CTVN has a small volume and occurs in an area
42
with high anatomical variation. Therefore, it may be prone to vari-
ability in manual segmentation and more difficult for the CNN to
master on a limited sample size [32]. In the anorectal cancer group,
the manual segmentation of CTV for nodes was too variable to use
for training because the volume is subdivided and segmented dif-
ferently depending on the cancer’s subtype and pattern. In addi-
tion, the cervical and anorectal tumor volumes have even more
variety (in size, boundaries, and localization) and are therefore
challenging. They were not included in this study but could be
research focus for future studies.

The Dice score reflects the overlap between auto-segmentation
and manual segmentation. Notably, the distance between the
auto-segmentation and manual segmentation will result in a
low Dice score, but it may be that it is the auto-segmentation that
more closely outlines the anatomical structure, which is a draw-
back of the Dice score method. To complement Dice, mean sur-
face distance was analyzed as an additional quantitative
measurement, in general showing the same performance (in
terms of for which OAR/CTVN auto segmentations performed well



Table 3
Qualitative evaluation of auto-segmentations, n (%).

Excellent Good Acceptable Not Acceptable

Cervical cancer
Bladder 4(40) 2(20) 1(10) 3(30)
Femoral head right 9(90) 1(10)
Femoral head left 8(80) 2(20)
Bowel bag 1(10) 4(40) 4(40) 1(10)
CTVN 1(10) 3(30) 2(20) 4(40)
Anorectal cancer
Bladder 15(50) 9(30) 3(10) 3(10)
Femoral head right 20(67) 8(27) 1(3) 1(3)
Femoral head left* 24(83) 5(17)
Bowel bag 1(3) 8(27) 11(37) 10(33)

*One patient with surgical implant left hip excluded.
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or less well) as the Dice results. To evaluate the auto-
segmentations further, we let one radiation oncologist qualita-
tively evaluate all the auto-segmented images patient by patient
and structure by structure. As expected, some structures were
more difficult for the network to delineate (the bowel bag and
CTVNs) because of the more varying distribution in the abdomen
and more indistinct border with surrounding structures (which is
especially challenging with lean patients). The majority of these
cases would have needed to be corrected for several image slices
according to the qualitative evaluation.

Interestingly, the presence or absence of intravenous contrast
did not seem to affect the performance of the auto-
segmentations, given the quite similar qualitative evaluation in
cervical and anorectal cancer (in the latter patient group, CT was
performed without intravenous contrast according to clinical
guidelines). Other automated structure delineations (femoral
Fig. 3. Auto-segmentations (left/red) and manual segmentations (right/blue) in t
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heads and bladder) fit very well with clinical segmentation stan-
dards, and the majority of cases needed only very few corrections.

Only one radiation oncologist evaluating the auto-
segmentations may be a drawback. However, to the best of our
knowledge, this approach of using structure sets as the ground
truth has not been tried previously, and the qualitative evaluation
is merely part of a first step to exploring the feasibility and gaining
an overall view of the possibility of scaling up this approach. In
future studies, potentially including more annotated cases, it
would be interesting to let several radiation oncologists evaluate
the auto-segmentations.

The approach of using already segmented structure sets as
ground truth have been previously and successfully tried for OARs
in cervical cancer [16] and rectal cancer [15]. Further, this
approach is beneficial since it may be scaled up to larger popula-
tions and datasets, which is essential for successful AI training
hree patients (a: femoral heads and urinary bladder, b: CTVN, c: bowel bag).



Fig. 3 (continued)
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[1]. This study was conducted at a single institution, which is a
drawback, but now that this approach has been successfully tested,
collaborations with other sites are planned in upcoming studies. To
take the evaluation one step further, for future studies, a highly
interesting evaluation could be to create new alternative radiation
treatment plans based on the CNN based segmentations. If only
insignificant differences in the planned doses to the target volume
and OAR were seen (as compared to fully manually annotated radi-
ation treatment plans), a shift to an AI system for auto-
segmentations could be clinically considered.

In conclusion, we have shown that it is possible to train a CNN
in cervical and anorectal cancer with good overlap using clinically
available structure sets as the ground truth. More data and consis-
tently annotated data are most likely needed to achieve higher
CNN overlap and enable future clinical implementation. Since
one of the largest challenges for radiation oncologists is to priori-
tize and divide time correctly between different tasks, a feasible
auto-segmentation model may aid in the clinical care of cancer
patients (Fig. 3).
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