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Type 2 diabetes is a metabolic disorder characterized by persistently elevated glucose

levels. There is no effective treatment strategy for this condition, and it poses a

massive economic burden globally. Schistosoma soluble egg antigen (SEA)-induced

immunomodulatory mechanisms have been reported in the treatment of autoimmune

disease. This study aimed to determine the ability of Schistosoma japonicum SEA

to protect against type 2 diabetes in Leprdb/db mice and understand the associated

mechanisms. The mice were divided into four groups: C57BL/6 (the normal group),

SEA (C57BL/6 mice treated with SEA), Leprdb/db, and SEA and Leprdb/db co-treatment

groups. The mice in the SEA and co-treatment groups were injected with 50 µg of

SEA (twice a week for 6 weeks), and the same volume of PBS was used as control.

Blood glucose, insulin, and HOMA-IR levels were measured in all mice, which were

sacrificed 6 weeks after the last SEA administration. Flow cytometry was used to detect

the percentages of regulatory T cells in splenocytes. ELISA was used to detect the levels

of IFN-γ, IL-2, IL-4, and IL-5 in cell culture supernatants. Compared with the mice in the

Leprdb/db group, the mice in the SEA + Leprdb/db group exhibited significantly reduced

insulin resistance, as evidenced by the enhancement of wound healing. The frequency

of spleen regulatory T cells increased significantly after SEA administration; meanwhile,

the secretion of IL-4 and IL-5 in spleen cells was elevated. These results indicate that

SEA can reduce insulin resistance and provide new targets for the treatment of type 2

diabetes. The potential mechanisms might be associated with increases in regulatory T

cells and Th2 cytokines in Leprdb/db mice, which warrants further investigation.

Keywords: Schistosoma japonicum soluble egg antigen, type 2 diabetes, regulatory T cells, cytokines, Leprdb/db

mice

INTRODUCTION

Diabetes is a metabolic disorder syndrome caused by the dysfunction of insulin secretion. The
global healthcare expenditure on patients with diabetes was estimated to beUSD 850 billion in 2017.
The International Diabetes Federation reported that “There is one diabetic among every 11 adults
in the world.” The incidence may increase to 693 million in 2045, with more than 90% of cases
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being of type 2 diabetes (T2D) (1). The main pathological
feature of T2D is insulin resistance, which causes persistently
elevated glucose levels. T2D can be treated with diet, exercise, and
medication; however, the effect of these measures is not obvious,
and those affected require long-term or even lifetime insulin use
(2). The pathogenesis of T2D has not been clarified, and there
is no effective preventive or curative measure. Therefore, there
is an urgent need to develop new treatment methods. Beura
et al. (3) noted that environmental factors affect the immune
state of the body. Among Asian Indians, epidemiological studies
have reported an inverse correlation between the incidence of
lymphatic filariasis and T2D, as demonstrated by lower levels
of the pro-inflammatory cytokines IL-6 and GM-CSF (4). It has
also been reported that schistosomiasis is negatively correlated
with the incidence of diabetes. Furthermore, the incidence
of diabetes in a schistosomiasis-infected group (14.9%) was
significantly lower than that in an uninfected group (25.4%) (5).
Previous schistosome infection was also found to be significantly
correlated with a lower prevalence of metabolic syndrome and its
components, including central obesity, hypertriglycea, and low
high-density lipoprotein cholesterol (6). Based on these findings,
some helminths such as Schistosoma might be promising in the
treatment of T2D by immunoregulation.

In recent years, Schistosoma infection and its by-products have
received increased attention in the possible treatment of T2D.
Hussaarts et al. (7) reported that in mice with chronic obesity
induced by a high-fat diet, chronic infection with Schistosoma
mansoni decreased body weight, fat aggregation, and adipocyte
volume and improved adipose tissue sensitivity to insulin in
peripheral tissues. Luo et al. (8) also reported that chronic S.
japonicum infection with praziquantel chemotherapy protected
against metabolic syndrome via a mechanism involving the
enhancement of the Th2-type immune response. Hams et al.
(9) reported that ω-1, derived from recombinant S. mansoni
eggs, improved the metabolic status of obese mice by the
release of the Th2-type cytokine IL-33. S. japonicum soluble egg
antigen (SEA) is an antigen secreted by the eggs, and it can
exude through the eggshell to activate sensitized T cells of the
immune system. In this study, we used Leprdb/db mice to study
the effect and mechanism of S. japonicum SEA on T2D. The
results demonstrated that SEA can reduce insulin resistance in
Leprdb/db mice, which may be correlated with the enhancement
of regulatory T cells (Tregs) and Th2 cytokines.

MATERIALS AND METHODS

Animals and Parasites
Male C57BL/6 mice and Leprdb/db mice (C57BL/6 mice with the
diabetes db mutation in the leptin receptor) (aged 6 weeks) were
obtained from the Model Animal Research Center of Nanjing
University and kept in a specific pathogen-free environment.
Leprdb/db mice are overweight, have severe insulin resistance,
exhibit elevated liver enzyme levels, and serve as a model for
T2D (10). The mice were divided into four groups: C57BL/6 (the
normal group), SEA (C57BL/6 mice treated with SEA), Leprdb/db,
and SEA and Leprdb/db co-treatment groups. The experiment was
performed in triplicate (n= 6 mice per group) and was approved

by the Committee on Animal Research of Wuchang Hospital
(No. 2018-0032). Snails of the Chinese strain of S. japonicum-
infected Oncomelania hupensis were bought from the JiangShu
Institute of Parasitic Diseases (Wuxi, China). Cercariae were
collected from infected snails, and the preparation of SEA was
based on a previous publication (11). Briefly, for SEA, eggs were
obtained from the livers of infected mice that were homogenized
and washed with phosphate-buffered saline on ice. Polymyxin B
agarose beads (Sigma-Aldrich, St. Louis, MO, USA) were used for
sterile filtration and endotoxin removal to <1 EU/mg.

Immunization Schedule and Metabolic
Measurements
The 6-weeks-old mice in the SEA group and co-treatment group
were intraperitoneally injected with 50 µg of SEA (twice a week
for 6 weeks), and the same volume of PBS was used as a control.
Mice were killed 6 weeks after SEA administration, and the blood
glucose and blood fasting insulin concentrations were measured
after a 12–16 h overnight fast. Blood glucose levels weremeasured
using an automatic glucose monitor, and the serum insulin
concentration was measured with a mouse insulin ELISA kit
(Shibayagi Co., Ltd., Shibukawa, Japan). Insulin resistance refers
to a phenomenon wherein the body’s normal response to insulin
is hampered, that is, insulin sensitivity decreased. We detected
insulin resistance by using homeostasis model assessment as an
index for insulin resistance (HOMA-IR), which is a method used
to calculate insulin resistance according to the following formula:
fasting insulin (µU/L)× fasting glucose (nmol/L)/22.5.

Flow Cytometric Analysis of Tregs in
Splenocytes
To measure the percentage of Tregs, a single-cell suspension of
splenic cells was prepared according to a previously described
method (12). The cells were stained with a mouse Treg staining
kit (eBioscience) and analyzed with Cell Quest software. Cell
suspensions were stained by adding 1 µL of FITC-labeled anti-
mouse CD4, 1 µL of PE-labeled anti-CD25 mAb, and 2 µL
of APC-labeled anti-mouse Foxp3 (clone PC61), and APC-
conjugated rat IgG2α served as isotype control. Then sorted
for the three target populations by flow cytometry using a
FACSCalibur system (Becton Dickinson).

Cytokine Measurement
Spleens were removed from mice 6 weeks after the last SEA
administration, and 5 × 106 cells/well were cultured for 72 h
at 37◦C in 5% CO2 in the presence of 5µg/mL SEA. The
supernatants were then collected, and the IFN-γ, IL-2, IL-4,
and IL-5 cytokines were measured with ELISA kits (eBioscience)
according to the manufacturer’s instructions.

Statistical Analysis
All data are expressed as the mean ± SD and were analyzed with
SPSS 17.0. ANOVA was used for comparisons among different
groups. A value of P < 0.05 was considered significant.
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FIGURE 1 | Improvement in insulin sensitivity after SEA administration in Leprdb/db mice. (A) blood glucose; (B) serum insulin; (C) HOMA-IR. The mice were divided

into four groups: C57BL/6 (normal group), SEA (C57BL/6 mice treated with SEA), Leprdb/db, and SEA + Leprdb/db co-treatment groups. The experiment was

performed in triplicate (n = 6 mice per group). *denotes P < 0.05.

RESULTS

Effect of SEA on T2D in Leprdb/db Mice
Among mutant mice, blood glucose (Figure 1A) and serum
insulin (Figure 1B) levels in the Leprdb/db group treated with SEA
were significantly lower than those in untreated Leprdb/db mice.
Accordingly, HOMA-IR indicators also improved (Figure 1C).
These results indicate that SEA improved insulin sensitivity in
Leprdb/db mice.

Blood glucose levels were detected weekly using blood
extracted from the caudal vein. This procedure caused a wound
on the tail of the mice. The tail wounds of Leprdb/db mice healed
slowly, while those of the other three groups healed within a
week. Wound is also an obvious complication of T2D, and the
treatment of such complications is important in the treatment
of T2D. As shown in Figure 2, compared with that in untreated
Leprdb/db mice, wound healing in the SEA-treated Leprdb/db mice
was markedly better, indicating that SEA markedly improved the
complications of T2D such as wound healing.

Effect of SEA on the Frequency of Tregs in
Spleen Cells
As shown in Figures 3, 4, compared with that in C57BL/6 mice,
the frequency of Tregs was significantly lower in the Leprdb/db

group and significantly higher in the SEA and co-treatment
groups (P < 0.05). The frequency of Tregs in the SEA and co-
treatment groups was also significantly higher than that in the
Leprdb/db group mice (P < 0.05).

Cytokine Production by Splenocytes After
SEA Administration
As shown in Figure 5, the levels of the Th1 cytokines IFN-γ and
IL-2 in the Leprdb/db group were significantly higher than those
in the C57BL/6 group (P < 0.05), but there was no significant
difference in the levels of Th2-type cytokines. Moreover, the
levels of the Th2 cytokines IL-4 and IL-5 in the Leprdb/db+ SEA
group were significantly higher than those in the Leprdb/db group
(P < 0.05). However, there was no significant difference in the
levels of Th1-type cytokines.

FIGURE 2 | Tail wounds readily healed after SEA treatment. (A) C57BL/6

group; (B) SEA group; (C) Leprdb/db group; (D) Leprdb/db + SEA group.

DISCUSSION

Although Schistosoma was found to be beneficial to T2D in
this study, it is important to note that Schistosoma spp. can
cause many diseases. Therefore, Schistosoma-based approaches
might not be readily accepted psychologically by the patient (13).
Nevertheless, the development of schistosomiasis derivatives has
opened up possibilities for a new treatment strategy for T2D
(14). Studies on SEA-induced immunomodulatory mechanisms
may contribute to the development of new methods for
the treatment of inflammatory diseases such as inflammatory
bowel disease, non-obese diabetes (NOD), and collagen-induced
arthritis. It has been reported that SEA-treated DC exosomes
attenuate the severity of acute DSS-induced colitis in mice
more effectively than DC exosomes do (15). In NOD mice,
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FIGURE 3 | Representative FACS results of Tregs from one experiment. (A) C57BL/6 group; (B) SEA group; (C) Leprdb/db group; (D) Leprdb/db+ SEA group. Upper

panels, the numbers denote the frequency of CD4+ T cells in splenocytes. Lower panels, the right upper quadrant indicates the frequency of CD25+Foxp3+ T cells

from CD4+ lymphocytes. (E) Upper panel, the numbers denote the frequency of lymphocytes. Lower panel, APC-conjugated rat IgG2α served as isotype control.

FIGURE 4 | Effect of SEA on the frequencies of Tregs within total splenocytes.

All data are presented as the mean ± SD. The experiment was performed

three times (n = 6 mice per group). *denotes P < 0.05.

S. mansoni SEA has been shown to prevent diabetes-induced
changes in APCs and enhance Th2 and Treg responses (16).
SJMHE1, an immunomodulatory peptide of S. japonicum, has
also been reported to suppress the clinical signs of collagen-
induced arthritis in mice and to block joint erosion progression
by decreasing IFN-γ and TNF-α and increasing IL-10, TGF-β,
and Treg levels (17). SEA is an antigen secreted by the eggs of
S. japonicum, and it represents an admixture of many different
proteins, including IPSE/alpha-1 and omega-1 (18). The start
time of SEA administration and the duration of immunization
have obvious effects on the treatment. Zaccone et al. (19) reported
that continuous immunization four times and early use at 4
weeks old can be effective in NOD mice. Based on the literature

(7–9, 19), SEA was administered at a dose of 50 µg twice a week
for 6 weeks in this study. The results of this study demonstrated
that compared with that in Leprdb/db mice, the blood sugar level
in the co-treatment group decreased significantly. Thus, SEA
can lower insulin resistance in Leprdb/db mice, which is a basic
pathological characteristic of T2D. The results of this study also
indicated that compared with those in the Leprdb/db group, the
tail wounds in the Leprdb/db+ SEA group markedly healed. SEA
plays a key role in hepatic fibrosis by inducing TGF-β, which
helps in wound healing (20). Thus, these results indicate that SEA
has certain therapeutic effects on the complications of T2D, such
as insulin resistance and wound healing.

However, we acknowledge an important limitation of this
study regarding the choice of the mouse model, Leprdb/db mice,
which develop congenital diabetes because of a gene deletion. The
blood sugar level in Leprdb/db mice is very high, and after SEA
treatment, blood sugar levels decreased significantly. However,
the levels were still significantly higher than those in the normal
group. Thus, perhaps it was not the best model for this study;
therefore, streptozotocin and high-sugar and high-fat-induced
T2D models can be used for further investigations.

To further study the mechanism of the effects of SEA on
T2D, we used flow cytometry to measure the percentage of
Tregs in splenic lymphocytes. Sakaguchi et al. (21) identified
Tregs for the first time as a subset of CD4+ T cells that express
IL-2Ra (CD25). Because Foxp3 is a specific marker of Tregs,
we used the percentages of CD4+CD25+Foxp3+ T cells to
evaluate Tregs in the spleens of all mouse groups (22). The
result demonstrated that the frequency of Tregs in the Leprdb/db

group was significantly lower than that in C57BL/6 mice but
was higher after SEA administration. Tregs have important
immunosuppressive functions through the cytokines IL-10 and
TGF-β. Gao et al. (23) reported that maintaining a higher level
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FIGURE 5 | The expression levels of the cytokines IFN-γ (A), IL-2 (B), IL-4 (C), and IL-5 (D) were determined by ELISA. Data are presented as the mean ± SD from

triplicate experiments. *denotes P < 0.05.

of IL-10 through gene transfer could be an effective strategy
in preventing diet-induced obesity. Moreover, Tregs expressing
the TGF-β-dependent latency-associated peptide reduce insulin
resistance in leptin-deficient ob/ob mice (24). There is, in
fact, a close relationship among SEA, Tregs, and T2D. In a
previous study, compared with that in infected control groups,
the percentage of Tregs in the group that received multiple
doses of SEA immunization increased significantly 8 and 16
weeks post infection (25). SEA-induced B10 cells promote
Treg amplification and induce IL-4 secretion but inhibit IL-
17 production (26). Tregs are abundant in the lean adipose
tissue of mice, but their number was significantly lower in
the insulin resistance animal model due to decreased CCR1,
CCR2, and CXCR6 expression, which might be responsible
for the Treg-specific accumulation. The difference in Tregs
between lean and obese models indicated that Tregs may have a
therapeutic effect on T2D (27). Interestingly, insulin resistance is
associated with a sharp decrease in Treg cells in several animal
models of obesity such as leptin-deficient mice (Leprob/ob),
mice heterozygous for the yellow spontaneous mutation, and
male mice chronically fed a high-fat diet (HFD) (24). This
study had similar results. In vivo, IL-2/anti-IL-2 complexes can
improve insulin sensitivity in obese mice by promoting the
expansion of Tregs (28). A treatment that specifically increases
Tregs may be useful for the treatment of insulin resistance

(29), and pioglitazone, a drug used to treat T2D, can increase
insulin sensitivity by stimulating PPAR-γ signaling in Tregs,
resulting in an increased frequency of Tregs in adipose tissue
(30). Therefore, in this study, SEA may have reduced insulin
resistance by inducing Tregs. Zaccone et al. (31) reported that
blocking Tregs in splenocytes from SEA-treated donors restored
the ability to transfer diabetes. SEA was shown to inhibit type
1 diabetes in NOD mice by inducing Tregs, which increased
the expression of integrin beta8, TGF-β, and galectins. SEA
was shown to prevent diabetes in NOD mice by upregulating
bioactive TGF-β on T cells with the subsequent proliferation of
Tregs (16).

Leptin, a pro-inflammatory adipokine, can increase and
inhibit the production of circulating Th1-type and Th2-type
cytokines, respectively (32). Th2 helper T cells secrete the
cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. The levels of Th2
in both adipose tissue and peripheral blood were reported to
be negatively correlated with systemic insulin resistance (33).
IL-4 was used to treat diet-induced obese mice and protected
them from weight gain and glucose intolerance by activating the
STAT6 pathway (34). Analyses of the immune response induced
by injecting SEA into mice revealed Th2 responses (35). SEA has
been shown to promote a strong Th2 response in vitro (36) and
in vivo (37). In addition, ω-1 allows the ribosome and messenger
RNA to skew the immune response toward a Th2 distribution
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(38). Lacto-N-fucopentaose III from SEA was also shown to
induce a type 2 immune response (39). In another study,
ELISA results demonstrated that there was a significant increase
in the Th2 immune response, but there were no significant
differences in Th1 immunoreactivity; the host mounted a Th1
response early in infection before shifting to a Th2 response
4 weeks later (40). In this study, we demonstrated that SEA
administration increased the Th2-type immune response but
not the Th1-type immune response. Th1 cytokine is positively
correlated with markers of obesity and glucose tolerance in T2D
patients (41). Therefore, in this study, SEA may have reduced
insulin resistance by inducing Th2 responses or decreasing
the Th1/Th2 ratio. In addition, the mechanism underlying the
effects of SEA on T2D may be related to the innate immune
system. SEA activates M2 macrophages via the STAT6 and PI3K
pathways (42) and infiltration of eosinophils in adipose tissue (9),
which plays an important role in maintaining insulin sensitivity
in SEA.

In conclusion, soluble antigens of S. japonicum eggs can
treat T2D by enhancing Tregs and Th2-type immune responses.
Meanwhile, T2D is associated with many complications
such as diabetic foot disease, and SEA administration
may improve healing (43). SEA can be added to the
treatment strategy for such patients and may have additional
practical benefits.
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