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Abstract: The abnormal regulation and expression of microRNA (miRNA) are closely related to
the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7)
was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development
by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging
tissues and participates in multiple pathways that regulate the aging process, including affecting
tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover,
recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting
that let-7 may also participate in the aging process by regulating immune function. Therefore, these
studies show the diversity and complexity of let-7 expression and regulatory functions during aging.
In this review, we provide a detailed overview of let-7 expression regulation as well as its role in
different tissue aging and aging-related diseases, which may provide new ideas for enriching the
complex expression regulation mechanism and pathobiological function of let-7 in aging and related
diseases and ultimately provide help for the development of new therapeutic strategies.

Keywords: miRNA; let-7; regulation; aging; aging-related diseases

1. Introduction

Aging is a complex systemic physiological process characterized by progressive dete-
rioration of tissue and organ functions and reduced repair capacity, leading to increased
susceptibility to aging-related diseases (ARDs) and increased risk of death. The aging
process is associated with various physiological and pathological molecular mechanisms,
many of which are differentially expressed by age-dependent transcriptional regulation,
resulting in changes in multiple cells, tissues and organs, and even lifespan [1,2]. In ad-
dition, aging is a driver of a variety of age-related diseases, including neurodegenerative
diseases, age-related cataracts, osteoporosis, etc. [3–5]. Although many interventions have
been used clinically to slow the progression of aging-related diseases, their effectiveness
is still limited [6,7]. Therefore, a better understanding of the molecular mechanisms of
the aging process and identification of aging biomarkers and possible therapeutic targets
for ARDs is performed to pave the way for future research on aging biology and new
antiaging therapies.

Let-7 was originally identified as a heterochronic gene in Caenorhabditis elegans (C. ele-
gans) and also named lethal-7 (let-7) because its deletion is lethal during development [8].
Let-7 is about 22 nt in length and is highly conserved across animal species [8]. Although
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the let-7 sequences from nematodes to humans are very conservative, there are great dif-
ferences in transcriptional regulation among members of the let-7 family due to different
genomic sites [9,10]. Currently, 12 genetic loci have been identified as the origin of let-7
in humans [10], 3 in mouse [11], and 1 in drosophila [12]. In humans and mice, let-7
has 10 miRNAs (let-7a, b, c, d, e, f, g, i, and miRNA-98 and miRNA-202) [10]. With the
exception of let-7i and let-7g, which are encoded individually, transcripts of other members
are located in a common gene cluster [13–16]. In mammals, let-7 has been successively
found to regulate cell differentiation, development, and apoptosis and to be involved in
glucose metabolism (Figure 1) [8,17–19]. It also acts as a tumor suppressor to regulate cell
proliferation, and its dysregulation and expression are associated with disease progres-
sion [20,21]. Recent studies have revealed that let-7 not only increases in aging tissues
and acts as an important regulator of cell and tissue senescence in aging organisms [22]
but also plays a key role in the development of aging-related diseases represented by
Alzheimer’s disease [23,24]. These studies further suggest that let-7 is a potential inter-
vention target molecule in the pathological process of aging. Therefore, in this review, we
focus on the association between let-7 expression and aging in multiple tissues, organs, and
aging-related diseases.
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Figure 1. Timeline of major research discoveries related to let-7.

2. Let-7 Expression and Regulation Mechanism

Let-7 expression is lower in undifferentiated cells and gradually increases within cell
differentiation during development [25]. Let-7 first appears shortly after fertilization and
is responsible for mediating the attachment of blastocysts to the uterine spiral arteries.
In early gestation, let-7 is inhibited by Lin28 in trophoblast cells to promote successful
placental development. After full term, let-7 expression is elevated and accompanied by
diminished inhibition [26]. Three months later, let-7 is essential for the differentiation of
different organs by preventing unwanted cell proliferation, and its elevated expression
acts as a “stop” marker in many tissues, including lung [27], brain [28], heart, and vascular
tissues [29]. It is suggested that let-7 targets proliferation-related genes in a silencing type
to reduce cell proliferation, induce cell differentiation, and persist throughout the later
stages of embryonic development from the very beginning [28]. After birth, let-7a or let-7b
is minimally expressed in the hypothalamus and subsequently increases gradually and
affects growth and puberty in a sex-specific manner [30].

Despite multiple loci of origin, all let-7 members begin with the pre-let-7 transcript [31].
Generally, the maturation of let-7 follows the typical miRNA biogenesis pathway, including
the primary miRNA (pri-miRNA) produced by RNA polymerase II being processed in the
nucleus by the RNase III enzyme Drosha protein and the double-stranded RNA-binding
protein DGCR8 to produce precursor miRNA (pre-miRNA). Generated pre-miRNA is
dependent on EXP5-Ran-GTP for transport to the cytoplasm and further processed by
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Dicer to generate mature miRNA that exerts a function in gene silencing (Figure 2a) [31–33].
Notably, some family members require an extra step: three members of the let-7 family
(let-7a-2, -7c, and -7e) carry typical 2 nt 3′ overhangs in their precursors, while the remain-
ing members only have 1 nt 3′ overhangs [34] because the remaining member pri-let-7
precursor has a bulging adenosine (pri-let-7d) or uridine (all other members) next to the
processing site [34]. This uridine/adenosine bulge results in a single nucleotide 3′ over-
hang. Due to this structural difference, terminal uridyltransferases (TUT2/PAPD4/GLD2,
TUT4/ZCCHC11, and TUT7/ZCCHC6) are required to specifically mono-uridylate the 3′

terminus of pre-let-7s, resulting in a 2 nt 3′ overhang which is preferentially bound and
cleaved by Dicer (Figure 2b) [34].
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Figure 2. Biogenesis and regulatory pathways of let-7 family members. (a) Let-7 follows the typical
miRNA biogenesis pathway. (b) TUTases specifically mono-uridylate the 3′ end of the 1 nt, yielding
the 2 nt 3′ overhang preferred by Dicer to facilitate processing of pre-let-7. (c) Pre-let-7 is oligonu-
cleotidylated at the 3′ end by Lin28A and TUT4/7 and is resistant to cleavage by Dicer but sensitive
to catalytic degradation by DIS3L2. (d) The methylated Lin28A and Lin28B nucleus bind to pri-let-7
in the nucleus and segregate it into nucleosomes, preventing Drosha-mediated processing.

The biogenesis of let-7 is strictly regulated by multiple levels of factors. First of all, it
has been reported that the let-7 promoter can be activated by OCT-4, a key regulator that
maintains the pluripotency and self-renewal characteristics of embryonic stem cells and is
inhibited by a variety of proto-oncogenes, such as p53 [35,36]. Secondly, single-nucleotide
polymorphisms (SNPs) in the let-7i promoter region can also affect the binding of related
transcription factors and thus cause altered expression [37]. Furthermore, in epigenetics,
promoter methylation and histone modification can affect the transcription of let-7 [38–40].
Recent studies have shown that METTL1 (methyltransferase-like 1)-mediated methylation
enhances let-7 processing by disrupting repressive secondary structures within pri-let-7 [41].
It is worth noting that several transcription factors have been found to act as regulators of
let-7 biogenesis and are also targeted by let-7. For example, there is a feedback loop between
let-7 and the nuclear hormone receptor DAF-12 in C. elegans because DAF-12 is a target
of let-7 but also regulates the transcription of let-7 in a ligand-dependent manner [42].
A similar phenomenon exists between MYC and let-7. The expression of MYC is repressed
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by let-7d, but during MYC-mediated tumorigenesis, it can inhibit the transcription of let-7
by directly binding to the promoter and upstream regions of let-7a-1/let-7f-1/let-7d [43].

Post-transcriptional regulation of let-7 is carried out on Lin28A and Lin28B. The
histone H3K4 methyltransferase SET7/9 can monomethylate the lysine 135 of Lin28A,
which binds to pri-let-7 in the nucleus and sequesters it into the nucleolus to prevent
Drosha mediated processing [44]. Lin28B has nucleolar localization sequence (NoLS), so
can be located in the nucleolus. Seemingly, Lin28B binds to pri-let-7 in the nucleus directly
and sequesters it to Drosha-deficient nucleoli, thereby inhibiting let-7 maturation through
a TUTase-independent pathway (Figure 2d) [45]. Interestingly, a recent study showed
that Lin28B interacted with DIS3L2 in the cytoplasm of Lin28B-expressing cancer cell
lines, suggesting that it was also involved in a TUTase-dependent pathway [46]. In this
case, the level of pre-let-7 appears to affect the subcellular localization of Lin28B [46]. In
addition, it was revealed that in Lin28A overexpressed in human embryonic stem cells
or cancer cells, the 3′-terminus of pre-let-7 is oligonucleotidylated by TUT4 and TUT7 to
produce a uridine tail of approximately 14 nt, which resists Dicer cleavage but is readily
degraded by the cytoplasmic exosome DIS3L2 catalytic (Figure 2c) [47–51]. However, what
happens when pri-let-7 is sequestered into the nucleolus by methylated Lin28A or Lin28B
is puzzling, as is what the specific mechanism is by which Lin28 acts on the 3′-terminus
of pre-let-7 to initiate oligouridylation; therefore, the details of the relationship between
DIS3L2-associated cytoplasmic exosomes and let-7 biogenesis are also unknown (Table 1).

Table 1. Some known regulatory proteins that affect let-7 biogenesis through different pathways.

Inhibitory
Regulatory Protein Family Member Mechanism Ref.

Lin42 let-7a, 7b Suppresses let-7 transcriptionally by binding to the
pri-let-7 3′UTR [8,52]

Lin28A-TUTases4/7 let-7a, 7b,
7d, 7g, 7i

Represses let-7 through TUTase-dependent uridylation
of pre-let-7 [48,49]

Lin28B let-7a, 7d,
7f, 7g, 7i Represses let-7 by sequestering pri-let-7 into the nucleolus [45,53]

TRIM25 let-7a Activates TuT4, allowing for more efficient
Lin28A-mediated uridylation [54]

MUC1-C let-7c Activates Lin28B and synergistically represses let-7 [55]

MSI1 let-7b, 7g,
miR-98 Recruits Lin28 to the nucleus and represses let-7 [56]

FHIT let-7a, 7b,
7d, 7f, 7g Induces Lin28B protein, consequently inhibiting let-7 [57]

NF90/NF45 let-7a Directly binds to pri-let-7 and interacts with Drosha complex to
inhibit pri-let-7 processing [58]

YAP Let-7g Translocates into the nucleus and sequesters DDX17 and
interferes with Drosha processing [59]

hnRNPA1 let-7a Reduces Drosha processing [60]

TRAIL-R2
let-7a, 7b,
7c, 7d, 7e,

7g
Interacts with Drosha and DGCR8 to inhibit pri-let-7 processing [61]

MCPIP1 let-7g Cleaves terminal loops on the pre-let-7 leading to degradation [62]

STAUFEN let-7s Likely binds to pri-let-7 3′UTR and negatively modulates let-7 [63]

SSB
let-7a, 7b,
7c, 7d, 7e,
7f, 7g, 7i

Positively regulates Lin28 to suppress the maturation of let-7 [64]
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Table 1. Cont.

Activating
Regulatory Protein Family Member Mechanism Ref.

METTL1 let-7e
METTL1-mediated methylation augments let-7 processing by

disrupting an inhibitory secondary structure within the
pri-let-7 transcript

[41]

TUTases2/4/7
let-7a, 7b,
7d, 7f, 7g,
7i, miR-98

Specific mono-uridylation of pre-let-7 for preferential binding
and cleavage by Dicer [34]

SNIP1 let-7i Likely binds pri-let-7 and enhances Drosha processing [65]

TTP Let-7a, 7b,
7f, 7g

Enhances let-7 expression by down-regulation of Lin28A
expression [66]

KSRP let-7a Promotes let-7 maturation as part of Drosha and
Dicer complexes [60]

RBM3 let-7a, 7g,
7i Binds pre-let-7s/enhance Dicer [67]

BRCA1 let-7a Enhances pri-let-7s processing mediated by Drosha complex [68]

TDP-43 let-7b Promotes microRNA biogenesis as a component of the Drosha
and Dicer complexes [69]

TRIM71

let-7a, 7b,
7c, 7d, 7e,
7f, 7g, 7i,
miR-98

Negatively regulates Lin28B through polyubiquitination [70]

BCDIN3D
let-7b, 7d,
7e, 7f, 7g,
7i, miR-98

Methylates pre-let-7s and enhances Dicer processing [71]

SYNCRIP let-7a Binds to pri-let-7 terminal loop and enhances Drosha processing [72]

Inhibitory/Activating
Regulatory Protein Family Member Mechanism Ref.

DAF-12 let-7 family
Unliganded DAF-12 represses let-7 and liganded DAF-12

promotes let-7 transcriptionally through binding to
pri-let-7 3′-UTR

[42]

MYC let-7a, 7d,
7f

Inhibited let-7 promoter activity via binding to the
noncanonical E-box 3 downstream of the transcription start sites
Enhanced promoter activity by binding to the canonical E-box

2 upstream of the transcription start sites

[43]

ADAR1 let-7 family

Directly binds and edits pri-let-7d transcripts thereby reducing
the expression of mature let-7d

Enhances Drosha and Dicer processing through
direct interactions

[73,74]

3. Let-7 and Lifespan

Many miRNAs have been shown to directly affect lifespan through insulin-like growth
factor (IGF-1) signaling, target of rapamycin (TOR), and mitochondrial/reactive oxygen
(ROS) signaling, among other pathways [75]. It is known that let-7 downregulates insulin-
PI3K-mTOR signaling in mammals [19], and insulin-PI3K-mTOR signaling promotes aging
in an evolutionarily conserved manner, indicating let-7 slows aging in mammals. However,
it has been reported that upregulation of miR-48 and miR-84 (let-7 family members) after
TDCPP exposure in Cryptobacterium hidradenum ultimately contributes to the reduction of
nematode lifespan and locomotor behavior by silencing DAF-16/FoxO in the unconven-
tional insulin-like growth factor signaling (IIS) pathway [76]. Moreover, other substantial
evidence shows that let-7 affects lifespan through other different biological pathways.
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For example, Xu et al. showed that the expression of adaptor proteins p66Shc, p52Shc,
and p46Shc were regulated by let-7a at the post-transcriptional level [77]. Among them,
the p66Shc adaptor protein was considered to be a key regulator of mammalian lifes-
pan, and the inhibition of p66Shc expression by let-7a delayed the senescence of human
diploid fibroblasts (HDF). Gendron et al. further found that in Drosophila melanogaster, let-7
overexpression in neurons specifically elevated female triglycerides (TAG), resulting in
a significant increase in female mean lifespan (22%) and maximum lifespan (14%), which
was determined to extend lifespan in a manner independent of changes in nutritional intake
or systemic insulin signaling [78]. What cannot be ignored is that the functions of let-7 are
complex and diverse, such as let-7 overexpression in male Drosophila neurons significantly
shortening lifespan [78], while previous work has shown that maintaining let-7c expression
is necessary for lifespan in healthy adult male Drosophila [79], and the exact reason for the
gender dimorphism of let-7 effects on lifespan is also unknown. Meanwhile, it is worth
mentioning that exercise training appears to promote healthy biological aging by inducing
telomere maintenance, but the molecular mechanisms are not fully understood. Kumard
et al. reported that let-7 and miR-320 were co-expressed and downregulated after short
interval training (SIT), suggesting that altered expression of let-7 and miR-320 is associated
with delayed biological aging after SIT [80].

In addition, excessive tissue regeneration may shorten lifespan by leading to stem
cell depletion or tumorigenesis [81,82]. Remarkably, let-7 depletion promotes cardiac
regeneration [83] and liver regeneration [82]. Therefore, it is important to accurately grasp
the pleiotropic nature of let-7 and reasonably implement targeted interventions in order to
achieve an optimal balance of tissue regeneration and ultimately prolong lifespan.

3.1. Let-7—The Role in Tissue Aging and ARDs
3.1.1. Let-7 and the Nervous System

Let-7 is widely expressed in the aging central nervous system, resulting in decreased
neuron formation and the self-renewal of neural stem cells. Hmga2, highly expressed in
fetal and young animal neural stem cells (NSCs), promotes self-renewal of neural stem cells
at least in part through downregulation of p16 Ink4a and p19 Arf [84]. Studies have shown
that Hgma2 mRNA contains seven let-7 binding sites, for example, let-7b binding to Hmga2
3′UTR negatively regulates its expression [85]. Thus, due to increased let-7 levels in NSCs
of aged animals, reduced Hmga2 expression leads to elevated cell cycle inhibitors [79],
thereby halting NSC renewal [24]. In addition, in older neurons, let-7 upregulation inhibits
the expression of Lin-41, an important promoter of anterior ventral microtubule (AVM)
axon regeneration [86], which in turn inhibits AVM axon regeneration and ultimately leads
to a decline in neuronal regeneration capacity. Additionally, the binding of let-7 and Lin-28
controls the maintenance of DA9 synaptic polarity [87], which is important in aging and
neurodegenerative diseases.

Alzheimer’s disease (AD) is a devastating neurodegenerative disease caused by the
accumulation of amyloid plaques and hyperphosphorylated tau in the brain [24], and mul-
tiple miRNAs are involved in this critical pathological process [88]. The major component
of these plaques, β-amyloid peptide (Aβ), is derived from the amyloid precursor protein
(APP) through the sequential action of β- and γ-secretase [24]. Drosophila melanogaster and
C. elegans do not have the APP gene, but both express the amyloid precursor protein gene
APL-1 [89], which is controlled by let-7 and its targets. For instance, let-7 transcription-
ally regulates APL-1 through Hbl1, Lin-41, and Lin-42 and is critical for the development
of AD [90]. Moreover, it is also known that let-7 is negatively regulated by miR-107.
Interestingly, studies have shown that miR-107 downregulated beta amyloid cleaving en-
zyme (BACE1), which generated amyloid beta peptide (Aβ) fragments by cleaving APP,
leading to amyloid beta deposition promoting the development of AD [91]. However,
whether the apparent down-regulation of miR-107 in AD [92] negatively up-regulates let-7
expression [93] and promotes the development of AD needs to be further verified. In
addition, dysregulation of miRNAs leads to dysfunction of intracellular and extracellu-
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lar biochemical processes and ultimately to neuronal cell death, which is another factor
influencing AD [94,95]. For example, the expression of let-7a, let-7b and let-7e are found
to be upregulated in high cholesterol diet–induced AD progression in a late-onset rabbit
mode [96], suggesting that let-7 may be involved in the pathological process of cholesterol
metabolism associated with AD. Another study reported that the cerebrospinal fluid of
AD individuals was specifically enriched in let-7b or let-7e [97] and interacted with TLR7
receptors as signaling molecules, further activating IRAK-4 through phosphorylation, and
the activated IRAK-4 stimulates caspase-3 to activate the TLR7 signaling pathway, which
eventually leads to neuronal degeneration [98]. Recent studies suggest that abnormal
autophagy may be a major risk factor for AD [99], as shown by Gu et al., who revealed that
let-7a overexpression in concert with the PI3K/AKT/mTOR signaling pathway enhances
Aβ1-40-induced neurotoxicity through the regulation of autophagy [100].

Parkinson’s disease (PD) is the second most common age-related disease and is caused
by a region-selective loss of dopaminergic neurons in the substantia nigra pars com-
pacta [24]. PD is characterized by accumulation of Lewy bodies in dopaminergic neurons
due to mutations in α-synuclein, Perkin, UCHL1, DJ1, and LRRK2 genes [101,102]. Recently,
it has been reported that let-7 downregulates E2F1, a conserved cell cycle-related transcrip-
tion factor that activates cell death through multiple pathways, and mutant leucine-rich
repeat kinase 2 (LRRK2) counteracts let-7, resulting in excessive expression of E2F1 and
eventually causing dopaminergic neuron death [103]. In addition, deletion of let-7 leads to
changes in various PD-related pathways, such as decreased α-synuclein expression and
accumulation, increased autophagy, and increased oxidative stress [104]. This evidence
shows that let-7 is an important regulator of the PD process and may be a new intervention
target for the treatment of PD.

The senescence of hippocampal neural stem cells (H-NSCs) can lead to cell exhaustion,
neurogenesis reduction, and cognitive impairment in vascular dementia (VD) [105]. Several
miRNAs, including let-7a-5p in embryonic stem cell-derived small extracellular vesicles
(ESC-sEVs), ameliorate H-NSCs senescence by inhibiting mTORC1 activation, promoting
TFEB nuclear translocation and lysosomal recovery, thereby reversing the neurogenetic
and cognitive disorders associated with senescence in VD [105].

Taken together, this evidence shows that let-7 is involved in multiple biological pro-
cesses associated with neurological aging and closely associated with the development
of aging-related neurological disorders. Importantly, existing studies reveal that let-7 not
only serves as a biomarker in neurological aging and related diseases but also can reverse
aging-related neurological impairment and cognitive deficits, indicating it is an important
therapeutic target for aging-related neurodegenerative diseases.

3.1.2. Let-7 and the Vision System

Let-7 is involved in the regulation of retinal development and the cell cycle, and its
expression gradually increases with age [106]. For example, let-7b and let-7c increase
significantly during normal vitreous aging, and both of them are expressed by Muller glia
cells and detected in their extracellular vesicles [106]. Further studies have found that
let-7c targets hyaluronic acid synthase 2 (Has2), a major component of vitreous synthase,
which affects vitreous development and remodels during aging by regulating hyaluronic
acid content with binding to the 3′UTR sequence, promoting the structural changes of
the extracellular matrix [106]. Studies have shown that let-7 is associated with several
age-related retinal diseases. For example, dysregulation of let-7 family members has been
detected in the vitreous fluid of both age-related macular degeneration and proliferative
retinopathy patients [23,107]. However, the specific role of let-7 in aging-related eye
diseases remains to be elucidated.

Aging is the main cause of cataracts [108]. Some findings suggest that miRNAs play
a role in age-related cataracts [109]. Let-7b, one of the top eight miRNAs in the human trans-
parent and age-related cataract lens microarray [110], regulates UV-induced lens epithelial
cell apoptosis by directly targeting G protein-coupled receptor 4 (Lgr4) [111]. In addition,
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there is a close relationship between oxidative stress and age-related cataracts [112]. It is
found that let-7c-3p is downregulated in the anterior capsule of the lens in the age-related
cataracts group aged >65 years compared to the age-related cataracts group aged≤65 years.
Similarly, the expression of let-7c-3p is lower under oxidative stress [108]. Recently, let-7c-
3p was found to inhibit oxidative stress-induced apoptosis in lens epithelial cells (LECs)
and target ATG3 to reduce autophagy levels [113]. This implies that let-7c-3p may be a new
target for age-related cataracts treatment.

3.1.3. Let-7 and the Reproductive System

The trade-off between the allocation of resources and energy for reproduction and
growth versus somatic maintenance has been central to the “evolutionary optimization”
theory of aging [114], and the removal of germline stem cells by germline laser ablation
or GLP-1/NOTCH mutants can indeed extend the lifespan of nematodes [115]. A study
found that knocking out Lin28 extends lifespan and promotes germline stem cells into
meiosis in nematodes, resulting in far fewer germline stem cells in young adults [116].
Importantly, as the best-known downstream effector of Lin28, let-7 stimulates DAF-16
translocation by targeting AKT-1/2, which is essential for Lin28-induced longevity and
smaller germline progenitor cell pools, and the reproductive stem cell and lifespan effects
of Lin28 RNAi are eliminated in let-7, AKT-1/2, and DAF-16 mutant worms, indicating
that the Lin28/let-7/AKT/DAF-16 axis plays an important role in balancing reproduction
and somatic cell maintenance [117]. Furthermore, Lin28 is specifically expressed in the
niche of testicular stem cells, directly binding and protecting Upd mRNA (a stem cell
self-renewal factor), maintaining the number and function of central cells in the testicular
stem cell ecotone [118]. However, Lin28 expression decreases with age, causing let-7 to
bind IGF-II messenger RNA by targeting protein (Imp) to reduce Upd expression, leading
to a consequent loss of germline stem cells [119]. Furthermore, a downregulation of let-7c is
detected in patients with premature ovarian failure (POF) compared to normal women [120],
implying an active role of let-7c in healthy follicle development. However, the function
of let-7g in follicles seems to be different from other family members because it is highly
expressed during atresia [121], directly targets the anti-apoptotic gene MAP3K1, and causes
the expression and dephosphorylation of the transcription factor FoxO1, which in turn
induces GC (granulosa cell) apoptosis [122]. Meanwhile, let-7g targets TGFBR1 to block
the TGFβ signaling pathway and increase caspase-3 activity and the apoptosis rate [123].
Fortunately, in a typical mouse model of premature ovarian failure (POF) induced by
a high-fat, high-sugar (HFHS) diet, thymopentin promotes the transcriptional activation of
Lin28A by stimulating the expression of transcription factor YY2, inhibiting the activity of
let-7 family miRNAs and alleviating the senescence of ovarian granulosa cells, ultimately
achieving the therapeutic effect on POF in mice [124].

Therefore, the search for more upstream transcriptional regulators of Lin28 targeting
let-7 has positive clinical therapeutic value for maintaining germinal stem cell populations,
delaying germ cell senescence, and aging-related reproductive disorders.

3.1.4. Let-7 and the Immune System

Aging is accompanied by adaptive immune system senescence including the dysfunc-
tion of B and T lymphocytes [125], and miRNAs have a key regulatory role in immune cell
development and function [126,127]. There is growing evidence to support the role of let-7
in the regulation of the immune system, including let-7 as a key player in the regulation
of B-cell antibody production, T-cell activation, and macrophage responses, etc. [128–131].
However, little is known about the relationship between let-7 and the immune system
during aging. A reduction in the size of the pre-B-cell pool in aging mice has been re-
ported [132], accompanied by intrinsic B-cell defects [133], but the underlying causes of
these changes remain to be elucidated. Koohy et al. found that compared with young cells,
the level of IRS1 protein in aging pro-B cells and pre-B cells decreased, while the expression
level of let-7 increased [134]. Importantly, downregulation of Irs1 and upregulation of let-7
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expression are major components of the transcriptional downregulation of the insulin-like
growth factor signaling pathway in aging, and therefore upregulation of let-7 in the aging
B-cell precursors targeting Irs1 and other components at the post-transcriptional level is
likely to result in reduced responsiveness to insulin/IGF signaling [134]. Interestingly,
there are striking alterations in the chromatin at a novel potential precursor RNA for the
let-7b and -7c2 in pre-B cell senescence [134], which is indicative of an interplay between
epigenetic and post-transcriptional mechanisms in shaping gene expression. This finding
suggests that aging affects the regulation of key signaling pathways at multiple levels.

Inflammation is one of the markers of accelerated aging and age-related diseases [135–137].
Meaningfully, the let-7 family also plays a key role in regulating immune-mediated inflam-
mation [138]. For example, the let-7adf cluster both inhibits Tet2 expression and increases
succinate accumulation by regulating the Lin28A/Sdha axis in LPS-activated macrophages
to enhance IL-6 secretion enzymes in macrophages [130]. However, whether let-7 regulation
of tissue inflammation is involved in the process of aging and the associated molecular
mechanisms remains unknown. In addition, current studies mostly focus on the potential
of let-7 as a target for cancer immunotherapy. Therefore, an in-depth understanding of
the relationship between let-7 and immune cell subsets during the aging process may help
provide new immunological treatment strategies for the intervention of aging.

3.1.5. Let-7 and Other Organizations

Muscle loss is a main contributor to aging-related diseases, and strategies to improve
muscle regeneration during aging are urgently needed. The role of individual miRNA in
skeletal muscle formation has been extensively studied, and many miRNAs have been
shown to be involved in this process [139]. As reported in the study, let-7b and let-7e are
significantly elevated in skeletal muscle in the elderly and cause skeletal muscle loss by
targeting cell cycle regulators CDK6, CDC25A, and CDC34 [140]. Other studies have shown
that single inhibition of let-7 promotes muscle cell differentiation increased muscle mass
in mice [19,141,142]. Surprisingly, inhibition of a combination of five miRNAs containing
let-7 increased activation of focal adhesion kinase (FAK), AKT, and p38 mitogen-activated
protein kinase (MAPK) during myogenic differentiation and improved myotube formation
and insulin-dependent glycogen synthesis [143]. In addition, let-7-targeting paired cassette
7 (PAX7) and IL-6 in senescent muscle and oculopharyngeal muscular dystrophy (OPMD),
a disease that shares molecular characteristics with senescent muscle, leads to reduced
muscle regeneration and functional degeneration [144].

Osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (MSC) main-
tain homeostasis in vivo under physiological conditions. With the increase of age, the
balance between adipogenesis and osteogenic differentiation of MSCs may be disrupted,
resulting in excessive accumulation of bone marrow adipocytes and reduction of bone
mass, which is related to age-related bone metabolic diseases (such as osteoporosis) [145].
Let-7 is found to positively regulate osteogenic differentiation and negatively regulate
lipogenic differentiation of HADSCs by inhibiting Hmga2 while negatively regulating
lipogenic differentiation, suggesting that let-7 is therefore a positive regulator of skeletal
development [146]. Importantly, let-7c and let-7d expression in mouse femurs increased
after birth and peaked at 4 weeks, followed by a rapid decline after bone maturation,
indicating that let-7 expression coincides with the timing of skeletal development. Thus,
downregulation of let-7 expression in bone with increasing age reduces osteogenesis by
inhibiting osteogenic differentiation of HADSC. Notably, another study found that let-7g
expression is downregulated in osteoporosis, but let-7g mimics inhibit ALP activity and
mineral deposition in osteoblasts, which in turn controls osteoblast differentiation [147].
Conversely, let-7c is highly expressed in the serum of postmenopausal patients with os-
teoporosis and, by targeting SCD-1, shuts down Wnt/β-catenin signaling and ultimately
inhibits osteogenic differentiation [148].

The above findings suggest that let-7 family members affect age-related bone produc-
tion in different ways and may also be promising drug targets for bone loss–related diseases.
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4. Conclusions and Future Directions

Collectively, let-7 is highly expressed in multiple tissues, including brain [24,98,103],
retina [106,111], and muscle [139,141], which regulates the differentiation function of multi-
tissue stem cells by targeting different genes (Figure 3) to regulate aging-related pathways,
thereby affecting the development of aging and related diseases, suggesting that let-7 plays
critical role in the process of aging and ARDs and is a promising target for intervention.
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However, there are still some essential scientific issues remaining to be fully eluci-
dated, which might be the critical directions of the application of let-7-based intervention
strategies (Figure 4). First, the underlying mechanisms among these members of let-7
family in different biological process remain to be fully elucidated, which is essential for
the development of let-7 family-based therapeutic targets. Evidence suggests that different
members of the let-7 family have different functions in specific cell types. For instance,
let-7a, -7b, and -7c are highly expressed in neurons and contribute to the development
of AD through different mechanisms, but whether there is network synergy among the
three is unknown. Moreover, the mechanisms of aging are complex, and metabolic path-
ways [149], immune function [150], and telomere length [151] are all key factors in the
aging process, while, the role of let-7 family in these processes has not been fully elucidated.
For example, T2DM is a potential risk factor for aging-related diseases [152], and the in-
creased expression of let-7a and let-7d in the skeletal muscle of patients with T2DM directly
inhibits the translation of IL-13 mRNA and reduces glucose uptake and metabolism [153].
So, does let-7-induced impaired glucose and lipid metabolism lead to decreased muscle
mass and increased risk of aging-related diseases? Additionally, what are the functional
effects and mechanisms of let-7 on immune cell subsets during aging? Whether let-7 is
involved in telomere length regulation after intermittent exercise requires further in-depth
exploration to elucidate these questions. Second, the expression pattern and profile of the
let-7 family in the processes of different biological events remains to be further verified,
which is important for the development of let-7-based biomarkers for these events. For
example, in hepatocellular carcinoma, due to intrinsic different expression levels of distinct
let-7 family members, overexpression of different let-7 family members has been shown to
have different degrees of effect on inhibiting cell viability, in which let-7a has the greatest
effect [154]. However, the distinct pattern of let-7a during the carcinogenesis remains to



Biomolecules 2022, 12, 1070 11 of 17

be explored. Meanwhile, the specific impact of abnormal let-7 family members in the
vitreous humor on several aging-related ocular diseases is also unclear, so it is inconclusive
whether it can be used as a differential diagnostic marker for them. Third, in the aspect
of clinical application, although targeting miRNA is a promising treatment strategy for
aging, a fully realized treatment may require long-term efforts. Clinical data show that let-7
can be used as a biomarker for cancer screening and diagnosis and is a promising target
for cancer therapy [155]. However, aging-related let-7 therapy has not been established
because of some unresolved issues, including in the design of miRNA therapy for aging
and age-related pathology, enhancing targeting [156] and delivery efficiency [157], as well
as safety [158], which are still the directions of efforts.
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