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Introduction

Aging is a set of changes that happen over time in the body. 
It is primarily affected by sexual and reproductive hormones 
and is the most important risk factor for several diseases [1, 2]. 
As the age increases, the ability of women for childbearing de-
creases. The importance of this issue is determined by the fact 

that the age of childbearing has been postponed to the fourth 
decade of life in the modern societies [3, 4]. As a result of 
declined fertility, such women will have more need to assisted 
reproductive techniques (ART) to have children [5]. ART, in 
turn, has high cost and more complications in advanced ma-
ternal age which is undesired [6, 7]. 

Ovarian aging is characterized by declined ovarian reserve 
[8, 9], low oocyte quality [10], diminished anti-Müllerian hor-
mone [11, 12], and finally menopause [3]. Ovaries are more 
susceptible to the complications of natural aging than other 
tissues for some of the known and unclear reasons [13]. Oxi-
dative stress is one of the disturbing mechanisms involving in 
aged ovary. During ovarian aging, decreased antioxidant gene 
expression and increased reactive oxygen species (ROS) re-
sulted in more oxidative damage [14, 15]. Carbonyl stress due 
to dysregulation of energetic metabolism in the aging follicles 
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Abstract: Ovarian aging is related to the reduction of oocyte quality and ovarian follicles reservation leading to infertility. 
Vitamin C is a natural antioxidant which may counteract with adverse effects of aging in the ovary. The aim of this study was to 
evaluate the possible effect of vitamin C on NMRI mice ovarian aging according to the stereological study. In this experimental 
study, 36 adult female mice (25–30 g) were divided into two groups: control and vitamin C. Vitamin C (150 mg/kg/day) were 
administered by oral gavage for 33 weeks. Six animals of each group were sacrificed on week 8, 12, and 33, and right ovary 
samples were extracted for stereology analysis. Our data showed that the total volume of ovary, cortex, medulla and corpus 
luteum were significantly increased in vitamin C group in comparison to the control groups (P≤0.05). In addition, the total 
number of primordial, primary, secondary, and antral follicles as well as granulosa cells were improved in vitamin C group in 
compared to the control groups (P≤0.05). No significant difference was observed in total volume of oocytes in antral follicles 
between control and vitamin C groups. Our data showed that vitamin C could notably compensate undesirable effects of 
ovarian aging in a mouse model.
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is another distressing mechanism [16, 17]. It is reported that 
mitochondrial dysfunction also has a role in ovarian damages 
in aging [6]. Oxidative stress, carbonyl stress, and mitochon-
drial dysfunction are related together and affect each other [6, 
16]. 

Application of free radicals scavengers can protect ovary 
from the damage of oxidative stress [18-20]. Vitamin C (L-
ascorbic acid) is a natural antioxidant scavenging ROS ef-
fectively [21, 22]. In addition, useful effects of vitamin C on 
metabolism, collagen synthesis, vasculogenesis, aging, cell 
proliferation, and differentiation has been reported previously 
[21-24]. Although, so far, several studies have investigated the 
role of vitamin C in combination with other antioxidants on 
female infertility [5, 19, 25], there are scarcely data regard-
ing to the effect of vitamin C alone on ovarian aging. In the 
present study, we aimed to evaluate the effects of vitamin C 
on NMRI mice ovarian aging according to the stereological 
study.

Materials and Methods

Animals and treatments 
In this experimental study, 36 adult female NMRI mice 

weight of 25–30 g were obtained from Iran Pasteur Institute. 
The animals were kept in animal house under standard condi-
tions (22±2°C and 12-hour light/dark) and provided with food 
and water ad libitum. The mice were then divided into two 

groups: control and experimental groups. Vitamin C (L-ascor-
bic acid; Sigma, St. Louis, MO, USA) was prepared by diluting 
in warm water. The experimental groups were given vitamin 
C (150 mg/kg) with a 24-hour interval by oral gavage (3.75 mg 
per animal) for 33 weeks. Control animals were treated with 
water. On weeks 8, 12, and 33, six animals of each group and 
right ovary samples were extracted for stereology analysis.

Tissue preparation 
The ovaries were placed in 10% formalin fixative for 48 

hours. After tissue processing, the samples were placed in 

Fig. 1. Estimating the volume of ovary using the Cavalieri method. The 
point counting method, randomly superimposed probe on the images 
(H&E staining).

Fig. 2. Estimating the number of follicles using the optical dissector 
method. An unbiased counting frame superimposed on the selected 
field was used to sample the nucleoli profiles of the oocytes (H&E 
staining).

Fig. 3. Estimating the mean volumes of oocytes by using the nucleator 
method. For each sampled oocyte, the distance (intercept, ln) in both 
directions from the point to the boundary of the nucleus and the oocyte 
borders is recorded and used for volume estimation (H&E staining).
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paraffin blocks. Following sectioning, hematoxylin and eosin 
staining was performed. 

Stereological study 

Volume of ovary, cortex, medulla, and corpus luteum
The total volume of the ovary, cortex, medulla and corpus 

luteum was estimated using the Cavalieri methods applying 
the following formula [17, 26]: 

Vtotal=∑p×a/p×t
In this formula, Σp is the total number of points superim-

posed on the image, (t) is the thickness of the section and a/p 
is the area associated with each point (Fig. 1). 

Total number of primordial, primary, secondary, antral  
follicles, and granulosa cells
The total number of primordial, primary, secondary, and 

antral follicles were estimated using the optical dissector 
method (Fig. 2) [17, 26]. The numerical density (Nv) of pri-
mordial, primary, secondary, antral follicles and granulosa 

cells were calculated with the following formula:
Nv=(∑Q)/(∑P×h×a/f)×t/BA
In this formula, “ΣQ” is the number of the nuclei, “ΣP” is 

the total number of the unbiased counting frame in all fields, 
“h” is the height of the dissector, “a/f” is the frame area, “t” is 
the real section thickness measured in every field using the 
microcator, and “BA” is the block advance of the microtome 
which was set at 10 μm. The total number of primordial, pri-
mary, secondary, antral follicles and granulosa cells was esti-
mated by multiplying the numerical density (Nv) by the total V.

Ntotal=Nv×V

The volume of oocyte 
Estimating the mean volumes of oocytes by using the un-

biased stereological technique of the nucleator [17, 26]. 
V=4/3π×Ln

3 
Ln is distance from the center of the nucleolus to the oocyte 

membrane (Fig. 3).

Fig. 4. The total volume of ovary, ovary (A), cortex (B), medulla (C), and corpus luteum (D) in the control and vitamin C groups. *Statistically 
significant difference (P≤0.05) between groups. Data are shown as mean±SD.
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Statistical analysis 
The results were analyzed by Kruskal Wallis test, using the 

SPSS software version 19.00 (IBM Corp., Armonk, NY, USA). 
P≤0.05 were considered significant.

Results

Volume of ovary, cortex, medulla and corpus luteum 
Total volume of ovary at 8, 12, and 33 weeks, total volume 

of cortex at 12 and 33 weeks and total volume of medulla and 
corpus luteum at 33 weeks were higher significantly in vita-
min C group compared to control group (P≤0.05) (Fig. 4).

Volume of oocyte and number of granulosa cells
We demonstrated that the mean total volume of oocyte in 

antral follicles reminded unchanged in the control and vitamin 
C groups (Fig. 5A). In addition, the total number of granulosa 
cells increased significantly in vitamin C group as compared 
to control group at 12 and 33 weeks (P≤0.05) (Fig. 5B). 

Total number of follicles 
We found a significantly increased the total number of pri-

mordial, primary, and antral follicles at 12 and 33 weeks, and 
also secondary follicle at 33 week in vitamin C group when 
compared to control group (P≤0.05) (Fig. 6).

Discussion

The scope of the current study was to evaluate the pos-
sible beneficial or adverse effects of vitamin C on NMRI mice 
ovarian aging according to the stereological study. We found 
that vitamin C could significantly prevent the reduction of 
ovarian volume, number of ovarian follicles and granulosa 
cells during a mouse model of ovarian aging, although we did 
not observe any significant difference in total mean oocyte 
volume between groups. According to our knowledge, this 
is the first study evaluating the impact of vitamin C alone on 
ovarian aging based on stereological parameters.

Following ovarian aging, extensive changes occurs at 

Fig. 5. Comparisons of the mean volume of oocyte (A) and the total number of granulosa cells between groups (B). Data are shown as mean±SD. 
(C–H) Photomicrograph of the ovaries stained with H&E (×10). (C, D) Control group and vitamin C group (8 weeks). (E, F) Control group and 
vitamin C group (12 weeks). (G, H) Control group and vitamin C group (33 weeks). 
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the level of molecules and genes. Some of these changes are 
down-regulation of germ line specific genes, oocyte specific 
genes, mitochondrial electron transport genes and intra-
ovarian signaling pathways as well as up-regulation of genes 
related to complement activation and membrane receptors. 
Most of these alterations are specific to ovary and don’t hap-
pen in somatic organs [27, 28]. Free radical imbalance is an 
important part of changes during ovarian aging [29]. Lim and 
Luderer [15] reported decreased expression of mitochondrial 
(Prdx3 and Txn2) as well as cytosolic (sGlrx1 and Gstm2) an-
tioxidants genes in ovary with increased age. The main source 
of free radicals is the oxidative phosphorylation and ATP 
generation during aerobic metabolism in the mitochondria. 
Mitochondrial dysfunction is one of causes of increased ROS 
in aged ovary [16, 30]. Considering antioxidant properties of 
estrogen, its deficiency following menopause is one of other 
causes of oxidative stress in aging [31].

Antioxidant system in ovary is consist of non-enzymatic 
antioxidants (vitamins A, C, and E) [32] and enzymatic anti-
oxidants (for example antioxidant tripeptide glutathione, glu-

tathione peroxidase (GPX), superoxide dismutase (SOD), and 
catalase [33-37]. Based on published studies, ROS scavenging 
efficiency in ovary decreases during aging including reduced 
expression and enzymatic activity of SOD in cumulus oopho-
rous cells [38], decreased enzymatic activity of SOD and GPX 
in postmenopausal women [37] and lower expression of SOD 
and catalase in cultured granulosa cells collected from old 
women subjected to in vitro fertilization [36].

In broad terms it seems that decreased antioxidative ef-
ficiency on the one hand and increased ROS production on 
the other hand during aging caused damages in the ovary 
[29]. Importantly, dysregulation of glucose and energetic me-
tabolism in the aging follicles can produce reactive carbonyl 
species (RCS) and carbonyl stress. RCS, similar to ROS, con-
tribute to DNA, protein and lipids damages causing deleteri-
ous effects in the cells. Carbonyl stress, in turn, strengthens 
oxidative stress and vice versa. These factors along with mi-
tochondrial dysfunction can cause more age related damages 
in the ovary [6, 16]. It is reported that AKT and mammalian 
target of rapamycin (mTOR) signaling pathways are associ-

Fig. 6. Comparisons of the total number of primordial (A), primary (B), secondary (C), and antral follicles (D) in the control and vitamin C 
groups. *Statistically significant difference (P≤0.05) between groups. Data are shown as mean±SD.
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ated with ovarian diseases including ovarian aging [7]. Inter-
estingly, AKT/mTOR signaling is related to oxidative stress 
and interact on each other [39]. The abnormal perifollicular 
vascularity also causes abnormal microenvironment in the 
aged ovary and in turn, may produce oxidative stress [40]. In 
addition, with increasing the age, the rate of inflammation 
in the mouse ovaries increases resulting from the function of 
multinucleated macrophage giant cells and increased expres-
sion of inflammatory genes [26]. 

According to prior published studies, some characteristic 
of aged ovary are lower follicular quality and quantity [41], 
increased level of apoptosis and accumulation of lipofuscin 
pigments in insterstitium [15], fibrosis in the stroma [26], 
increased DNA fragmentation [42], and chromosomal dis-
turbance [43]. Via stereological analysis, we observed that 
the total volume of ovary, cortex, medulla and corpus luteum 
decreased as the age increased (at 8, 12, and 33 weeks) (Fig. 4). 
Moreover, the total number of follicles, the total mean oocyte 
volume and number of granulosa cells in antral follicles has 
declined progressively over time (Figs. 5, 6). 

Vitamin C is a natural important water-soluble micronu-
trient and coenzyme which its deficiency is related to aging of 
different cells and tissues [44]. It can attenuate vascular dys-
function in several diseases in both in vivo and in vitro studies 
[22]. Adding vitamin C to culture medium can improve mes-
enchymal stem cells (MSCs) proliferation and metabolism via 
mitochondrial activation [23]. It is reported that vitamin C 
can impact on glucose metabolism through alteration of glu-
cose metabolites [24]. Additionally, anti-inflammatory prop-
erties of vitamin C on animal models of ischemia and sepsis 
has been reported previously [22]. 

Along with the effects of vitamin C on vascularization, 
metabolism, and inflammation mentioned above, it has also 
antioxidant effects. In this regard, vitamin C can postpone ag-
ing in MSCs via prevention of the ROS production and AKT/
mTOR signaling [21]. Arab et al. [20] found that antioxidant 
effect of ascorbic acid could ameliorate increased oxidative 
stress induced by malathion in the rats ovary. In the other 
study, it has been shown that vitamin c amended Bisphenol 
A oxidative toxicity in rat ovarian tissue. In that study, total 
volume of ovaries and oocytes, and also the mean number of 
antral follicles increased following vitamin C administration 
[18]. 

Supplementation of culture medium with vitamin C 
stimulated the activation and growth of cattle primordial fol-
licles and increased viability of early-stage follicles [45]. Tarin 

et al. [43] reported that early and late onset administration of 
vitamins C and E caused improving oocyte quality and quan-
tity in aged mice. In the other study, it has been reported that 
vitamin C supplementation could improve development and 
viability of preantral follicles after six days of in vitro culture 
[40]. In accordance with that studies, we evaluated effects of 
vitamin C administration on ovarian aging and found that 
vitamin C enhances the survival of the total number of fol-
licles in different stages. It also could prevent the reduction of 
the volume of ovary and corpus luteum as well as the number 
of granulosa cells in antral follicles during aging. It seems that 
beneficial effects of vitamin C on ovarian aging observed in 
the present study might be due to its antioxidant effects as 
well as its impact on vascularization, metabolism, inflamma-
tion, and AKT/mTOR signaling pathway as mentioned be-
fore.

However, there are contradictions about the benefits of 
vitamin C on reproduction. The effects of vitamin C in com-
bination with other supplements has been evaluated on cases 
with female factor infertility such as polycystic ovarian syn-
drome and unexplained infertility but there was insufficient 
evidence to support supplemental oral antioxidants prescrib-
ing in those women [25]. Similar results have been obtained 
in pregnant women. Administration of vitamin C alone or in 
combination with other supplements had no effects on preg-
nancy results although there were controversial results regard-
ing premature rupture of membranes and placental abruption 
[46]. In a study, Camarena and Wang [44] reported that add-
ing ascorbic acid to culture medium of hen granulosa cells did 
not induce antioxidant effects and interestingly the activity of 
SOD in granulosa decreased in higher doses of ascorbic acid. 
They concluded that vitamin C might have regulatory role 
in biochemical and physiological processes in granulosa cells 
[44]. 

Collectively, according to our study, vitamin C compen-
sated undesirable effects of aging on ovarian tissue. Our study 
supports role of vitamin C supplementation for reduce and 
prevention of ovarian aging complications especially in wom-
en delaying childbearing for the several reasons.
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