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Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria,

including 19 reported genera until 2021, which are widely found on the surface of flowers

and fruits, or in traditionally fermented products. Many AAB strains have the great abilities

to incompletely oxidize a large variety of carbohydrates, alcohols and related compounds

to the corresponding products mainly including acetic acid, gluconic acid, gulonic

acid, galactonic acid, sorbose, dihydroxyacetone and miglitol via the membrane-binding

dehydrogenases, which is termed as AAB oxidative fermentation (AOF). Up to now, at

least 86 AOF products have been reported in the literatures, but no any monograph

or review of them has been published. In this review, at first, we briefly introduce the

classification progress of AAB due to the rapid changes of AAB classification in recent

years, then systematically describe the enzymes involved in AOF and classify the AOF

products. Finally, we summarize the application of molecular biology technologies in

AOF researches.

Keywords: acetic acid bacteria, classification, membrane-bound dehydrogenase, oxidative fermentation,

molecular biology

INTRODUCTION

Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria within the family
Acetobacteraceae (Saichana et al., 2015), which habitat in a large variety of different sources, such
as flowers or fruits (Trček and Barja, 2015), guts of some insects (Crotti et al., 2016), and various
traditionally fermented foods including vinegar, lambic beer, kefir, kombucha and so on (De Roos
and De Vuyst, 2018). AAB may be named after their abilities to produce acetic acid via ethanol
oxidation (Nanda et al., 2001), but actually some AAB strains are unable to produce acetic acid
from ethanol, such as some strains within AAB genera of Asaia (As.) and Saccharibacter (Sa.;
Moore et al., 2002; Jojima et al., 2004). Meanwhile, some AAB strains can fix nitrogen (Fuentes-
Ramírez et al., 2001), produce pigment (Malimas et al., 2009), or exopolysaccharide (EPS; Gullo
et al., 2017; La China et al., 2018). Very importantly, many AAB strains can incompletely oxidize
various carbohydrates, alcohols and related compounds to yield the corresponding industrial
products such as acetic acid, gluconic acid (GA), galactonic acid, 2-keto-L-gulonic acid (2-KGA),
dihydroxyacetone (DHA), miglitol and so on (Mamlouk and Gullo, 2013), which have been
successfully used in foods, cosmetics, medicines and other fields (Gullo et al., 2014; Saichana et al.,
2015). These partial oxidation processes of AAB are named as AAB oxidative fermentation (AOF).
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In AOF, the membrane-binding dehydrogenases (mDH)
localized on the periplasmic side of the cytoplasmic membrane
of AAB can deprive electrons from the substrates, followed by
transferring them to ubiquinone (UQ, also called as coenzyme
Q), which is then reduced to ubiquinol (UQH2), and eventually,
the terminal oxidases (TO) transfer the electrons from UQH2 to
oxygen to produce UQ, H2O, and the energy (ATP; Adachi et al.,
2003; Matsushita et al., 2016; Zhang and Chen, 2022). Therefore,
besides the common electronic respiratory chain which is located
in the bacterial cell membrane, another special respiratory chain
(hereinafter referred to as AOF respiratory chain) also co-exist
in AAB cells, and make them rapidly get the energy released
fromAOF (Matsushita et al., 1994, 2004; Yakushi andMatsushita,
2010). The AAB strains with oxidative fermentation capacity
are called as oxidative bacteria. It is worth mentioning that the
oxidative fermentation and its corresponding respiratory chain
not only exist in AAB cells, but also in other aerobic bacteria such
as Pseudomonas spp. and Enterobacter spp. (Matsushita et al.,
2016). In Figure 1 the two respiratory chains of alcohol (ethanol)
in AAB are showed.

Since AOF takes place on the periplasmic side of the
cytoplasmic membrane of AAB, its products are directly released
extracellular, and avoid the transport limitation from intracellular
to extracellular, resulting that AAB cells are considered as
very ideal biocatalysts to produce corresponding products

FIGURE 1 | Schematic diagram of two respiratory chains of alcohol in acetic acid bacteria. PQQ-ADH: pyrroloquinoline quinone dependent alcohol dehydrogenase;

PQQ-ALDH: pyrroloquinoline quinone dependent acetaldehyde dehydrogenase; MCD-ALDH: molybdenum-molybdopterin cytosine dinucleotide dependent

acetaldehyde dehydrogenase; NAD-ADH: nicotinamide adenine dinucleotide dependent alcohol dehydrogenase; NAD- ALDH: nicotinamide adenine dinucleotide

dependent acetaldehyde dehydrogenase; NADP-ALDH: nicotinamide adenine dinucleotide phosphate dependent acetaldehyde dehydrogenase; UQ: ubiquinone;

UQH2: ubiquinol; UOX: ubiquinol oxidase; ATP: the energy; TCA: tricarboxylic acid cycle; The green box shows the AOF respiratory chain including PQQ-ADH, PQQ-

ALDH (MCD-ALDH), UQ, UQH2; UOX and ATP synthase; the red box indicates the common respiratory chain including NAD-ADH, NAD-ALDH (NADP-ALDH), UQ,

UQH2; UOX and ATP synthase.

(Matsushita et al., 2016; Sengun, 2017). In this review, we have
collected 86 AOF products which have been published, and
introduced the relative enzymes with AOF. In addition, we
have summarized the advance of the AAB classification and
molecular biotechnology.

AAB CLASSIFICATION ADVANCE

The first AAB genus,Acetobacter (A.) was proposed by Beijerinck
in 1898 (Wang and Chen, 2014). It was not until 37 years
later (1935) that the second AAB genus, Gluconobacter (G.) was
described by Asai (1968) and Yamada and Yukphan (2008). By
the year of 1989, only 3 genera and 10 species of AAB were
generally recognized (Wang and Chen, 2014). Since then the
discovery and identification of AAB genera and species have been
achieving rapid progress thanks to the development of molecular
biology techniques (Wang and Chen, 2014). At the end of 2021,
19 genera and 110 species of AAB have been reported (https://
lpsn.dsmz.de/; Supplementary Table 1).

The early classification and identification of AAB were mainly
based on the phenotypic traits such as colony and microscopic
morphologies, catalase test, Gram staining, chemotaxonomical
characteristics mainly including UQ types (UQ9 or UQ10) and
the profile of fatty methyl esters in AAB cells. For example,
in Yamada and Kondo (1984) divided the genus of Acetobacter
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into two subgenera: Acetobacter subgenus with UQ9 and
Gluconoacetobacter (Ga.) subgenus with UQ10, and Urakami
et al. (1989) combined phenotypic characteristics, UQ types and
the profile of fatty methyl esters to establish a new AAB genus—
Acidomonas (Ac.), which was the third AAB genus recognized at
that time.

In recent decades, with the development of molecular
biology technologies, especially those related to rRNA, the AAB
classification has developed very quickly, leading that some
former AAB species or genera have excluded of the AAB group,
meanwhile some new species and genera of AAB are proposed or
independent from the former AAB (sub) species or (sub)genera.
For instance, based on the phylogenic tree of 16S rRNA gene
sequences, the genus Gluconacetobacter, which once belonged
to the subgenus of Acetobacter, was elevated to the genus
level (Yamada et al., 1997). Later, Yamada and his colleagues
discovered that the 16S rRNA gene phylogenetic tree indicated
two subclusters within the genus Gluconacetobacter, resulting
that a new AAB genus Komagataeibacter (K.) was independent
from the genus Gluconacetobacter (Yamada and Yukphan, 2008;
Yamada et al., 2012a,b), and Ga. kakiaceti, Ga. Medellinesis, and
Ga. maltaceti were re-classified into K. kakiaceti, K. medellinesis,
and K. maltaceti, respectively (Yamada, 2014).

In Table 1, we have summarized the classification changes of
AAB genera and species in recent decades.

However, only adopting the molecular biology methods
related to rRNA may bring an error in AAB classification
and identification. For example, according to the 16S
rRNA phylogenic tree, the AAB genera of Asaia (As.),
Kozakia (Ka.), Swaminathania (Sa.), and Neoasaia (N.)
(Supplementary Table 1) could be categorized as one single
genus, but their phenotypes warranted their distinction on the
different genus level (Kersters et al., 2006). Therefore, internal
transcribed spacer (ITS) of 16S-23S rRNA gene, restriction
fragment length polymorphisms of genomic DNA and DNA-
DNA hybridization (Janda and Abbott, 2007; Trček and Barja,
2015; Yamada, 2016) were also applied in AAB taxonomic
studies. Moreover, the sequences of some genes were applied
to identify AAB. For example, Trcek et al. (2006) used the
nucleotide sequence of gene adhA for AAB identification, while
genes of nifD and nifH were applied to identify nitrogen-fixing
AAB species (Loganathan and Nair, 2004; Dutta and Gachhui,
2006). And multilocus sequence analysis of the three genes
(dnaK, groEL, and rpoB) was performed to differentiate AAB
species (Cleenwerck et al., 2010).

In the future, in order to obtain more objective, precise
and reliable AAB classification, there is no doubt that a
multidimensional method of the morphological classification
combined with multiple molecular biological methods such as
different genes or/ and the complete genome comparison, should
be utilized for the classification and identification of AAB strains
(Wang and Chen, 2014; Yamada, 2016).

AAB OXIDATIVE FERMENTATION

Due to their long existence in sugar-rich environments such as
fruits and flowers, some AAB strains are adaptively evolved their
abilities to rapidly incompletely oxidize sugars, sugar alcohols,

TABLE 1 | The changes of classification status of AAB genera and species in

recent decades.

Current species

names

Once used species names References

Acidomonas (Ac.)

methanolica

A. methanolicus

Urakami et al., 1989

Frateuria aurantia (not

AAB)

A. aurantius

Swings et al., 1980

Ga. diazotrophicus diazotrophicus, G.

diazotrophicus Gillis et al., 1989; Yamada

et al., 1997

Ga. liquefaciens A. liquefaciens, G.liquefaciens

Yamada et al., 1997

G. japonicas G. industrius, G. nephelii

Malimas et al., 2008

G. oxydans G. suboxydans, G. uchimurae,

G. melanogenus Gosselé et al., 1983; Li

et al., 2017

G. sphaericus G. oxydans subsp. sphaericus
Malimas et al., 2008

G. thailandicus G. suboxydans, G. oxydans

Tanasupawat et al., 2004

Ketogulonicigenium

vulgare (not AAB)

G. oxydans

Urbance et al., 2001

K. europaeus A. europaeus, Ga. europaeus
Yamada et al., 2012a

K. hansenii A. hansenii, Ga. hansenii
Yamada et al., 2012a

K. intermedius A.intermedius, Ga. Intermedius

Yamada et al., 2012b

K. kakiaceti Ga. kakiaceti

Yamada, 2014

K. kombuchae Ga. kombuchae, Ga. hansenii
Yamada et al., 2012a

K. maltaceti Ga. Maltaceti

Yamada, 2014

K. medellinensis Ga. xylinus, Ga. medellinensis
Marič et al., 2020

K. nataicola Ga. nataicola

Yamada et al., 2012a

K. oboediens A. oboediens, Ga. oboediens

Yamada, 2000; Yamada

et al., 2012b

K. rhaeticus Ga. Rhaeticus

Yamada et al., 2012b

K. saccharivorans Ga. saccharivorans

Yamada et al., 2012b

K. sucrofermentans A. xylinum subsp.

sucrofermentans, Ga.

sucrofermentans

Yamada et al., 2012a

K. swingsii A. xylinum subsp.

nonacetooxidans, Ga. Swingsii Yamada et al., 2012b

K. xylinus A. xylinus, A. aceti subsp.

xylinum, Ga. xylinus Yamada et al., 1997,

2012a,b

A., Acetobacter; Ac., Acidomonas; G., Gluconobacter; Ga., Gluconoacetobacter;

K., Komagataeibacter.

or/and alcohols by mDH to produce corresponding products
like aldehydes, ketones, acids, and other products, and yield ATP
via the AOF respiratory chain (Figure 1; Matsushita et al., 1994,
2002; Saichana et al., 2015).
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In addition to AOF, AAB can also completely oxidize sugars,
sugar alcohols, alcohols, organic acids, and other substances to
CO2 and H2O through the Embden–Meyerhof–Parnas pathway,
the tricarboxylic acid cycle, the pentose phosphate pathway, the
Entner–Doudoroff pathway, and/or the glyoxylate pathway, and
produce intermediates for cell growth and ATP through the
common respiratory chain (Figure 1). Although both complete
and incomplete oxidation systems simultaneously exist in AAB
cells, usually two systems rarely show similar activities in the
same growth period of AAB strains. In an environment of
a high concentration of sugars, alcohols, and/or acids, AAB
cells mainly carry out AOF in the early growth period and
complete oxidation in the late growth period. Aldehydes,
ketones, or/and acids accumulated via AOF can inhibit the
growth of other microorganisms, subsequently, when substrates
are almost consumed by AOF, AAB can utilize these AOF
products to continue to grow through the complete oxidation,
resulting in AAB cells possessing the good growth and survival
competitiveness. From the view of ecological evolution, AOF
should be considered as a unique characteristic for AAB to adapt
to the growth and survival environments, so it leading the carbon
sources used by AAB is very complex, especially when multiple
carbon sources such as sugars and alcohols are simultaneously
present in the media (Gupta et al., 2001; Deppenmeier et al.,
2002; Adachi et al., 2003; Raspor and Goranovič, 2008; Mamlouk
and Gullo, 2013; Nishikura-Imamura et al., 2014; Saichana et al.,
2015). The strategies of AAB to cope with changes in their growth
and survival environments (culture conditions) by adjusting
AOF were summarized in the reference (Qin et al., 2022).

Since the dehydrogenases (DHs) involved in AOF are located
in the cell membrane, they are called as mDHs, while DHs
in the cytoplasm is called as cytoplasmic DHs (cDHs). When
AAB are exposed to a high concentration of substrate such
as sugars and/or alcohols, the DH activity in AAB cells is
mainly reflected by mDH, whereas cDH is almost inactive,
but with the decrease of concentration of substrates, the cDH
activity gradually increases, while the mDH activity decreases or
hardly functions (Baldrian, 2006; Hölscher and Görisch, 2006).
There are great differences in the coenzymes between mDHs
and cDHs, mDHs ones are quite diverse, mainly including
pyrroloquinoline quinone (PQQ), molybdenum-molybdopterin
cytosine dinucleotide (MCD), flavin adenine dinucleotide (FAD),
nicotinamide adenine dinucleotide (NAD), or/and nicotinamide
adenine dinucleotide phosphate (NADP; Table 2), while cDHs
ones mainly include NAD or/and NADP (Figure 1; Matsushita
et al., 1994). The electrons and protons (H+) from the substrate
are deprived by both mDHs and cDHs, and transferred to
UQ to produce UQH2, which is then oxidized to produce
a proton potential between intracellular and extracellular by
terminal oxidase (TO), thereby driving ATP synthase to yield
ATP (Figure 1).

Based on the coenzyme difference, the AAB mDH can
be divided into five categories: quinoprotein-cytochrome
complex, molybdoprotein-cytochrome complex, flavoprotein–
cytochrome complex, quinoprotein, and others (Table 2).
The mDH’s types and characteristics vary in different genera,
species, or strains of AAB. For example, membrane-binding

alcohol dehydrogenase (mADH) from the genus Gluconobacter
can oxidize ethanol into acetic acid, and can also oxidize
D-glucose, GA, D-sorbitol, and glycerol into the corresponding
products. In contrast, mADH from the genus Acetobacter or
Komagataeibacter can only oxidize ethanol, almost impossible to
oxidize other substrates (Matsushita et al., 2016).

TO is another key enzyme in the AOF respiratory chain, which
can transfer electrons and protons from UQH2 to O2 to generate
H2O2 or H2O. The TOs from AAB and other aerobic bacteria
can be divided into heme-copper oxidase (HCO) and heme bd
type oxidase (HBD-O). Among them, HCO includes cytochrome
c oxidase (COX) which can accept electrons from cytochrome c,
and ubiquinol oxidase (UOX) which can accept electrons from
UQH2, and have binuclear O2-reducing sites consisting of heme
a, o or/and b and one copper atom (Matsutani et al., 2014).
Bacteria with COX are called “oxidase-positive” bacteria, such as
strains from the genera of Paracoccus and Pseudomonas, while
bacteria with UOX are called “oxidase-negative” bacteria, such as
Escherichia coli and AAB strains. In addition, HBD-O of AAB
is also one kind of UOX that can accept electrons from UQH2,
but its oxygen reduction site contains heme b and d, which has
a strong affinity for oxygen and can perform aerobic respiration
under low oxygen conditions. Moreover, HBD-O has no proton
pump function but has a certain proton release capacity that can
produce part of the proton potential. In a word, the TOs of AAB
mainly include UOX and HBD-O (Qin et al., 2022).

Membrane-Binding Dehydrogenase (mDH)
in AOF
mDHs involved in the AOF drive functions are usually present
in the form of heterotrimer or heterodimer. The structures and
functions for some mDHs from AAB cells that have been clearly
studied at present are shown in Figure 2.

Quinoprotein–Cytochrome Complex
The mDH of quinone protein-cytochrome complex clearly
studied at present is mADH [EC.1.1.1.1], which is a constitutive
ethanol ubiquinone oxidoreductase, and can catalyze the
oxidation of ethanol to aldehyde and the reduction of UQ to
UQH2 (Table 2). The mADH isolated from the cell membrane
of Gluconobacter spp. consists of three subunits: the large
subunit (I) containing one PQQ and a heme c binding-
sites, respectively, can oxidize ethanol to acetaldehyde; the
cytochrome c subunit (II) including three heme c binding
sites, can reduce UQ to UQH2; and the small subunit (III)
without any coenzyme binding site may be involved in cell
membrane binding (Adachi et al., 2007; Masud et al., 2010).
However, mADHs from K. europaeus and A. peroxydans
(currently A. pasteurianus) contain only subunits I and II,
no subunit III (Tayama et al., 1989; Trcek et al., 2006).
When the dissociation of subunits I and II, the mADH
enzyme activity of subunit I decrease significantly, but its
enzyme activity is recovered after it re-combinates with
subunit II, indicating that the complex of subunits I and
II is necessary to maintain the mADH activity. The mADH
contains a high-affinity UQ binding site and a catalytic site
for the UQ oxidation-reduction enzyme activity, and UQ
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TABLE 2 | The membrane-binding dehydrogenases in acetic acid bacteria based on their coenzyme differences.

Category Enzyme and code number Substrate Product Subunita Prosthetic group1b Prosthetic

group2b
Electron acceptorc

Quinoprotein-

cytochrome

complex

mADH (EC 1.1.1.1) Ethanol Acetaldehyde I-II-III or I-II PQQ 4 heme c UQ

Molybdoprotein-

cytochrome

complex

mALDH (EC 1.2.1.10) Acetaldehyde Acetic acid II-III or I-II MCD or PQQ [2Fe-2S] and 3

heme c; [2Fe-

2S] and heme

b; or heme b

and c

UQ*

Flavoprotein-

cytochrome

complex

mGADH (EC 1.1.99.3) D-Gluconic acid 2-KGA I-II-III FAD 3 heme c UQ

m2-KGDH (EC 1.1.99.4) 2-KGA 2, 5-DKGA I-II-III FAD 3 heme c UQ*

mFDH (EC 1.1.99.11) D-Fructose 5-KF I-II-III FAD 3 heme c UQ*

mSLDH (EC 1.1.99.21) D-Sorbitol L-Sorbose I-II-III FAD 3 heme c UQ*

Membrane-

binding

quinoprotein

mGDH (EC 1.1.99.17) D-Glucose GAL I-II PQQ —d UQ

mGLDH (EC 1.1.1.6) Polyalcohol Ketone I-II PQQ — UQ

mQDH (EC 1.1.99.25) Quinic acid 3-DQA I-II PQQ — UQ

mIDH (EC 1.1.1.18) Myo-inositol 2-Keto-myoinositol I-II PQQ — UQ*

Other mSDH (EC 1.1.99.12) L-Sorbose L-Sorbone —4 FAD — UQ

mSNDH (EC 1.1.1.-) L-Sorbosone 2-KGLA — NAD or NADP or PQQ — UQ*

a I-II-III: three subunits (large, medium-sized and small) complex; I-II: two subunits (large and medium-sized) complex.
bProsthetic groups 1 and 2 are involved in substrate oxidation and electron transfer.
cUQ is experimentally verified by the experiments, and UQ* means that it has not been experimentally verified.
d“—”: indicates that no such prosthetic group or subunit complex exists.

mADH, membrane-binding alcohol dehydrogenase; mALDH, membrane-binding acetaldehyde dehydrogenase; mGADH, membrane-binding gluconate dehydrogenase; m2-KGDH,

membrane-binding 2-keto-D-gluconate dehydrogenase; mFDH, membrane-binding D-fructose dehydrogenase; mSLDH, membrane-bindingD-sorbitol dehydrogenase; mGDH,

membrane-binding glucose dehydrogenase; mGLDH, membrane-binding glycerol dehydrogenase; mQDH, membrane-binding quinic acid dehydrogenase; mIDH, membrane-binding

inositol dehydrogenase; [2Fe-2S], 2 iron-sulfur clusters; mSDH, membrane-binding sorbose dehydrogenase; mSNDH, membrane-binding sorbone dehydrogenase; 2-KGA, 2-keto-

D-gluconic acid; 2, 5-DKGA, 2, 5-diketo-D-gluconic acid; 5-KF, 5-keto-D-fructose; GAL, gluconic acid-δ-lactone; 3-QDA, 3-dehydroquinic acid; 2-KGLA, 2-keto-L-gulonic acid; PQQ,

pyrroloquinoline quinone; MCD, molybdenum-molybdopterin cytosine dinucleotide; FAD, flavin adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide

adenine dinucleotide phosphate; UQ, ubiquinone.

FIGURE 2 | Schematic of structures and functions of the four main membrane-binding dehydrogenases from acetic acid bacteria. ADH: membrane-binding alcohol

dehydrogenase; ALDH: membrane-binding acetaldehyde dehydrogenase; GADH: membrane-binding gluconate dehydrogenase; GDH: membrane-binding glucose

dehydrogenase; PQQ: pyrroloquinoline quinone; MCD: molybdenum-molybdopterin cytosine dinucleotide; FAD: flavin adenine dinucleotide; c: heme c; Cyt.c:

cytochrome c; UQ: ubiquinone; UQH2: reduced ubiquinone; 2Fe-2S: 2 iron-sulfur clusters; I: large subunits; II: medium-size subunits; III: small subunits; GA: gluconic

acid; 2-KGA: 2-keto-D-gluconic acid; GAL: gluconic acid-ä-lactone.

is involved in electron transfer among heme c, UQ, and
UQH2. In summary, based on the current research results,
the AAB mADH is a heterotrimer (I-II-III) or a dimer

(I-II) membrane-binding quinoprotein-cytochrome complex
and includes prosthetic groups: PQQ and heme c (Table 2 and
Figure 2).
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The substrate specificity of AAB mADH usually is very
poor. Except for methanol, short-chain alcohols such as ethanol,
1-propanol, 1-butanol, 1-pentanol, and 1-hexanol can be utilized
as its substrates (Shinagawa et al., 2006). In addition, mADH
can also produce glyceraldehyde from glycerol, although it only
has a low affinity for glycerol. Especially when the glycerol
concentration is greater than 10% (W/V), its ability to oxidize
glycerol is significantly improved (Habe et al., 2009). Moreover,
aldehydes can be applied as substrates of mADH, too, and their
oxidation rates by mADHs are almost same as those of the
corresponding alcohols (Gómez-Manzo et al., 2008). Therefore,
mADH alone can carry out the entire oxidation process from
ethanol to acetaldehyde to acetic acid without the involvement
of membrane-binding acetaldehyde dehydrogenase (mALDH)
[EC 1.2.1.10] (Gómez-Manzo et al., 2015). In addition, although
mADH cannot oxidize methanol, it can oxidize formaldehyde
so that mADH can be developed as a formaldehyde scavenger
(Shinagawa et al., 2006).

Molybdoprotein–Cytochrome Complex
The well-studied molybdoprotein-cytochrome complex mDH
at present is mALDH, which is an acetaldehyde ubiquinone
oxidoreductase. It is generally considered to be a heterotrimer
(I-II-III) consisting of a large subunit (I) with MCD as one
coenzyme, a medium-size subunit (II) with three heme c as
prosthetic groups, and a small subunit (III) with two iron-sulfur
clusters [2Fe-2S] as prosthetic groups (Table 2 and Figure 2).
However, mALDHs are very different in various AAB strains.
For instance, in term of the subunit composition, mALDHs from
both A. aceti and K. europaeus are heterotrimers (I-II-III), while
the mALDH from A. peroxydans (currently A.pasteurianus) is
a heterodimer (I-II; Gómez-Manzo et al., 2010). In term of the
prosthetic groups, the mALDH ones from K. europaeus include
heme b, [2Fe-2S] cluster andMCD, while the mALDH ones from
Ga. diazotrophicus include PQQ, heme b and c (Thurner et al.,
1997; Gómez-Manzo et al., 2010).

As with mADH, mALDH possesses a poor substrate
specificity, which can oxidize acetaldehyde, 1-propionaldehyde,
1-butyraldehyde, isobutyraldehyde, glutaraldehyde, and other
major short-chain aldehydes except for formaldehyde (Toyama
et al., 2007).

Flavoprotein–Cytochrome Complex
The flavoprotein-cytochrome complex mDH of AAB mainly
includes membrane-binding gluconate dehydrogenase
(mGADH) [EC 1.1.99.3], 2-keto-D-gluconate dehydrogenase
(m2-KGDH) [EC 1.1.99.4], D-fructose dehydrogenase (mFDH)
[EC 1.1.99.11], and D-sorbitol dehydrogenase (mSLDH) [EC
1.1.99.21] (Toyama et al., 2005; Kawai et al., 2013; Kataoka et al.,
2015). These mDHs generally consist of a large subunit (I) with
FAD as a coenzyme, a medium-size subunit (II) containing
three heme c prosthetic groups, and a small subunit (III) with
unknown function (Table 2 and Figure 2; Toyama et al., 2007).

mGADH, m2-KGDH, mFDH, and mSLDH are all UQ
oxidoreductases with high substrate specificity. mGADH is also
called GA 2-DH because it can oxidize the C-2 hydroxyl group
of GA to produce 2-KGA. mGADH can only oxidize GA, and

m2-KGDH can only oxidize 2-KGA to produce 2, 5-DKGA.
mFDH can just oxidize fructose to produce 5-KF, which can
be used as a biometric recognition molecule of the fructose
biosensor. mSLDH can oxidize D-sorbitol to L-sorbose, and also
weakly oxidize D-mannitol, whereas pentitol and erythritol are
not oxidized by mSLDH (Shinagawa et al., 1982, 1984).

Membrane-Binding Quinoprotein
The membrane-binding quinoprotein AAB mDHs mainly
include glucose dehydrogenase (mGDH) [EC 1.1.99.17],
glycerol dehydrogenase (mGLDH) [EC 1.1.1.6], quinic
acid dehydrogenase (mQDH) [EC 1.1.99.25], and inositol
dehydrogenase (mIDH) [EC 1.1.1.18], which are composed of an
N-terminal transmembrane domain and a C-terminal catalytic
domain, including a large subunit (I) and a medium-size subunit
(II). The coenzyme of the large subunit is PQQ, which plays a
catalytic role, while the medium-size subunit does not contain
any coenzyme and is only responsible for binding to the cell
membrane (Table 2 and Figure 2).

mGDH is a D-glucose ubiquinone oxidoreductase, which can
oxidize the C-1 hydroxyl group of D-glucopyranose to gluconic
acid-δ-lactone (GAL; Ameyama et al., 1981), and GAL can be
transformed into GA spontaneously or by one of glucolactonases
on the cell membrane. mGDH has been developed as a glucose
sensor because of its high substrate specificity, which can
oxidize only glucose but not hexose and pentose. mGLDH is
a glycerol ubiquinone oxidoreductase with the poor substrate
specificity, which can oxidize glycerol to dihydroxyacetone,
arabitol, sorbitol, mannitol, erytritol, ribiol, and other polyols to
the corresponding ketones (Sugisawa and Hoshino, 2002), and
GA to 5-KGA (Matsushita et al., 2003). Industrially, mGLDH
from Glucobacter spp. has been used to produce L-sorbate,
DHA, erythrose, and 5-KGA (Shinjoh et al., 2002; Sugisawa and
Hoshino, 2002; Hoshino et al., 2003). mQDH is a quinic acid
ubiquinone oxidoreductase, which can oxidize the C3 hydroxyl
group of quinic acid to 3-dehydroquinic acid (3-DQA), then 3-
DQA is transformed to shikimic acid and protocatechuic acid
successively by mQDH, of which activity is only one fourth of
that of quinic acid (Vangnai et al., 2010). mIDH is an inositol
ubiquinone oxidoreductase, which can oxidize the C2 hydroxyl
group of inositol to 2-keto-inositol (Holscher et al., 2007).

Other Membrane-Binding Dehydrogenases (mDH)
Other types of AAB mDHs include membrane-binding
sorbose dehydrogenase (mSDH) [EC 1.1.99.12] and sorbosone
dehydrogenase (SNDH) [EC 1.1.1.-] (Table 2). mSDH is an
L-sorbose ubiquinone oxidoreductase with FAD as a coenzyme,
which can oxidize the C1 hydroxyl group of sorbose to L-
sorbosone (Sugisawa et al., 1991). mSDH has a high substrate
specificity, which can only oxidize L-sorbose, not other sugars
and alcohols (Pappenberger and Hohmann, 2013). There are
2 classes of SNDH, the first class of SNDH is a L-sorbosone
ubiquinone oxidoreductase with NAD or NADP as a coenzyme,
and can oxidize the C1 hydroxyl group of L-sorbosone to
produce 2-keto-L-gulonic acid (2-KGLA; Pappenberger and
Hohmann, 2013), present in the cytosol (Sugisawa et al., 1991;
Shinjoh and Hoshino, 1995); the other class exists on the
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plasma membrane(mSNDH), are PQQ-dependent enzymes with
L-sorbosone oxidation activity (Yakushi et al., 2020). Recently,
it has been suggested that the substrate of mSNDH is the
hemiacetal of L-sprbitol-1,5-pyranose (an isoform of L-sorbitol),
that oxidized to 2-keto-L-gulone-1,5-pyranose(2-KGLL), and
2-KGLL will spontaneously be hydrolyzed into 2-KGLA under
neutral pH conditions, but the substrate specificity, dynamics
and structure of such mSNDH still need further investigation
(Yakushi et al., 2020).

Terminal Oxidase (TO) in AOF
The TOs involved in the AOF respiratory chain mainly include
UOX and HBD-O. Up to now, the TOs from G. oxydans and A.
aceti have been intensively investigated.

Terminal Oxidases (TOs) in G. oxydans
The TOs in G. oxydans include cytochrome bo3-UOX and HBD-
O (Prust et al., 2005; Miura et al., 2013; Richhardt et al., 2013;
Matsushita et al., 2016). When bo3-UOX is absent, the early
growth of G. oxydans is severely affected, whereas when HBD-
O is absent, the early growth of cells is not affected (Matsushita
et al., 1984). Further studies have indicated that at the early
growth stage of G. oxydans, when the media pH is neutral, bo3-
UOX is the major TO, and with the accumulation of acid and
other products, when the media pH decrease to acid, HBD-O can
replace bo3-UOX as the major TO, and act synergistically with
cDH in the cytoplasm, leading that G. oxydans cells in acidic
conditions continue to utilize organic acids and other products
to grow (Miura et al., 2013; Richhardt et al., 2013).

Terminal Oxidases (TOs) in A. aceti
The TOs in A. aceti includes ba3/bo3-UOX, HBD-O, and two
homologs of HBD-O, cyanide insensitive oxidase (CIO), CIO1,
and CIO2, four TOs in total. Among them, ba3/bo3-UOX,
CIO1 and CIO2 have a low affinity with oxygen, but a high
turnover rate (efficiency), whereas HBD-O has a high affinity
with oxygen, and can perform aerobic respiration under hypoxic
conditions (Cunningham et al., 1997). Compared with HBD-O,
CIO1 and CIO2, ba3/bo3-UOX have the stronger ability to form
transmembrane proton potential and produce ATP, leading that
ba3/bo3-UOX is the major TO in A. aceti (Matsutani et al., 2014).

NATURAL PRODUCTS YIELDED BY AOF

Through various mDHs in AOF, AAB can oxidize various
alcohols, sugars, sugar alcohols, acids and so on to the
corresponding products such as acetic acid, GA, galactonic acid,
2-KGA, DHA, miglitol and so on (Mamlouk and Gullo, 2013),
which have been successfully used in foods, cosmetics, medicines
and other fields (Gullo et al., 2014; Saichana et al., 2015). The
schematic diagram of typical mDHs from AAB strains and
their main AOF products is shown in Figure 3. Up to now, 86
AOF products have been reported, and each AOF product is
given a bold Arabic numeral (Supplementary Table 2). Based
on the numbers in square brackets after each AOF product,
the molecular and structural formula of the corresponding AOF
compound can be found in Supplementary Table 2.

AOF Products From Alcohols
AAB can partly oxidize a great number of primary, secondary
and diol alcohols to yield the corresponding products, which have
been utilized in foods, chemicals, and medicines.

Products From Primary Alcohols
The oxidation of ethanol to acetic acid may be the first-known
AOF process from the AAB genus Acetobacter (Atkinson, 1956).
The ethanol oxidation into acetic acid is a typical AOF process,
which is divided into two steps (Matsushita et al., 1994). Ethanol
is first oxidized to acetaldehyde [1] by PQQ-mADH, then
converted to acetic acid [2] by PQQ-mALDH or MCD-mALDH.
Besides the genus Acetobacter, the strains from Komagataeibacter
spp. have very strong abilities to convert ethanol to acetic acid.
Moreover, both of them have a high tolerance to ethanol and
acetic acid, therefore they are the main species and strains
in the vinegar production in the world (Adachi et al., 1978;
Kanchanarach et al., 2010).

Except for methanol, mADH and mALDH can incompletely
oxidize primary aliphatic normal alcohols with carbon chain
length ≤6 to corresponding aldehydes and/or acids due to their
poor substrate specificities (Adachi et al., 1978; Toyama et al.,
2007), resulting in propionaldehyde [3] to propionic acid [4]

from propanol, and butyric acid [5], pentanoic acid [6], hexanoic
acid [7], isobutyric acid [8], and isovaleraldehyde [9] from
butanol, pentanol, hexanol, isobutanol, and isoamyl alcohol,
respectively (Švitel and Kutnik, 1995; Švitel and Šturdík, 1995;
Molinari et al., 1996; Noyori, 2002).

Moreover, mADH and mALDH can also covert aromatic and
other primary alcohols to the respective aldehydes and/or acids
including phenylacetaldehyde [10], phenylacetic acid [11], 2-
chloropropionic acid [12], (S)-2-phenyl-1-propionic acid [13],
2-methylbutanoic acid [14] and 2-keto-myoinositol [15] from
2-phenyl-ethanol, 2-chloropropanol, race-2-phenyl-1- propanol,
2-methylbutanol and myo-inositol, respectively (Molinari et al.,
1996, 1999; Romano et al., 2002; Gandolfi et al., 2004; Hölscher
and Görisch, 2006; Keliang and Dongzhi, 2006). Wei et al.
(2016) found that racemic 1-(4-methoxyphenyl) ethanol (race-
MOPE) could be oxidized to enantiopure (S)-MOPE [16] and
4-methoxyacetophenone [17] by mADH from Acetobacter sp.
CCTCCM209061.

Products From Secondary Alcohols and Diols
Švitel and Kutnik (1995) found that G. oxydans CCM1783
could oxidize isopropanol and 2-butanol to acetone [18]

and 2-buranone [19], respectively. Some AAB strains can
also stereoselectively oxidize 2-methy-1,3-propanediol to (R)-β-
hydroxyisobutyric acid [20]which is an important chiral building
block in the synthesis of drugs (León et al., 2009).

The diols can be oxidized by some AAB strains, too. For
example, 1,3-butandiol, 2,3- butandiol, (2R,3R)-2,3-butandiol,
N-2-1,4-nonanodiol, 1,2-propanediol, ethanediol (ethylene
glycol), racemical-1,2-butanediol, 1,3-propanediol and (R)-1-
phenyl-1,2-ethanediol are oxidized to 3-hydroxybutyric acid
[21] (Romano et al., 2002), (S)-acetoin [22] (Romano et al., 2002;
Wang et al., 2013; Zhou et al., 2018), diacetyl [23], γ -nonanoic
lactone [24] (Romano et al., 2002), (R)-2-hydroxy-propionic acid
(D-(-)-lactic acid) [25] (Su et al., 2004), glycolic acid [26] (Wei
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FIGURE 3 | Typical membrane-binding dehydrogenases in acetic acid bacteria and their main AOF products. mADH: membrane-binding alcohol dehydrogenase;

mALDH: membrane-binding acetaldehyde dehydrogenase; mGADH: membrane-binding gluconate dehydrogenase; m2-KGDH: membrane-binding

2-keto-D-gluconate dehydrogenase; mFDH: membrane-binding D-fructose dehydrogenase; mSLDH: membrane-binding D-sorbitol dehydrogenase; mGDH:

membrane-binding glucose dehydrogenase; mGLDH: membrane-binding glycerol dehydrogenase; mQDH: membrane-binding quinic acid dehydrogenasw; mIDH:

membranebinding inositol dehydrogenase; mSDH: membrane-binding sorbose dehydrogenase; mSNDH: membrane-binding sorbone dehydrogenase; GA: gluconic

acid; 2-KGA: 2-keto-Dgluconic acid; 2, 5-DKGA: 2, 5-diketo-D-gluconic acid; 5-KF: 5-keto-D-fructose; DHA: dihydroxyacetone; 3-QDA: 3-dehydroquinic acid;

2-KGLA: 2-keto-l-gulonic acid.

et al., 2009), (R)-2-hydroxybutyric acid [27] (Gao et al., 2012),
3-hydroxypropionic acid [28] (Dishisha et al., 2015; Zhu et al.,
2018), and (R)-mandelic acid [29] (Li et al., 2014), respectively.

Products From Sugars and Disaccharides
via AOF
Through AOF, AAB can partially oxidize various sugars and
disaccharides like glucose, fructose, arabinose, ribose, xylose,
sorbose, lactose, isomaltose, gentiobiose, and melibiose to the
corresponding products.

Products From Glucose
During AOF, glucose is first converted into gluconic acid-
δ-lactone [30] (Shinagawa et al., 2009), then changed into
GA [31] spontaneously or by membrane-binding gluconic
acid-δ- lactonase (Shinagawa et al., 2009). GA can further
be oxidized to 2-KGA [32] by GA dehydrogenase, or to 5-
KGA [33] by PQQ dependent glycerol dehydrogenase (PQQ-
GLDH); 2-KGA can be catalyzed to 2,5-DKGA [34] by FAD-
dependent 2-keto-D-gluconic acid dehydrogenase (FAD-GADH;
Matsushita et al., 2003; Shinagawa et al., 2009). 2,5-DKGA
can be transferred to 4-keto-D-arabinose [35], which is further

catalyzed to 4-keto-D-arabonate [36] by 4-keto-D-aldopentose-
1-dehydrogenase (Adachi et al., 2011a). 2,5-DKGA can be
decarboxylated to form D-lyxuronic acid [37], too (Kondô and
Ameyama, 1958).

Glucose oxidative fermentation of AAB is not only closely
related to glucose concentration and reaction pH (Qazi et al.,
1991) but also to the sugars of the culture medium.When glucose
in the medium is depleted, small amounts of 2-KGA and 5-
KGA secreted in the medium can be transported to AAB cells
by transporters and then reduced to GA by 2-KGA reductase
(2-KGAR) or 5-KGA reductase (5-KGAR) in the cytoplasm,
and utilized by AAB through the pentose phosphate pathway
(PPP), allowing AAB to reproduce again and present a secondary
growth curve (Saichana et al., 2015). The kinds of products
obtained from glucose oxidation by AAB are also affected by
pH, for example, when the pH of the culture medium is at
3.4-4.0, AAB oxidized glucose produces only 5-KGA. Therefore,
when producing GA, 2-KGA, and 5-KGA using AAB species, to
prevent them from being further consumed by AAB utilization,
culture conditions with high glucose concentration, low pH and
high O2 must be applied and fermentation terminated before the
appearance of the secondary growth curve (Mamlouk and Gullo,
2013).
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Products From Fructose, Arabinose, Ribose, Xylose,

Sorbose, and Galactose
D-fructose can be oxidized to 5-keto-D-fructose [38] via
mFDH and D-pentonate-4- dehydrogenase (P-4-DH) from
AAB cells (Adachi et al., 2011b; Ano et al., 2017). mFDH
possesses a high substrate specificity, whereas P-4-DH does
not, which can oxidize D-psicose to 5-keto-D-psicose [39]

(Ano et al., 2017), and shows mGLDH activity, too. In
addition, fructose turns to glucosone [40] via a series of
oxidized directly by G. roseus (Takahashi and Asai, 1932; Ikeda,
1955).

AAB strains can also transform D-arabinose to 4-keto-D-
arabinose [35] and 4-keto-D-arabonate [36] (Adachi et al., 2010);
D-ribose to 4-keto-D-ribose [41] and 4-keto-D-ribonate [42]

(Adachi et al., 2011a); xylose to xylonic acid [43] (Buchert et al.,
1988; Hahn et al., 2020), D-xylulose to xylitol [44] (Qi et al.,
2016), sorbose to sorbitol [45] and 2-keto-D-gulonic acid [46]

(Sugisawa et al., 1991; Adachi et al., 1999a), and D-galactose
to D-galactonic acid [47] (Švitel and Šturdik, 1994). Adachi
et al. (2013) also found that AAB cells could use 2-deoxy-
D-ribose as a substrate to produce 2-deoxy-4-keto-D-ribose
[48] and 2-deoxy-4-keto-D-ribonate [49], which are under the
action of membrane-binding D-aldopentose 4-dehydrogenase
and 4-keto-D-1-dehydrogenase, respectively (Adachi et al.,
2013).

Products From Disaccharides
The strain A. orientalis KYG 22 can oxidize lactose to lactose
acid [50] with the aid of D-glucose by mGDH (Kiryu et al.,
2014). mGDH from some strains of Gluconobacter, Ga. hansenii
NBRC 14816 and K. medellinensis NBRC 3288 can also
oxidize isomaltose, gentiobiose and melibiose to isomaltobionic
acid [51], gentiobionic acid, [52], and melibionic acid [53],
respectively (Kiryu et al., 2020).

Products From Sugar Alcohols Through
AOF
The sugar alcohols such as D-sorbitol, glycerol, D-mannitol,
D-arabinol, D-erythritol and D-ribitol are transferred by AOF
into L-sorbose, DHA, L-erythrose, D-xylulose, D-fructose, and
L-ribulose, respectively (Cummins et al., 1957; Sugisawa and
Hoshino, 2002; Prust et al., 2005; Adachi et al., 2007; Mamlouk
and Gullo, 2013).

Products From Sorbitol
Sorbitol may be sequentially oxidized by two mDHs, sorbitol
dehydrogenase and sorbose dehydrogenase from AAB cells, to
L-sorbose [54] and D-fructose [55] (Cummins et al., 1957; Sato
et al., 1967). Then sorbose is changed to 5-keto-D-fructose
[56], which will be converted into three γ -pyrone compounds
including kojic acid [57], 3-oxykojic acid, [58], and 5-oxymaltol
[59] (Sato et al., 1967). In addition, L-sorbosone can enter AAB
cells, then transformed to 2-keto-L-gulonic acid [46], which is
secreted extracellularly as an intermediate of vitamin C synthesis
(Sugisawa and Hoshino, 2002; Matsushita et al., 2003; Adachi
et al., 2007).

Products From Glycerol
The G. frateurii NBRC3262 strain can sequentially convert
glycerol to glyceraldehyde [60] to D-glyceric acid [61] by mADH
(Habe et al., 2009). Some G. oxydans strains can oxidize glycerol
to DHA [62] via mGLDH (Habe et al., 2009; Hu et al.,
2010). DHA is widely used in cosmetics as an active sunscreen
ingredient, as well as utilized in weight loss, antioxidant, vitiligo
treatment, and so on (Levy, 1992). Some Acetobacter strains can
convert racemic glycidol to glycidic acid [63] (Geerlof et al., 1994;
Švitel and Kutnik, 1995).

Products From Other Sugar Alcohols
A. suboxydans strains can make L-fucitol convert to L-duco-4-
ketose [64] (Richtmyer et al., 1950). Meso-erythritol is changed
to L-erythrulose [65] by AAB cells (Richtmyer et al., 1950). D-
arabitol (the 2-epimer of eylitol) was firstly oxidized to D-xylulose
[66] by D-arabitol dehydrogenase (AraDH), then reduced to
xylitol [67] by NAD-dependent xylitol dehydrogenase (Suzuki
et al., 2002; Liu et al., 2019). Xylitol, a natural pentahydroxy
sugar alcohol, has a sweet compound similar to sucrose and
serves as a substitute for natural sweeteners. It also plays a role
in preventing tooth decay (Suzuki et al., 2002). G. suboxydans
can produce D-fructose [55] from D-mannitol (Adachi et al.,
1999b). Ac. oxydans and could oxidize allitol to L-allulose (L-
ribo-hexulose or L-psicose) [68] (Carr et al., 1968; Takeshita
et al., 1996), which is rare and not natural ketohexose. AAB cells
can also oxidize ribitol to L-ribulose [60] by membrane-binding
NAD(P) independent ribitol dehydrogenase (Adachi et al., 2001).
Recently, Xu et al. (2021) reported that polyol galactitol can
be oxidized to two rare sugars, D-tagatose [70] and L-xylo-3-
hexulose [71] by PQQ-dependent L-arabinitol 4-dehydrogenase
(PQQ-LAD) from Acetobacter sp. and Gluconobacter sp. strains.

Products Converted From Organic Acids
Products From Quinate
Whiting and Coggins (1967) firstly reported that quinate oxidase
from Ac. oxydans, quinate-cytochrome 555 oxidoreductase,
could oxidize D-dihydroshikimic acid into 3,4- dihydroxy-
5-oxocyclohexane-1-carboxylic acid [72]. Quinate is oxidized
to 3-dehydroquinate (DQA) [73] by NAD(P) independent
quinate dehydrogenase (QDH, EC 1.1.99.25), then to 3-
dehydroshikimate (DSA) [74] via DQA dehydratase (EC.
4.2.1.10), and DSA can be converted to protocatechuate [75] by
DSA dehydratase (Adachi et al., 2006).

Products From Other Organic Acids
Benziman and Perez (1965) proved that malate was converted to
oxaloacetate [76] by a FAD-protein from A. xylinum (currently
K. xylinus). Dosoretz et al. (1992) reported that the pure cultures
of A. pasteurianus, G. cerinus and G. oxydans could oxidize
calcium magnesium (Ca-Mg) lactate to Ca-Mg acetate (CMA)
[77], which is considered to be a potentially noncorrosive and
biodegradable deicing chemical. In 2015, Sato et al. discovered
that some strains of Acetobacter spp. could partially oxidize L/D-
lactate into pyruvate [78] by lactate dehydrogenase (Sato et al.,
2015).
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Products Converted From Other
Substrates via AOF
Products From Hexosamine
In 1960, Takahashi and Kayamori discovered that A.
melanogenum (currently G. oxydans) could transform
glucosamine into glucosaminic acid [79], which is used as
a commercial chemical in daily life (Takahashi and Kayamori,
1960). In 2004, Moonmangmee et al. found that D-mannosamine
and D-galactosamine were changed into D-mannosaminate
[80] and D-galatosaminate [81] by Gluconobacter sp. IFO 3264,
respectively (Moonmangmee et al., 2004).

Products From Furfural
Zhou et al. (2017) prove that G. oxydans ATCC 621H could
change furfural or furfuryl alcohol into 2-furoic acid [82],
which is the raw material to produce many furoate esters and
its derivatives widely used in the synthesis of pharmaceutical,
agricultural and industrial chemicals (Zhou et al., 2017). Sayed
et al. (2019) found that the resting cells of G. oxydansDSM 50049
were capable of highly selective production of 5-hydroxymethyl-
2- furan-carboxylic acid [83], which is used as a monomer of a
variety of polymers with antibacterial and antitumor activities
(Sayed et al., 2019).

Products From Others
Sugisawa et al. (2005) first found thatG. oxydansDSM4025 could
produce L-ascorbic acid [84] from L-gulono-γ -lactone with L-
gulonate-γ -lactone dehydrogenase. Landis et al. (2002) prove
that the strains of G. oxydans could also selectively region oxidize
the N- butylglucamine into 6-deoxy-6-butylaminosorbose [85]

(Landis et al., 2002). Some AAB strains can yield 6-(2-
hydroxy-ethyl) amino-6-deoxy-α-L-sorbofuranose [86] using N-
2-hydroxyethyl glucamine as substrate, which is an important
precursor of miglitol, a α-glucosidase inhibitor, which was
approved by the Food and Drug Administration of United States
for the treatment of type II diabetes in December 1996 (Keliang
and Dongzhi, 2006).

MOLECULAR BIOLOGICAL METHODS
FOR AOF

In recent decades, a lot ofmolecular biology techniques have been
applied to investigate AOF, especially its mDHs. Hereinafter, we
just make a brief introduction about the application of molecular
biology technologies in AOF, especially the establishment of a
marker-less gene deletion system, for more detailed information,
please read our recent review article (Yang et al., 2022).

Establishment of Marker-Less Gene
Deletion System and Its Application in AOF
To investigate the function of mDH’s genes from AAB, gene
deletion is doubtlessly a direct and powerful tool. In this context,
using a marker-less strategy is preferable to other molecular
biology methods due to the following reasons (Peters et al., 2013):
(1) the number of available markers such as antibiotic-resistant
gene markers is so limited that the construction of the multi-gene

knockout strain is sometimes impossible with marker genes; (2)
as about 50% of genes in prokaryotes are located in the operons,
where genes are co-transcribed into a single polycistronic mRNA
(Osbourn and Field, 2009), the insertion of marker genes into
the operon may exert polar effects and suppress the expression
of downstream genes in the same operon.

Marker-less gene deletion techniques are often carried out in a
two-step procedure using a plasmid vector carrying an antibiotic
resistance selection marker, a counter selection marker, as well
as the fused flanking fragments of the target gene (Gao et al.,
2006). In the first step, the non-replicating plasmid vector is
introduced into the host cell. Subsequently, the clones with the
vector integrated at either the upstream or downstream site of
the target gene by the homologous recombination are screened by
antibiotic resistance and will be used for the second homologous
recombination, in which the clones without the vector will be
obtained through the recombination of the other homologous
flanking region and the counter selection marker. The second
homologous recombination will yield either the wild type strain
or the desired gene deletion mutant with the theoretical ratio of
1:1 (Yang et al., 2022).

Peters et al. (2013) reported such a gene deletion system
for AAB. The system involves a kanamycin resistance gene to
select for AAB cells harboring the vector after its integration
at the target site of the genome, together with gene upp,
encoding uracil phosphoribosyl- transferase for the subsequent
counter-selection to lose the vector from the genome, which
could result in the desired deletion mutant without any marker
sequence. In this case, uracil phosphoribosyltransferase converts
the counter selection agent 5-fluorouracil (FU) to toxic 5-
fluorouridinemonophosphate (F-UMP) to kill the wild type.
However, most AAB species, including G. oxydans, possess the
upp gene in their genomes. Therefore, deletion of the upp gene is
required prior to application of this deletion method.

In order to avoid the deletion of upp before knocking out other
genes, an improved method was established by Kostner et al.
(2013) using the codA gene from Echerichia coli as the counter
selection marker. This gene codes for cytosine deaminase,
converting the nontoxic counters election agent 5-fluorocytosine
(FC) to FU, which is subsequently converted to toxic F-UMP
by uracil phosphoribosyltransferase encoded by gene upp. In
addition, they found that the co-expression of codA with codB,
coding for cytosine permease that facilitate the uptake of FC, can
significantly increase the efficiency of the deletion method. Thus,
codB was introduced to the deletion vector and also became a
part of counter selection marker together with codA in this newly
developed system.

Using the upp marker-based counter selection approach,
Peters et al. (2013) knocked out all mDH-coding genes in G.
oxydans 621H in a sequential manner, creating a series of mutants
lacking one or more mDH (s), includingG. oxydans BP.9 without
all mDH genes and G. oxydans BP.8 only with the gene of
a polyol dehydrogenase. Subsequently, by adopting a whole-
cell 2,6-dichlorophenolindophenol (DCPIP) activity assay, the
substrate specificities of the mDHs were clarified. Mientus et al.
(2017) analyzed the substrate spectra of the mDHs of G. oxydans
by applying a shuttle vector to express each individual enzyme
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in G. oxydans BP.9, and the substrate spectra of every one
of the mDHs were defined by the whole-cell DCPIP assay. In
addition, Peters et al. (2013) used G. oxydans BP.9 to express
genes encoding mDHs from the metagenome of a mother of
vinegar sample including many non-culturable AAB and other
microorganisms. In 2019, Burger et al. appliedG. oxydans BP.8 to
investigate and optimize the production of L-erythrulose (Burger
et al., 2019).

Molecular Biology Studies Regarding AOF
Other Than Marker-Less Deletion
Besides the gene marker-less deletion method, a number of other
molecular biological technologies have also been applied for AOF
research. For example, PQQ-GLDH was once conferred different
names owning to the diversity of its substrates, including D-
gluconate, D-arabitol, and D-sorbitol (Shinagawa et al., 1999;
Adachi et al., 2001; Sugisawa and Hoshino, 2002). It was not
until the gene disruption experiments that people finally realized
that these enzymes are actually the same (Miyazaki et al., 2002;
Shinjoh et al., 2002). Later, the name PQQ-GLDHwas confirmed
by Matsushita et al. (2003).

The molecular techniques are also exploited with the aim of
promoting AOF production. A typical example is the oxidation
of D-glucose, which is the most common substrate forG. oxydans
and can be transferred into a variety of different products, such
as GA, 5-KGA, 2-KGA, and 2, 5-DKGA (Saichana et al., 2015).
Therefore, in terms of GA production, further oxidation of GA
to ketogluconate is unexpected, suggesting that promotion of
GA could be achieved by suppressing the mDHs which can
further oxidize GA (La China et al., 2018). On the other hand,
an increase in the production of GA, 2-KGA, and 5-KGA
could be achieved by over-expression of genes encoding FAD-
dependent D-gluconate dehydrogenase (Shi et al., 2014), PQQ-
GDH and PQQ-GLDH (Merfort et al., 2006), respectively. In
addition, either enhancing the abundance of mRNA transcribed
from PQQ-GLDH-coding genes through adding an A/T tail
(Xu et al., 2014) or over-expression of genes responsible for
PQQ biosynthesis (Wang et al., 2016) can lead to the improved
production of L-sorbose, which could be used as the substrate
for producing 2-keto-L-gulonic acid, a direct precursor of
vitamin C (La China et al., 2018). Furthermore, Gao et al.
(2014) heterologously expressed a different combination of genes
encoding five L-sorbose mDHs and two L-sorbosone mDHs
from Ketogulonicigenium vulgare in G. oxydans WSH-003, and
screened the best recombinant strain G. oxydans/pGUC-k0203-
GS-k0095 with the highest yield, achieving one-step production
of 2-keto-L-gulonic acid from D-sorbitol, which was produced via
a two-step process in the past.

CONCLUSION AND DISCUSSION

AAB is a large group of Gram-negative, strictly aerobic bacteria,
some of which have the great ability to yield a number of products

with commercial or potential commercial values by their unique
oxidative fermentation (AOF). In this review, we first summarize
the AAB classification progress, then systematically describe and
classify AOF products and the relative enzymes. The application
of molecular biology technologies in AOF research is also
briefly introduced.

Although many research works have been carried out and
remarkable progress has been made on AOF, some AOF
products such as acetic acid (vinegar), bacterial cellulose, DHA
and so on (La China et al., 2018), have been industrialized,
there are still a lot of issues about AOF which need to be
further investigated. For example, although we are pleased
to witness the promising progress achieved in the research
on the functions of AAB mDHs, as well as in the AOF
application, 21 ’orphan’ mDHs with unknown substrate spectra
in G. oxydans are still unexplored (Adachi and Yakushi,
2016), and few crystal structures of AAB mDHs have been
published (Qin et al., 2022), which greatly hinders the
understanding of substrate space- and enantio- specificities
of AAB mDHs. Moreover, the relevant modern technologies,
especially modern molecular biotechnology including omics,
systems biology, combinatorial biology, synthetic biology, and
metabolic engineering, should be utilized for constructing
relevant engineering strains for efficient production of the target
AOF products.
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