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Chlamydia are Gram-negative obligate intracellular bacterial pathogens responsible for

a variety of disease in humans and animals worldwide. Chlamydia trachomatis causes

trachoma in disadvantaged populations, and is the most common bacterial sexually

transmitted infection in humans, causing reproductive tract disease. Antibiotic therapy

successfully treats diagnosed chlamydial infections, however asymptomatic infections

are common. High-throughput transcriptomic approaches have explored chlamydial

gene expression and infected host cell gene expression. However, these were performed

on large cell populations, averaging gene expression profiles across all cells sampled and

potentially obscuring biologically relevant subsets of cells. We generated a pilot dataset,

applying single cell RNA-Seq (scRNA-Seq) to C. trachomatis infected and mock-infected

epithelial cells to assess the utility, pitfalls and challenges of single cell approaches

applied to chlamydial biology, and to potentially identify early host cell biomarkers of

chlamydial infection. Two hundred sixty-four time-matched C. trachomatis-infected and

mock-infected HEp-2 cells were collected and subjected to scRNA-Seq. After quality

control, 200 cells were retained for analysis. Two distinct clusters distinguished 3-h

cells from 6- and 12-h. Pseudotime analysis identified a possible infection-specific

cellular trajectory for Chlamydia-infected cells, while differential expression analyses

found temporal expression of metallothioneins and genes involved with cell cycle

regulation, innate immune responses, cytoskeletal components, lipid biosynthesis and

cellular stress. We find that changes to the host cell transcriptome at early times of

C. trachomatis infection are readily discernible by scRNA-Seq, supporting the utility of

single cell approaches to identify host cell biomarkers of chlamydial infection, and to

further deconvolute the complex host response to infection.
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INTRODUCTION

Chlamydia are Gram-negative obligate intracellular bacterial
pathogens that cause disease in humans and a wide variety
of animals. In humans, Chlamydia trachomatis typically infects
cells within the ocular and genital mucosa, causing the most
prevalent bacterial sexually transmitted infections (STI; Reyburn,
2016), inducing acute and chronic reproductive tract diseases that
impact all socioeconomic groups, and trachoma in disadvantaged
populations (Burton and Mabey, 2009). Disease outcomes arise
from complex inflammatory cascades and immune-mediated
host processes that can lead to tissue damage and fibrotic scarring
in the upper genital tract or the conjunctiva (Taylor et al., 2014;
Menon et al., 2015). Reproductive tract disease outcomes include
pelvic inflammatory disease (PID), preterm delivery, ectopic
pregnancy, hydrosalpinx, tubal factor infertility (TFI), and
chronic pelvic pain in women, as well as epididymitis, testicular
pain and infertility in men. Antibiotic therapy with azithromycin
or doxycycline successfully treats diagnosed infections, however
asymptomatic infections are common (Hafner et al., 2014; Ali
et al., 2015). Without overt symptoms that lead individuals
to seek primary health care, antibiotic interventions are
not able to be employed. Asymptomatic infection rates are
estimated to exceed diagnosed infection rates by at least 4.3-fold
(Ali et al., 2015).

Chlamydia have a unique biphasic developmental cycle with
distinct morphological forms. The cycle begins with attachment
and entry of the infectious elementary bodies (EBs) into host
cells, typically mucosal epithelial cells. After entry, EBs reside
within membrane-bound vacuoles that escape phagolysomal
fusion (Scidmore et al., 1996). Differentiation into the replicating
reticulate bodies (RBs) occurs within the first 2–3 h, followed by
continued growth of the inclusion accommodating the increased
number of RBs. Over the course of infection, Chlamydia
parasitises and modifies the host cell by deploying type III
effectors and other secreted proteins (Valdivia, 2008), which
also facilitate invasion, internalization, and replication, while
countering host cell defenses (Saka et al., 2011; Bastidas et al.,
2013). At the end of the developmental cycle, RBs asynchronously
transition back into EBs (∼20–44 h) and, through either
extrusion or host cell lysis (∼48–70 h), are released to repeat the
cycle (Elwell et al., 2016).

Chlamydial transcriptomes have been examined over the
developmental cycle, in EBs and RBs, in different chlamydial
species (Belland et al., 2003; Albrecht et al., 2010, 2011;
Abdelrahman et al., 2011). Epithelial cell transcriptomes
responding to plasmid-bearing/plasmid-less C. trachomatis
has been characterized by microarray (Porcella et al., 2015).
Dual RNA-Seq (Humphrys et al., 2013; Marsh et al., 2018)
has allowed the transcriptomes of both C. trachomatis
and infected epithelial cells to be profiled simultaneously,

Abbreviations: DE, Differentially expressed; EBs, Elementary bodies; FDR, False

discovery rate; IFC, Integrated fluidic circuit; IF, Intermediate filament; MT,

Metallothionein; ncRNAs, Non-coding RNAs; PID, Pelvic inflammatory disease;

ROS, Reactive oxygen species; RLE, Relative log expression; RBs, Reticulate bodies;

STI, Sexually transmitted infections; scRNA-Seq, Single cell RNA sequencing; TFI,

Tubal factor infertility.

identifying previously unrecognized early chlamydial gene
expression and complex host cell responses (Humphrys
et al., 2013). However, in these studies to date, the derived
transcriptional profiles represent averaged gene expression
over the population of cells sampled (Hebenstreit, 2012).
Subsets of cells with dominant gene expression profiles can
skew the analysis (Łabaj et al., 2011), possibly obscuring other
potentially important cell subsets and their transcriptional
profiles (Saliba et al., 2014; Liu and Trapnell, 2016). By
examining the expression profiles of individual cells, single
cell RNA sequencing (scRNA-Seq) can minimize these
biases, enabling a deeper understanding of population
heterogeneity, cell states and interactions, and gene regulation
(Kolodziejczyk et al., 2015; Regev et al., 2017). scRNA-Seq
and other single cell methods have been instrumental in
discovering new cell types (Regev et al., 2017) and advancing
the understanding of many disease states (Sandberg, 2013),
particularly tumor heterogeneity (Patel et al., 2014; Tirosh
et al., 2016), hematopoiesis (Kowalczyk et al., 2015), and
embryonic development (Yan et al., 2013). Applications of
scRNA-Seq to pathogen-infected cells are more limited so far,
but are exemplified by studies that show the heterogeneity
of macrophage responses to Salmonella enterica serovar
Typhimurium infection (Saliba et al., 2016), the high degree
of cell-cell transcriptional variation induced by influenza virus
infection (Russell et al., 2018), and the characterization of lymph
node-derived innate responses to bacterial, helminth, and fungal
pathogens (Blecher-Gonen et al., 2019).

Here we explore the application of single cell analysis
methodologies to Chlamydia-infected cells, with the goals
of identifying host cell developmental-stage biomarkers, and
to assess the utility of these methodologies for deciphering
chlamydial biology in cells and tissues. We generated a pilot
scRNA-Seq dataset of time-matched infected and mock-infected
HEp-2 epithelial cells in vitro encompassing the early chlamydial
developmental cycle (3, 6, and 12 h). We show that infection
responsive changes to the early host cell transcriptome are readily
discernible by scRNA-Seq, supporting the potential for host
derived infection biomarkers.

RESULTS

Single Cell Capture, Library Construction,
Quality Assessment, and Filtering
Chlamydia-infected (C. trachomatis serovar E, MOI∼1) and
time-matched mock-infected cells spanning three times post-
infection were captured using the Fluidigm C1 microfluidic
instrument and workflows (Figure 1A). We obtained 80 single
cells at 3 h (48 Chlamydia-infected, 32 mock-infected), 96
cells at 6 h (48 Chlamydia-infected, 48 mock-infected), and
88 cells at 12 h (40 Chlamydia-infected, 48 mock-infected) for
an initial total of 264 cells (Figure 1B). Following Illumina
library construction and sequencing, the raw sequencing
reads from these 264 cells were demultiplexed using DeML
(Renaud et al., 2015), yielding 1.03 billion sequence reads
(Supplemental File 1). Single cell datasets were removed
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FIGURE 1 | Experimental design and analysis. (A) Cell culture using HEp2 epithelial cell monolayers used to grow and harvest Chlamydia trachomatis E elementary

bodies (EBs). Fresh monolayers were infected with EBs, (MOI ∼1) using centrifugation to synchronize infections. Experimental design time-matched

Chlamydia-infected and mock-infected cell monolayers at 3, 6 and 12 h, prior to capture and scRNA-Seq library preparation on the Fluidigm C1 instrument.

(B) Numbers of captured and sequenced single cells by experimental condition and time. (C) After quality control steps, unsupervised clustering identifies two primary

clusters. Cluster 1 contains all 3 h cells, while cluster 2 contains all 6 and 12 h cells. (D) Putative marker genes grouped by hierarchical clustering.

from subsequent analyses if they contained <1 million
reads after trimming and alignment, and <5,000 counted
features (genes). Further quality assessment measures ensured
that sequence reads mapped across all chromosomes and
that the majority of reads mapped to protein-coding genes
(Supplemental File 2). Single cell datasets were pooled and

subjected to additional quality assessment steps, including
examining rRNA as a measure of depletion success and
mitochondrial gene expression as an indicator of cell stress
(Zhao et al., 2002), as both are potential sources of bias
(Supplemental File 3). During quality control, the mock-
infected cells at 3 h failed to pass cut-offs, and were excluded
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from further downstream analysis (Supplemental File 3).
After all quality measures, datasets from 200 high quality
single cells remained across the three times: 43 Chlamydia-
infected cells at 3 h; 82.6 h cells (42 Chlamydia-infected, 40
mock-infected), and 75.12 h cells (36 Chlamydia-infected,
39 mock-infected).

Removal of Confounding Effects
To normalize by library size, Scran’s single-cell specific method
was used to deconvolute library size factors from cell clusters
(Lun et al., 2016). We applied RUVSeq (Risso et al., 2014)
to identify and remove further confounding effects, including
differences between batches of sequenced cells. Reduction
of variation was confirmed in relative log expression (RLE)
plots (Supplemental File 4A). Density curve plots further show
the effect of removing variability from the raw counts,
after library size normalization, and after removing further
confounding effects (Supplemental File 4B). The PCA bi-plot
(Supplemental File 4C) shows the structure of the data and
grouping of the cells based on their transcriptional profiles
following these steps. By examining the underlying variables
driving PC1 variation, we found that total read counts and
time post-infection account for 99% of the total variation
(Supplemental File 4C), confirming that most variation is not
from experimental factors. In addition, doublets (where at
least two cells are captured into the same well) can skew
the resulting expression profiles, adding a further confounding
factor. Although the C1 platform uses integrated fluidic circuits
(IFCs) to isolate single cells, it has been associated with a
doublet rate as high as 25% (Wang et al., 2019). Due to
this high reported rate, we ran different tools to identify
doublets, confirming that our data had minimal detected
doublets (Supplemental File 5).

Cell Cycle Classification
Due to the constraints imposed by chlamydial infection within in
vitro tissue culture and, given the potential for cell-cell variability
despite infection synchronization, we expected to observe a range
of cell cycle stages in our data (Figure 2). Two of the three stages
(G1 and G2/M) showmore than double the number of cells from
3 to 6 h, while DNA synthesis (S) is the only cell cycle stage
with a decrease in the number of cells from 3 to 12 h. However,
despite these trends, no distinct cell cycle clusters are apparent
(Figure 2B). In addition, there is no clustering between cell cycle
state and time post-infection, or infection condition (infected vs.
mock-infected). Although we identify cell cycle stage as a likely
confounding effect (Barron and Li, 2016) that was removed from
our subsequent analyses, it may be relevant to the infection and
growth strategies of Chlamydia. For example, while infected cells
can still grow and divide, the burden of infection causes these
cells to proliferate more slowly than uninfected cells, resulting in
dividing cells which may be more or less susceptible to infection
(Balsara et al., 2006). Additionally, chlamydial infectivity has
been related to distinct cell cycle phases, where infection can
modulate cell cycle parameters (Johnson et al., 2009).

Clustering Demonstrates Transcriptional
Heterogeneity of Infected Epithelial Cells
Over the Early Chlamydial Developmental
Cycle
Unsupervised clustering identified two distinct clusters across
the three time points (Figures 1C, 3). Cluster 1 contains
only 3-h infected cells, while cluster 2 contains a mixture
of cells from 6 and 12 h, with no clear separation between
infected and uninfected conditions. We used k-nearest neighbor
smoothing (kNN-smoothing) to further reduce scRNA-Seq-
specific noise within the expression matrix (Wagner et al.,
2018), which is a common occurrence from effects such
as dropouts (Gong et al., 2018). The resulting PCA plot
recapitulated the clusters identified above, indicating that
the previous clustering result was not influenced by noise-
related factors. Additional clustering analyses were performed
to identify any sub-populations within each cluster on the
basis of experimental factors such as time or infection status
(Figure 4). Chlamydia-infected cells again clustered into two
main groups, closely matching the overall clustering that
separated the 3 h cells from 6 and 12 h, with no further sub-
clustering evident.

Pseudotime Analysis Over the Early
Chlamydial Developmental Cycle
Unsupervised clustering demonstrates that both infected and
uninfected cells have minimal cluster separation at 6 and
12 h (Figure 1C). We applied pseudotime analysis to further
deconvolute cellular trajectories that may follow a time course
or biological mechanisms such as differentiation or infection
(Ji and Ji, 2016; Lönnberg et al., 2017). Pseudotime analysis of
Chlamydia-infected cells alone predicted 3 distinct cell states
(Figure 5A). Cell state 1 contained 3 h cells, state 2 contained
a mixture of 3, 6 and 12 h cells, and state 3 contains a
mixture of 6 and 12 h cells (Figure 5B). The line connecting
the 3 cell states (minimum spanning tree) does not provide
a realistic linear trajectory of the infection course from 3 to
12 h. Manually increasing the number of states does provide
a more realistic trajectory (Figure 5C); however, the similarity
of 6 and 12 h cells (both mock-infected and infected states)
will require more cells to accurately capture any putative
sub-stages of infection.

We overlaid the predicted cell cycle states from pseudotime
analysis for each cell to identify any shared characteristics of
infected cells with mock-infected cells, which could classify cells
that were either not infected or had unproductive infections. This
analysis identified only two cell states (Figure 5D), recapitulating
the initial clustering results. By manually increasing the number
of cell states to 7, smaller sub-clusters within the two main
clusters became evident. However, we still observe a mixture
of infected and mock-infected cells within each sub-cluster
(albeit with small numbers of cells), further highlighting
the transcriptional similarity between infected cells at
6 and 12 h in this dataset.
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FIGURE 2 | Cell cycle classification. (A) Cell cycle classification of single cells after removing outliers. (B) PCA plot examining cell-cycle related trends by time-point

and infection status.

Differentially Expressed Genes in
Chlamydia-Infected and Mock-Infected
Cells Highlight Infection Mechanisms
Subsets of genes with significant expression differences between
the two primary clusters were examined in order to identify any
putative host cell marker genes that distinguish different times
post-infection (Figure 1D). At 6 and 12 h, genes associated with
processes governing RNA and protein metabolism (RPS3, RPL3,
RPS15, RPL18, PABPC1, MAGOH, and EIF2S3) predominate,
with most showing increased expression. Increased expression
of vimentin (VIM), a type III intermediate filament (IF)
present in the cytoskeleton and involved in maintaining cell
shape and integrity (Mak and Brüggemann, 2016), distinguishes
the 3 h cluster.

We further examined differentially expressed (DE) genes
firstly by comparing infected and mock-infected cells at 6 and

12 h, respectively (cluster 2), and secondly by comparing the

3 h infected cells (cluster 1) against cluster 2, as the 3 h mock-
infected cells were removed after initial quality control steps.

At 6 h, 44 DE genes were identified (13 up-regulated and
21 down-regulated; Figure 6A), including three up-regulated
metallothionein (MT) genes (MT1E,MT2A, andMT1X). MT up-

regulation occurs in response to intracellular zinc concentration

increases, reactive oxygen species (ROS) and proinflammatory

cytokines (Rice et al., 2016). Intracellular zinc concentrations
are an integral component of immunity and inflammation, and
zinc deficiency results in an increased susceptibility to infection
(Subramanian Vignesh and Deepe, 2017). MTs may also have a
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FIGURE 3 | Clustering. (A) SC3 consensus matrix predicted 2 clusters, dark red coloring. (B) Silhouette plot of the consensus matrix (100% indicates perfect

clustering). (C) Cluster stability plots showing that as the number of clusters increases past two, cluster stability decreases. (D) PCA plot of the two predicted clusters,

colored by time-point, sized by infection status and shaped by cluster. (E) PCA plot following kNN-smoothing on the expression matrix.

role in protecting against DNA damage and in apoptosis, as well
as regulating gene expression during the cell cycle (Cherian and
Apostolova, 2000), which are likely to be relevant at 6 h post-
infection. Down-regulated pathways at 6 h were dominated by
three genes HSP90AA1 (Heat Shock Protein 90 Alpha Family
Class A Member 1), TUBB (Tubulin Beta Class I), and TUBA4A
(Tubulin Alpha 4a), which are linked to the cell cycle, specifically
centrosome maturation and microtubule assembly mediating
mitosis (Figure 6B).

At 12 h, there is an increase in DE genes (245) with 98 up-
regulated and 147 down-regulated (Figure 6A). We continue
to see up-regulated genes that are likely part of a continued
immune response to infection, including two MTs (MT1M and

MT1E), TRIM25 (Tripartite Motif Containing 25), ISG15 (ISG15
Ubiquitin Like Modifier), HLA-A (Major Histocompatibility
Complex, Class II, DR Beta 1), IFIT3 (Interferon Induced Protein
With Tetratricopeptide Repeats 3), OASL (2′-5′-Oligoadenylate
Synthetase Like), IL6 (Interleukin 6), and genes associated with
cholesterol and fatty acid synthesis (Figure 6B). The exploitation
of a variety of host lipids by Chlamydia to subvert intracellular
signaling, survival and growth is well established (Kumar et al.,
2006; Cocchiaro et al., 2008; Elwell and Engel, 2012). All down-
regulated pathways at 12 h indicate that Chlamydia-infected
cells are exhibiting stress responses. DNA damage as part
of the cell cycle, and repair pathways are enriched, possibly
representing a continuation of infection stresses at 6 h, and likely
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FIGURE 4 | Sub-clustering. The four comparisons shown here were created by manually selecting two and three clusters to examine any sub-clustering events not

automatically detected. (A) 3 h cells—no sub-clustering evident. (B) 6 h cells—no apparent sub-clustering with two clusters; three clusters do display more of a

separation (between blue and green), while infected and mock-infected cells cannot be distinguished. (C) 12 h cells—some separation evident with 3 clusters, but

infection state is not distinguishable. (D) Extracting only infected cells show a clear separation of 3 h cells, but not 6 and 12 h cells.
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FIGURE 5 | Pseudotime analysis. (A) Pseudotime analysis of infected cells predicts three cell states. The minimum spanning tree (black line) is uninformative and not

a true indication of an expected infection trajectory encompassing all cells from 3 to 12 h. (B) Each cell ordered throughout the predicted pseudotime and separated

by cell state. (C) Manually increasing the number of cell states to six appears to show a more realistic infection trajectory with a wider number of cells, in addition to

showing start and end points correlating to 3 and 12 h cells. (D) When all cells are used, two cell states are predicted that support the initial clustering outcomes.

When the number of cell states is manually increased, smaller subsets appear, providing a finer resolution.
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indicative of further Chlamydia-induced interruption of the
cell cycle. Notably, two p53 associated pathways were enriched
from associated genes. p53 expression tightly controls the cell
cycle and is modulated in response to activities including cell
stress, DNA damage, as well as bacterial infection (Zaika et al.,
2015). Chlamydia-induced down-regulation of p53 may help
to protect infected cells against death-inducing host responses,
thus allowing chlamydial survival (Siegl et al., 2014). Only
four DE genes from 6 and 12 h overlap. The two up-regulated
genes were DUSP5 (Dual Specificity Phosphatase 5) and MT1E
(metallothionein 1E), while the two down-regulated genes were
TUBA4A and HSP90AA1.

Comparing cluster 1 (3-h infected cells) against cluster 2 (DE
genes from 6 and 12 h) demonstrates a substantial number of
DE genes (2,291 up and 3,487 down-regulated) (Figure 6A).
Although the model attempted to account for the loss of the
3 h mock-infected cells, we note a proportion of these DE
genes may not be related to a productive chlamydial infection
as a result. The down-regulated pathways have low combined
scores (a combination of p-values and z-scores) compared to
the up-regulated pathways, which may be explained by the large
number of down-regulated non-coding RNAs (ncRNAs), which
are typically not incorporated into the underlying enrichment
analyses. Three of the up-regulated pathways are associated with

FIGURE 6 | Differentially expressed genes and enriched pathways. (A) Differentially expressed genes from infected and mock-infected cells at 6 and 12 h. When

comparing cells from cluster 1 against cluster 2, a more complex experimental design was needed that took into consideration the variety of underlying cells.

(B) Enriched pathways from Reactome using differentially expressed genes from (A).
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infection (Infectious disease, Influenza life cycle, and Influenza
infection; Figure 6B), demonstrating that general infection
mechanisms are the key differences between these temporally
defined clusters.

DISCUSSION

To better understand bacterial pathogenesis and resulting
disease outcomes, it is critical to understand functional changes
to specific cell populations of infected and neighboring cells,
and recruited immune cells in the infected tissue context. This
is especially relevant for Chlamydia which, due to its obligate
intracellular niche and distinct morphologies, has long been
refractory to research. As a result, many infection and disease
processes at the cellular and tissue level remain largely unknown
or poorly characterized in vivo. Gene expression profiling of
Chlamydia-infected cells by microarray (Porcella et al., 2015),
dual RNA-Seq (Humphrys et al., 2013; Marsh et al., 2018),
or other genome-scale analyses (Hayward et al., 2019) are
powerful techniques to help deconvolute these interactions and
processes. However, these and similar genome-scale analyses
of infected cells have typically been performed on bulk cell
populations, i.e., infected cell monolayers in vitro, or selectively
sorted/purified subsets of cell populations. Such bulk cell
approaches can potentially miss cell-cell variability, or cells
that contribute to overlapping phenotypic characteristics,
potentially masking critical biological heterogeneity as irrelevant
signals from non-participating cells that can skew the average.
This may influence the understanding of multifactorial
and dynamic processes, such as inflammation and fibrosis
during ascending chlamydial infection. Single cell approaches
can potentially alleviate some of these concerns, but also
provide new challenges.

We describe the first application of scRNA-Seq to Chlamydia-
infected cells. This pilot dataset, comprising 264 single infected
and mock-infected cells encompassing three early times of
the in vitro chlamydial developmental cycle, was designed to
examine the feasibility and pitfalls of single cell approaches to
investigate chlamydial biology and to ultimately identify host-
derived transcriptional biomarkers of chlamydial infection. After
quality assessment and filtering measures, we retained 200 high
quality, C. trachomatis-infected and mock-infected cells.

We note that the experimental design used here will
not distinguish Chlamydia-mediated effects from infection-
specific or non-specific epithelial cell responses. In addition,
the in vitro infections used as the source of the single
cells are centrifugation-synchronized in order to minimize
the degree of heterogeneity at each infection time to enable
more accurate examination of temporal effects. Despite this,
lag time of differentiating EBs to RBs between distinct cells
may still influence host responses mediated by temporally
expressed/secreted chlamydial factors. Given that the minimal
chlamydial generation time during exponential growth has been
estimated as 2.6–4.6 h (Wilson et al., 2004; Lambden et al., 2006),
it is plausible that cells at each time may cluster with an earlier
or later time.

Clustering, pseudotime and cell state prediction analyses
demonstrated that Chlamydia-treated cells at 3 h are readily
distinguishable from Chlamydia-treated and mock-infected cells
at 6 and 12 h. Curiously, cells at 6 and 12 h clustered together
and could not be further deconvoluted from each other, possibly
showing that host cell transcription at these times is broadly
similar. A recent FAIRE-Seq analysis of Chlamydia-infected
epithelial cells, examining patterns of host cell chromatin
accessibility over the developmental cycle (Hayward et al.,
2019), found that 12 h post-infection was relatively quiescent
in terms of host cell transcriptional activity. This finding is
reflected by our scRNA-Seq analyses here and may be extended
to 6 h post-infection. In addition, both Chlamydia-infected
and mock-infected cells at 6 and 12 h clustered together. One
interpretation of this phenomenon is that these early infection
times represent a period where the ongoing establishment of
the inclusion and chlamydial division after initial entry and
infection events is largely cryptic to the host cell as manifested
by transcriptional processes.

However, limitations inherent to the experimental design
and the technology used here may also influence our results,
and should inform future single cell experiments. We used an
MOI∼1, based upon our previous work with bulk dual RNA-
Seq (Humphrys et al., 2013), which typically results in highly
infected HEp-2 monolayers (95%+) when using C. trachomatis
serovar E. When combined with the closed nature of the
integrated fluidic circuits used to capture individual cells, the
early infection times, and the destructive nature of single cell
RNA-Seq, using a lower MOI may have led to populations
of both infected and uninfected cells to be sampled. In bulk
transcriptomic experiments, any distinct signal from a small
number of uninfected cells will be largely overwhelmed. In
contrast, uninfected cells in single cell experiments may have an
outsized effect, particularly if the total number of cells sampled
is insufficient. In addition, the population of infecting EBs may
include differentially viable EBs, leading to a divergence of
transcriptional profiles between cells with productive infections,
compared to cells that are initially infected with non-viable EBs
that will not proceed to a productive infection. Similarly, any
putative “neighbor” effect of uninfected cells next to infected cells
may lead to distinct transcriptional profiles. Given the relatively
low number of single cells sampled and the early infection times
examined, these factors are a potential source of bias in these
pilot experiments. With these limitations in mind, it may be
more accurate to describe the Chlamydia-infected cells in these
experiments as “Chlamydia-exposed.”

Design of in vitro single cell experiments in the Chlamydia-
infected cell context will benefit firstly from a higher MOI
to ensure maximal productive infection. Secondly, collection
of much higher numbers of single cells for scRNA-Seq and
other single cell genome-scale measurements are now possible,
minimizing the potential for introduced sampling biases that
arise from low infected cell numbers. Thirdly, the inclusion of
additional controls, such as UV-inactivated EBs or opsonized
latex beads, will allow host cell transcriptional responses to
productive vs. non-productive infection events to be examined,
as well as separating host cell infection-specific processes from
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non-specific phagocytic responses. Finally, moving away from
poly(A) capture library construction to randomhexamers instead
will allow pathogen transcripts to simultaneously be interrogated
in the single cell mode, as recently applied to Salmonella
typhimurium-infected cells (Avital et al., 2017).

A range of cell cycle states were observed in our data.
We attempted to remove these effects as potential confounders
through bioinformatic means. Chlamydia-infected cells are still
able to undergo mitosis, however mitosis-related defects do
occur during chlamydial infection. These include an increase
in supernumerary centrosomes, abnormal spindle poles, and
chromosomal segregation defects, and result in a heavily
burdened cell that proliferates more slowly (Grieshaber et al.,
2006; Knowlton et al., 2011). Cells that recover from infection
are still likely to contain chromosome instabilities, which can
then be passed down to uninfected daughter cells (Grieshaber
et al., 2006). This may be manifested in our data as we
see a number of pathways related to the cell cycle that are
down-regulated. While this could be an off-target effect of
infection that does not benefit Chlamydia, interference with
the cell cycle may constitute an infection strategy, as in vivo
cells will be at different cell cycle stages and thus some may
be more or less susceptible to infection. Nevertheless, future
in vitro investigations of chlamydial infection should attempt
to explore and/or mitigate these effects through cell cycle
arrest strategies (Johnson et al., 2009) prior to infection and/or
single cell separation.

Differential expression comparing cells between clusters
identified both conserved and temporally specific gene
expression over the times examined. Comparison of these
differentially expressed genes with other published Chlamydia-
infected cell transcriptomic datasets (Humphrys et al., 2013;
Porcella et al., 2015) showed little overlap (data not shown),
most likely as a consequence of an accumulation of technical
differences that make direct comparisons difficult, including the
relatively small numbers of single cells sampled here, different
times post-infection, different MOIs, and different chlamydial
serovars and in vitro cell lines. Single cell RNA-Seq approaches
may also benefit from parallel bulk RNA-Seq approaches
from the same input material to cross-check, compare and
validate. Nevertheless, many of the identified pathways and
genes are directly relevant to known chlamydial infection
processes, including metallothioneins, innate immune processes,
cytoskeletal components, lipid biosynthesis, and cellular stress.
These analyses demonstrate that, despite the limitations of
this pilot dataset, distinct host cell transcriptional responses
to infection are readily discernible by single cell approaches,
even at the early stages of the chlamydial developmental
cycle, yielding robust data and confirming that host cell-
derived transcriptional biomarkers of chlamydial infection
are identifiable. Thus, single cell genome-scale approaches
applied to Chlamydia-infected and neighboring cells, recruited
immune cells from inflammatory processes, and structural
cells obtained from clinical swabs or ex vivo tissues, are likely
to lend significant insight to the complex processes that
underpin chlamydial infection and the associated inflammatory
disease outcomes.

METHODS

Cell Culture and Infection
HEp-2 cells (American Type Culture Collection, ATCCNo. CCL-
23) were grown as monolayers until 90% confluent. Monolayers
were infected with C. trachomatis serovar E in SPG as previously
described (Tan et al., 2009). Additional monolayers were mock-
infected with SPG only. The infection was allowed to proceed
48 h prior to EB harvest, as previously described (Tan et al.,
2009). C. trachomatis EBs and mock-infected cell lysates were
subsequently used to infect fresh HEp-2 monolayers. Fresh
monolayers were infected with C. trachomatis serovar E in
3.5mL SPG buffer for an MOI ∼ 1 as previously described
(Tan et al., 2009), using centrifugation to synchronize infections.
Infections and subsequent culture were performed in the absence
of cycloheximide or DEAE dextran. A matching number of
HEp-2 monolayers were also mock-infected and synchronized
as above using uninfected cell lysates. Each treatment was
incubated at 25◦C for 2 h and subsequently washed twice with
SPG to remove dead or non-viable EBs. Ten milliliter fresh
medium (DMEM + 10% FBS, 25µg/ml gentamycin, 1.25µg/ml
Fungizone) was added and cell monolayers incubated at 37◦C
with 5% CO2. Three biological replicates of infected and mock-
infected dishes per time were harvested post-infection into single
cell populations by trypsin in sterile PBS prior to immediate
single cell capture and library preparation.

Library Preparation and Sequencing
A Fluidigm C1 instrument was used for cell capture. This
instrument uses microfluidics on IFCs to capture single cells,
lyse and prepare cDNA, using 96 well-plates as input. Only
polyadenylated fragments are captured from each cell, typically
restricting analysis to eukaryotic mRNA. Cell lysis, reverse
transcription, and cDNA amplification were performed using the
C1 Single-Cell Auto Prep IFC. The SMARTer Ultra Low RNA
Kit (Clontech) was used for cDNA synthesis and Illumina NGS
libraries were constructed using the Nextera XT DNA Sample
Prep kit. The resulting 264 single cell libraries were sequenced
using the Illumina HiSeq 4000 platform (150 bp paired-end
reads) across three batches. Each plate was designed with a
balanced distribution of time points and conditions.

Pre-processing and Quality Control
Raw sequencing reads were demultiplexed using DeML (Renaud
et al., 2015) with default settings. Trim Galore (v.0.4.3) (Krueger,
2012) was used to trim adaptors and low quality reads.
Confirmation of the removal of adaptors, low quality reads and
other quality control measurements was performed with FastQC
(v.0.11.5) (Andrews, 2010). Reads were subsequently aligned to
the human genome version (GRCh 38.87) with STAR (v.2.5.1a)
(Dobin et al., 2013) retaining paired and unpaired mapped reads
that were merged in to a single BAM file.

FastQ-Screen (v.0.11.1) (Wingett, 2011) was used to screen
for sources of contamination across all cells. This output and
low mapping rates confirmed the removal of all 3-h uninfected
cells, due to extremely low mapping rates to the Human genome
and high mapping rates to other organisms. Features of the
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remaining cells were counted with FeatureCounts (v.1.5.0-p3)
(Liao et al., 2014). MultiQC (v.1.0) (Ewels et al., 2016) was used
throughout the previous steps, combining output from each piece
of software to easily make comparisons between batches and
across time points.

Identifying Outlier Cells Based on Filtering
Counted features were imported into Scater (v.1.5.11) (McCarthy
et al., 2017), where subsequent quality control reduced the
total number of cells from 264 to 200. The filter settings
were comprised of four steps: (1) total mapped reads should
be >1,000,000; (2) total features >5,000; (3) expression
from mitochondrial genes <20% of total expression; and (4)
expression from rRNA genes comprise <10%.

Removing Confounding Effects
Cell cycle classification was performed using Cyclone (Lun
et al., 2016) prior to filtering out low abundance genes, as
recommended. To account for the differences in library sizes
between cells, the deconvolution method from Scran (v.1.6.0)
(Lun et al., 2016) was used. Further confounding effects such
as cell cycle and sequencing batch effects were removed using
the RUVs method of RUVSeq (v.1.12.0) (Risso et al., 2014)
using k = 4. Doublet detection was performed using Scrublet
(v.0.1) (Wolock et al., 2019) and DoubletDetection (v.2.4)
(Gayoso and Shor, 2019).

Clustering
Unsupervised clustering was performed using the Single-Cell
Consensus Clustering (SC3) package (v.1.10.1) (Kiselev et al.,
2017). Two clusters (k) were chosen based on automatic
prediction by SC3 after iterating through a range of k (2:10).
Higher values of K were examined; however, two clusters
remained the best fit to this data as assessed by various internal
plots including consensus matrices, silhouette plots and cluster
stability plots. To further confirm the two clusters, the KNN-
Smoothing (Wagner et al., 2018) (K-nearest neighbor smoothing)
function (v.1) was also applied to different transformations of the
library normalized data.

Pseudotime Analysis
TSCAN (v.1.16.0) (Ji and Ji, 2016) was used to perform
pseudotime analysis. When all cells were analyzed, the
“pseudocount” and “minexpr_value” flags were set to 0.5 in
pre-processing to allow more features to be selected, resulting
in an increase of cells with assigned cell states, especially when
the number of states was manually increased. The default
pre-processing settings were used to examine infected cells alone.

Differential Expression
Most scRNA-Seq differential expression software only allows
for direct comparisons, such as cluster comparisons. As our
experimental design examined both infected and mock-infected
cells and, due to the loss of the 3 h mock cells following QC
measures, we used edgeR (v.3.24.3) (Robinson et al., 2010), as
it provides better functionality for more complex comparisons
than most single-cell specific tools. Initial comparisons were
between infected and mock infected cells at 6 and 12 h. The

use of edgeR allowed the comparison between 3 h infected
cells (cluster 1) and the remaining cells (cluster 2), taking
into consideration the differences between infected and mock
infected cells from 6 and 12 h. In addition to including the
RUVSeq factors of unwanted variation to the model matrix, the
dispersion trend was estimated using “locfit” and “mixed.df”
flags set to true. Resulting p-values were adjusted using a
false discovery rate (FDR) < 0.05 and separated based on
their respective fold-changes. Significant genes were examined
using enrichR (Chen et al., 2013), with enriched pathways
from Reactome sorted by their combined scores (a calculation
of p-values and z-scores) (Croft et al., 2011).
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