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Spatial patterns of lower 
respiratory tract infections 
and their association with fine 
particulate matter
Aji Kusumaning Asri1, Wen‑Chi Pan2, Hsiao‑Yun Lee3, Huey‑Jen Su4, Chih‑Da Wu1,5* & 
John D. Spengler6

This study aimed to identify the spatial patterns of lower respiratory tract infections (LRIs) and their 
association with fine particulate matter  (PM2.5). The disability‑adjusted life year (DALY) database was 
used to represent the burden each country experiences as a result of LRIs.  PM2.5 data obtained from 
the Atmosphere Composition Analysis Group was assessed as the source for main exposure. Global 
Moran’s I and Getis‑Ord Gi* were applied to identify the spatial patterns and for hotspots analysis 
of LRIs. A generalized linear mixed model was coupled with a sensitivity test after controlling for 
covariates to estimate the association between LRIs and  PM2.5. Subgroup analyses were performed 
to determine whether LRIs and  PM2.5 are correlated for various ages and geographic regions. A 
significant spatial auto‑correlated pattern was identified for global LRIs with Moran’s Index 0.79, and 
the hotspots of LRIs were clustered in 35 African and 4 Eastern Mediterranean countries. A consistent 
significant positive association between LRIs and  PM2.5 with a coefficient of 0.21 (95% CI 0.06–0.36) 
was identified. Furthermore, subgroup analysis revealed a significant effect of  PM2.5 on LRI for children 
(0–14 years) and the elderly (≥ 70 years), and this effect was confirmed to be significant in all regions 
except for those comprised of Eastern Mediterranean countries.

Lower respiratory tract infections (LRIs), such as pneumonia and bronchiolitis, have been a public health concern 
for decades due to the severity of  illnesses1,2. A global study in 2016 has reported that LRIs are the sixth-leading 
cause of death for all ages and the leading cause of death in children younger than 5 years of  age2. In total, LRI 
resulted in 2,377,697 deaths (95% Uncertainty Interval [UI]: 2,145,584–2,512,809), which includes a high number 
of fatalities in children younger than 5 years old (652,572 deaths, 95% UI: 586,475–720,612) and in elderly people 
who are at least 70 years old (1,080,958 deaths; 95% UI: 943,749–1,170,638). Previous studies have confirmed the 
determinants of LRIs include age, parental and caregiver status, comorbidities (e.g., measles, diarrhea, malaria), 
and environmental  factors3. A report released by the United Nations International Children’s Emergency Fund 
in 2016 indicated nearly 50% of deaths caused by LRIs occur in sub-Saharan  Africa4. In connection with this 
issue, several studies related to LRIs especially for children younger than 5 years old have been  conducted5–7. 
In addition, a 2016 Global Burden of Disease study asserted emphasizing geographic disparities is the key to 
reducing fatal outcomes worldwide of  LRIs8. Therefore, to reduce prevalence of LRIs, more attention should be 
directed to spatial studies rather than concentrating intervention efforts at the individual level.

In order to correctly identify critical areas of LRIs, a more precise analytic method needs to be applied. Spa-
tial statistical analysis within spatial epidemiology has become indispensable in guiding targeted interventions. 
Spatial epidemiology studies reach beyond the purview of general spatial statistics by investigating geographic 
health data with respect to demographic, behavioral, environmental, socioeconomic, and other risk  factors9. 
Previous studies have applied spatial analysis to determine health outcome hotspots and have confirmed that 
these approaches are widely used in epidemiology studies to identify spatial patterns and hotspots of infectious 
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 diseases10–12. In regards to the spatial pattern of LRIs, prior studies conducted in Ethiopia yielded limited research 
findings because of their reliance on traditional spatial  statistics3,13,14. In contrast, one study applied Global 
Moran’s I and SaTScan and discovered the acute respiratory infection spatial pattern among children younger 
than 5 years old in Ethiopia (Moran’s I = 0.34)15. Moreover, LRI clusters were found in the Tigray and Oromia 
 regions15. Across various studies, utilization of spatial statistical approaches, such as dot maps, rate maps, Moran’s 
I, and Getis-Ord Gi*, in studying LRIs and other diseases have provided better performance as compared to 
traditional  methods16–19.

In addition to the relationship between LRIs and spatial factors, previous studies have noted a strong rela-
tionship between LRIs and air pollutants. Beamer applied multivariable regression analyses to investigate the 
effects of air pollution on health and demonstrated LRIs for which wheezing is a symptom were associated with 
increased air pollution and, specifically, the presence of 25 different chemical components (OR 1.18, 95% con-
fidence interval [CI] 1.04–1.35)20. Among the litany of air pollutants, fine particulate matter  (PM2.5) has been 
confirmed to be associated with premature  death21–23. According to the 2010 Global Burden of Disease study, 
 PM2.5 was ranked as one of leading risk factors, contributing to 3.1 million deaths and accounting for 3.1% of 
global disability-adjusted life years (DALYs)24–26. Moreover, it was estimated for 2015 that 4.2 million (95% CI 
3.7–4.8 million) deaths and 103.1 million (90.8–115.1 million) DALYs were associated with  PM2.5

27. Fortunately, 
the negative impacts of air pollutants can be reduced by greenness, leading to a decrease in disease burden and 
 mortality28–32. Although the diametric impacts of air pollutants and greenness on health are known, few stud-
ies have investigated their relationship with LRIs. Accordingly, in addition to spatial determinants, this study 
includes air pollutant levels and greenness in its analysis.

To our knowledge, only a few studies have investigated the relationship between LRIs and  PM2.5 on a global 
scale and even fewer have considered levels of greenness exposure. Therefore, this study aims to utilize sophis-
ticated analyses in order to examine the association on a global scale between LRIs and their determinants. By 
using a country-level database of 183 countries worldwide, this ecological study sought to identify the spatial 
pattern distribution of LRIs in determining the most critical regions and investigate its linkage with  PM2.5 expo-
sure. Global Moran’s I and Getis Ord-Gi* were applied for spatial pattern analysis. A generalized linear mixed 
model coupled with sensitivity tests and subgroup analysis were then estimated to clarify associations with  PM2.5 
in various circumstances. Since previous studies have confirmed that  PM2.5 can increase the burden of LRIs, we 
assumed  PM2.5 would be positive linked to LRIs globally.

Results
Descriptive statistics. Descriptive statistics for country-level variables at the baseline (data in 2000) are 
displayed in Table 1. The mean population density was estimated at 132 people per  km2. Moreover, nearly half 
of the population was male and fell within the age range of 15–49 years. For health behaviors, the annual alcohol 
consumption and smoking prevalence were 4.68 l/population and 22.14%, respectively. Lastly, the average per-
centage of healthcare expenditure was 6.61% of Gross Domestic Product or GDP (SD = 2.74% of GDP). Regard-
ing exposures, the mean  PM2.5 concentration was 17.62 µg/m3 (SD = 14.44 µg/m3), the mean temperature was 
19.29 °C (SD = 8.00 °C), and the average wind speed was 6.37 m/s (SD = 1.48 m/s). At the baseline, the mean 
disability-adjusted life year (DALY) due to LRIs was 41.21 years (SD = 41.99 years) per 1000 population. This 
indicates that among 1000 people, we expect to observe 41.21 years lost to illness or premature death due to LRI. 

Table 1.  Baseline characteristics of variables. a Main exposure. b Exposure for subgroup analysis.

Variable Mean Std. dev Min 25th Median 75th Max

Covariates

Population density (people/km2) 132.78 561.10 0.49 17.16 45.38 89.46 7249.61

Gender (male %) 49.87 2.30 45.96 49.05 49.60 50.20 67.49

Age 0–4 (years, %) 11.46 4.68 4.03 6.97 11.23 15.15 20.99

Age 5–14 (years, %) 21.47 5.89 9.72 15.84 22.74 26.65 31.28

Age 15–49 (years, %) 50.27 4.30 40.37 47.28 49.97 53.15 67.92

Age 50–69 (years, %) 12.40 5.59 5.51 8.06 9.88 16.70 26.67

Age > 70 (years, %) 4.40 3.30 0.60 1.84 2.90 6.71 13.02

Economic—income level (categorical variable) – – – – – – –

Alcohol consumption (liters/population/year) 4.68 4.06 0.00 12.23 3.78 7.57 14.06

Smoking (%) 22.14 16.26 0.00 8.25 22.70 34.35 73.40

Healthcare expenditure (% of GDP) 6.61 2.74 0.00 4.80 6.35 8.39 17.14

Temperature (°C) 19.29 8.00 − 6.21 11.80 22.78 25.71 28.74

Wind speed (m/s) 6.37 1.48 3.09 5.27 6.41 7.41 10.41

Exposures

PM2.5 (µg/m3)a 17.62 14.44 0.46 7.42 14.67 23.14 67.13

NDVI (normalized difference vegetation index)b 0.47 0.20 0.08 0.33 0.51 0.63 0.82

Health outcome

DALY loss due to LRIs (years) 41.21 41.99 1.68 6.68 14.85 63.11 235.03
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The trends of DALY due to LRIs are displayed in Supplementary Fig. S4 and they reflect that Africa had the high-
est burden among all of the regions, though its DALY continually decreased over the study periods.

Spatial pattern and hotspot analysis. Moran’s I was utilized in spatial statistics analyses to determine 
whether or not LRIs are clustered in certain areas. Table 2 lists the results of Moran’s I and reflects the spatial 
autocorrelation of DALY loss due to LRIs during the study periods (i.e., 2000, 2010, 2015, 2016). The positive 
value of Moran’s index means countries have DALY values that are similar to those of the countries surrounding 
them. The results reveal the value of Moran’s I was 0.79 (z-score = 12.70; p < 0.001), which confirms that a clus-
tered pattern was observed. This result is consistent with visual inspections of hotspot analyses.

With regard to hotspot analysis, the location of clustering was determined using Getis-Ord Gi*. The hot spot 
areas were marked red while the cold spot areas were marked blue. As illustrated in Fig. 1, 35 countries in Africa 
and 4 countries in the Eastern Mediterranean were marked as hotspot areas, which suggests these countries 
have the highest burden of LRIs as compared to all of the other countries. In contrast, the cold spot areas are 
dominated by 18 low-DALY countries in Europe. We further examined changes in area, values, and confidence 
intervals of hot spots due to LRIs by years. These results are displayed in Supplementary Fig. S6a–d. In addition, 
we used the row-standardized weights matrix for the global measures given earlier to investigate the statistical 
significance of z-scores (Gi*) assigned to each country, and this revealed the presence and intensity of local 
clusters of hot spots and cold spots. Confidence intervals of 90%, 95%, 99% were reported for each of these in 
Supplementary Fig. S7a–e.

Association model and sensitivity test. Table  3 lists the results of the statistical association models 
measuring the significance of the association between  PM2.5 and LRIs. After adjusting for pertinent covari-
ates (demographics, socioeconomic status, healthcare status, lifestyle behaviors, and meteorological factors), 
the main model yielded a significant positive correlation between exposure to  PM2.5 and LRIs, with a coefficient 
of 0.21 (95% CI 0.06–0.36; p < 0.01) in changes in DALY based on an increase of 1 µg/m3  PM2.5. This result 
indicates  PM2.5 may increase the disease burden of lower respiratory infections globally. The results of five sen-
sitivity tests with different covariate adjustments (Model 1 to Model 5) and an additional test that eliminated 

Table 2.  Global Moran’s I summary of DALY loss due to LRI for each period analyzed.

Year Moran’s Index z-score p-value Spatial distribution

2000—2016 0.792 12.699  < 0.001 Clustered

2000 0.767 12.275  < 0.001 Clustered

2010 0.770 12.392  < 0.001 Clustered

2015 0.748 12.081  < 0.001 Clustered

2016 0.747 12.070  < 0.001 Clustered

Figure 1.  Spatial hot spots and cold spots of DALYs due to LRI.
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Eastern Mediterranean countries (Model 6) again confirm the positive association between  PM2.5 and LRIs. 
Model 1 controlled for demographic factors and yielded a  PM2.5 coefficient of 0.20 (95% CI 0.05–0.36). Model 2 
controlled for demographics and alcohol consumption and its  PM2.5 coefficient was estimated as 0.21 (95% CI 
0.05–0.36). Model 3 controlled for demographics and alcohol consumption as did model 2, however it further 
controlled for smoking, and its  PM2.5 coefficient was 0.21 (95% CI 0.06–0.37). Model 4 built upon model 3 
and included economic status additionally, and its  PM2.5 coefficient was 0.21 (95% CI 0.06–0.36). In model 5, 
healthcare expenditure was included in addition to all of model 4’s covariates, and its  PM2.5 coefficient was 0.20 
(95% CI 0.05–0.35). Lastly, model 6 excluded Eastern Mediterranean countries, which yielded a significant and 
positive  PM2.5 coefficient of 0.42 (95% CI 0.21–0.63).

Subgroup analysis. Figure 2 illustrates the respective association levels between exposure to  PM2.5 and 
LRIs for various subgroups, for instance, by age group, by WHO region, and by WHO regions according to level 
of greenness exposure. Regarding age groups, the results reflect a positive association between  PM2.5 exposure 
and LRIs in children (0–14 years old) and the elderly (≥ 70 years old). Moreover, there was marginal significance 
in mature adulthood (50–69 years old). Among all age groups, children younger than 5 years old had the highest 
positive value for association (coefficient = 0.19; 95% CI 0.05–0.32). When conducting subgroup analysis of the 
six WHO regions, a significant positive association between  PM2.5 and LRI was found for each region except for 
the Eastern Mediterranean. The overall findings strengthen scientific evidence that the adverse effects of  PM2.5 
exposure can increase the burden of LRIs in nearly all regions around the world. It is noted the African region 
had the highest value of  PM2.5 (coefficient = 1.09; 95% CI 0.51–1.66), which is consistent with the results of the 
spatial hotspot analysis (see Fig. 1). Lastly, a subgroup analysis was performed for WHO regions according to 
their level of greenness. The global results revealed that the effect of  PM2.5 was significantly higher in low green-
ness countries (coefficient = 0.60; 95% CI 0.31–0.90), while countries with high NDVI had marginally significant 
results. When analyzing results by regions, significant positive associations between  PM2.5 and LRIs were found 
in low NDVI countries in the African, American, European, and Western Pacific regions, where the coefficients 
were 0.94, 0.44, 0.38, and 0.69, respectively. In contrast, low NDVI countries in Southeast Asia and the Eastern 
Mediterranean did not display any significance.

Discussion
Although the associations between global disease burden and mortality from lower respiratory infections and 
particulate matter have been  studied33–36, few studies have investigated the spatial pattern of LRIs and analyzed 
its association with  PM2.5 and then linked it to greenness exposure levels. In order to provide a complete and 
detailed picture of LRIs, this study applied sophisticated analytic methods to examine the spatial pattern and 
hot spots of LRIs, as well as their association with  PM2.5, then linked them to greenness exposure levels at the 
global scale in analysis. Findings of this study indicate Africa is the region with the highest burden due to LRIs, 
although its burden trend has gradually been declining. Our findings are consistent with prior studies in which 
LRIs were estimated to account for 38.6% of death by infectious disease and 14.9% of overall deaths in African 
 children37. For these reasons, Africa has become a top priority in addressing infectious diseases, especially  LRIs38. 
It should be noted the identification of hotspot areas not only identifies areas with the highest rate of disease but 
also reveals how spatial proximity plays a role in the spread of disease in Africa. In contrast, cold spot areas of 
LRIs were detected in Europe, suggesting this region has the lowest burden resulting from LRIs. This finding is 
reinforced by Nowbar’s finding that cardiovascular diseases are more common in  Europe39.

The global model found a significant positive association between  PM2.5 and LRIs, even after controlling for 
covariates. Consistent significant positive associations were also yielded in the ensuing sensitivity tests, and this 
indicates that a higher level of exposure to country-level  PM2.5 is associated with a higher disease burden due to 
LRIs. Further, in our sensitivity analysis, model 6 indicated a large increase in the estimate of the  PM2.5 coefficient 

Table 3.  Association models for LRI and  PM2.5, controlled for various covariates. a Control variables included 
density of population, sex (% of male), age, smoking, alcohol consumption, economic status, healthcare 
expenditure, temperature, and wind speed. b Adjusted for density of population, sex (% of male), and age. 
c Adjusted for density of population, sex (% of male), age, and alcohol consumption. d Adjusted for density of 
population, sex (% of male), age, alcohol consumption, and smoking. e Adjusted for density of population, sex 
(% of male), age, alcohol consumption, smoking, and economic status. f Adjusted for density of population, sex 
(% of male), age, alcohol consumption, smoking, economic status, and healthcare expenditure. g Considered all 
covariates and eliminated data from Eastern Mediterranean countries.

Model Coefficient of  PM2.5 (95% confidence interval [CI]) p-value

Main  modela 0.207 (0.058–0.356)  < 0.01

Sensitivity test adjusted for covariates

Model  1b 0.204 (0.051–0.357)  < 0.01

Model  2c 0.205 (0.052–0.358)  < 0.01

Model  3d 0.212 (0.059–0.365)  < 0.01

Model  4e 0.211 (0.062–0.362)  < 0.01

Model  5f 0.200 (0.051–0.347)  < 0.01

Model  6g 0.420 (0.212–0.627)  < 0.001
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compared to the other five sensitivity models. In this case, a plausible explanation is that in this model we omitted 
data for Eastern Mediterranean countries that have high  PM2.5 values, where these values could possibly exist as 
outliers. Thus, by removing outliers in the model calculation (model 6), an increase in the coefficient estimation 
and/or correlation significance was possible. In general, our study findings are supported by prior studies; for 
example, Liu’s study demonstrated  PM2.5 exposure can increase the risk of experiencing pneumonia and bron-
chitis, the two most common lower respiratory  infections40. Moreover, a study conducted in the United States 
reported that  PM2.5 has a significant effect on the severity of health outcomes for people experiencing  LRIs41. 
Plausible reasons for this, such as how ambient air pollutants, including  PM2.5, deteriorate respiratory health, 
have been discussed in other  studies42–44.  PM2.5 impairs the defense function of airway epithelial hosts by altering 
respiratory microecology and inducing immune cell  dysfunction45. Further, in Yang et al.’s study, they addressed 
how  PM2.5 can damage the capacity of the immune system, particularly in the respiratory tract, which results in 
humans being more vulnerable to  infection45.

According to the age-stratified analysis, a positive association exists between  PM2.5 and LRIs across many 
age groups. Moreover, statistical significance was present for children (i.e., < 5 years old and 5–14 years old) and 
the elderly (≥ 70 years old). The effects of  PM2.5 in damaging the respiratory system of children, particularly 
those younger than 5 years old, were supported in Egondi’s  study46. He concluded that high levels of exposure to 
outdoor  PM2.5 is linked to a high child mortality rate resulting from respiratory problems, with an incidence rate 
ratio of 1.12 (95% CI)46. Another study, this one conducted in China, revealed a significant association between 
 PM2.5 and hospital visits for acute upper and lower respiratory infections among children younger than fifteen 
years  old47. With a focus on children in low-middle income countries, Lelieveld et al. concluded that ambient 
 PM2.5 accounted for approximately 5% of deaths due to LRIs and accounted for 18% of losses in life  expectancy48. 
Compared to adults, children are much more vulnerable to air pollutants because they inhale a higher air volume 
per body weight than do adults and their immune systems are not yet  mature49. In addition to its impact on 
children,  PM2.5 also had an impact on the elderly, and numerous studies have provided evidence supporting the 
elderly to be a vulnerable  group50–52.

We further investigated the association between  PM2.5 exposure and LRIs in all six WHO regions. A significant 
positive association was found in each region (i.e., Africa, America, Europe, Southeast Asia, and the Western 

Figure 2.  Subgroup analysis, stratified by (A) age, (B) WHO region; and (C) WHO Regions by different levels 
of greenness.
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Pacific) except for the Eastern Mediterranean. A retrospective study conducted in Cameroon concluded that 
dry and dusty weather is a source of  PM2.5 and increases the risk of acute respiratory infections in  Africa53. The 
WHO Regional Office for Africa reported that more than 50% of premature deaths due to pneumonia among 
children younger than 5 years old are caused by the particulate  matter54.  PM2.5 concentrations being associated 
with an increase in the incidence of acute lower respiratory infections has also been confirmed by several obser-
vational studies in Southeast  Asia55,56,  America57,58,  Europe59,60, and the Western  Pacific44,61–63. In a collaborative 
study, Burnett reported global estimates of specific mortality in terms of non-communicable diseases and lower 
respiratory infections were associated with long term exposure to outdoor fine particulate  matter33. In this study, 
the only region that did not demonstrate a significant association between  PM2.5 and burden of LRIs was the 
Eastern Mediterranean region. Khader stated that, although air pollution such as  PM2.5 is recognized to be a 
global health problem, it is difficult to find evidence of its health effects due to the lack of data on air pollution 
in that  region64. There are several reasons, including that the impact of air pollution on health is not perceived 
there to be a priority for health studies, as well as that there are shortcomings in assessing exposure-outcomes in 
that region. Because the Eastern Mediterranean region has different characteristics from the rest of the world not 
only in regard to policies for health data but also in regard to geographical conditions, this affects any exposure 
assessments of the region. Hence, we note this as a limitation to be considered in future studies.

Lastly, when assessing levels of greenness exposure globally, we found a positive relationship between  PM2.5 
and LRIs in countries with low levels of greenness as compared to countries with high levels of greenness. When 
focusing on analysis by region, we found significant positive associations in African, American, European, and 
Western Pacific countries with low levels of greenness exposure. Numerous studies have explained the protec-
tive effects of greenness exposure in decreasing  PM2.5  concentrations65,66 and in reducing general health burdens 
and specific health burdens, such as respiratory  diseases28,67. A cohort study conducted in China researched the 
interaction between residential greenness and mortality related to air  pollution68. The study noted the synergistic 
effect of greenness and concluded that controlling air pollution helps to improve the public’s health and well-
being68. Nonetheless, there were no significant associations in the Southeast Asian or Eastern Mediterranean 
regions regardless of greenness levels. For Southeast Asia, we suspected a significant association would not be 
found because the sample size was too small to conduct a stratification analysis. Faber and Fonesca previously 
described the phenomenon that small sample size can undermine the internal and external validity of a study 
and, thus, reduce statistical  power69.

Several limitations should be noted. First, a country-level database may not be the most prudent area-level 
selection for assessments of the study variables; in the case of disease burden due to LRIs, a database is provided 
for the world at the city, county, and township level, so it may be wiser to consider a more granular level than 
the country-level in future studies. Second, this study lacks data from direct observation; and, for purposes of 
model development, especially for regional analyses, observational data of  PM2.5 from monitoring stations is 
preferred because of its accuracy. Third, since this ecological study used estimates at the country-level, health 
data at the individual level was lacking, and that may have impacted the strength of the evidence. Fourth, several 
confounding variables that affect lower respiratory infections have not been considered, including genetics, race/
ethnicity, HIV status, etc. It is suggested future studies include these aforementioned confounding variables. In 
its spatial pattern and hotspot analyses, this study could only solve territory variation issues in terms of polygon 
size, and it was not able to deal with discontinuity problems for countries that did not have neighboring borders, 
such as Australia, New Zealand, etc. Consideration of an appropriate weight matrix is recommended for future 
studies. Even though some shortcomings have been presented following our findings, this study can serve as 
scientific evidence and a contribution to the knowledge base of critical locations of LRIs and to understand how 
exposure to  PM2.5 can increase health problems in terms of the burden due to LRIs globally. Finally, this study 
offers recommendations for increasing exposure to greenness in an effort to reduce  PM2.5 concentrations, which 
can sustainably alleviate general health burdens and specific health burdens, such as LRIs.

Methods
Lower respiratory infection database. The disability-adjusted life year (DALY) database of 183 coun-
tries was obtained for analysis from the World Health Organization (WHO)70. The estimated value of DALY 
due to LRIs was used to represent the burden of LRIs in each country. DALY is a summary metric of population 
health comprised of two metrics, namely years of life lost due to premature mortality (YLL) and years lived with 
disability (YLD)35. DALY represents an absolute measure of health loss by counting how many years of healthy 
life have been lost due to non-fatal illness, impairment, and death. The data for DALY was collected at three 
different levels (national, regional, and global) in four different years (2000, 2010, 2015, and 2016). Data for 183 
WHO countries (Supplementary Table S1) within six WHO regions (Africa, America, Eastern Mediterranean, 
Europe, Southeast Asia, and Western Pacific) were extracted for this study’s analysis of data at the global level 
(Supplementary Fig. S1). This study targets LRIs because they are a major cause globally of mortality and have a 
relationship with environmental  exposures71,72. The International Classification of Diseases 10th revision codes 
(ICD-10) was used in order to identify LRIs. Pneumonia and Bronchiolitis, serving as the primary  LRIs2, were 
identified via codes J09-J22, P23, and U04. The spatial distribution for each time frame of DALY due to LRIs is 
illustrated in Supplementary Fig. S2.

Fine particulate matter assessment. To estimate country-level  PM2.5, we used satellite image data pro-
vided by the Atmosphere Composition Analysis Group, which was established by Prof. Randall Martin from 
Dalhousie University. This data has a spatial resolution of 1-km, which means that one pixel represents an area 
size on the ground of one-by-one kilometer. To extract the  PM2.5 concentration for each country from this 
image, we applied the function ‘zonal statistics as table’ in ArcGIS and used country boundaries as a feature 
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layer defining the zones. As basic information, this available  PM2.5 data was assessed from satellite images via 
a Geographically Weighted Regression (GWR) adjustment and was processed using a validated method that 
combined the daily total column of aerosol optical depth (AOD) retrievals from the National Aeronautics and 
Space Administration (NASA)—Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imag-
ing Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) with the GEOS-Chem 
chemical transport  model73. The data produced using this method had the advantage that it was available for all 
regions, and, thus, was appropriate for our study at the global level. Furthermore, in line with health outcomes 
being included for each of the four collection periods, information for country-level  PM2.5 was accessed in 2000, 
2010, 2015, and 2016. Supplementary Fig. S3 displays the geographical distribution of  PM2.5 exposure for each 
country during each year of data collection.

Dataset of covariates. Several country-level variables that had been identified as covariates in prior stud-
ies were included in this study to investigate the association globally between  PM2.5 and LRIs. This study included 
demographic factors that have been demonstrated to be related to health outcomes, such as population density, 
age, and  sex74,75, and the data for these were provided by the United Nations. For investigating the effect of sex, 
we set male as the reference  category76. Concerning socioeconomic status (SES), previous studies have indicated 
a strong relationship between SES and prevalence of infectious  diseases5,77, such as LRIs. Data for income levels 
obtained from the World Bank Group were used to represent socioeconomic status. Healthcare utilization is 
another significant factor in health  outcomes78,79. Therefore, total healthcare expenditure as the share of national 
Gross Domestic Product (% of GDP) including the provision of health services (preventive and curative), fam-
ily planning activities, nutrition activities, and emergency aid designated for health which provided by World 
Bank Group was taken into account. Lifestyle behaviors such as smoking and alcohol consumption have been 
demonstrated to increase the burden of  LRIs80–82; accordingly, the prevalence rate of smoking and the average 
amount of alcohol consumption in liters per population, as provided by the World Bank Group, were controlled 
for in the model. Lastly, meteorological factors can trap air pollutants and further facilitate the acquisition and 
negative effects of respiratory  diseases83–86. Therefore, we incorporated temperature data obtained from the Cli-
matic Research Unit of the University of East Anglia-The Climate Change Knowledge Portal. Moreover, the 
global wind atlas (GWA 3.0), developed by Badger and his team, was also included to estimate wind  speed87. It 
is noted that covariates were accessed during the same study periods so as to be comparable to health outcomes 
from the same study periods.

Analysis of spatial pattern and hotspots. Spatial statistical approaches, including spatial pattern and 
cluster mapping, were performed in our study. These methods are important in epidemiological studies to iden-
tify potential locations for the spread of communicable diseases such as lower respiratory  infections15. These 
methods are common in investigating the spatial distribution of environmental  exposures88–90. Using the esti-
mated DALY adjusted for the population, the spatial autocorrelation Global Moran’s I was used to assess the 
spatial pattern, degree of clustering, and randomness of the LRI burden globally. Moran’s I is generally preferred 
over Geary’s C because the values of the former are more intuitive in measuring spatial  autocorrelation91. The 
value of Moran’s index generally varies between − 1 and  192. Positive autocorrelation occurs when similar values 
cluster together and a negative autocorrelation occurs when dissimilar values cluster. A value near zero means 
there is no autocorrelation at all. Moran’s I has been found to provide a high level of performance in spatial sta-
tistical analysis and can be used to complement traditional geostatistical  model11,12. This spatial analysis follows 
Tobler’s (1970) law that “everything is related to everything else, but near things are more related than distant 
things.” This analysis was computed with a row-standardized spatial weights matrix that was based on critical 
distance thresholds. Given the importance of borders in the study of global conflict, the data used was poten-
tially biased due to sampling design and an imposed aggregation  scheme93,94. A fixed distance band was then 
considered because it is a prudent option for data analysis when there is a large888 variation in polygon size. The 
following is a Global Moran’s formula, 

where I is Moran’s index, Zi and Zj are the deviations for country i and j from the mean (Xi–
−

X ) and (Xj–
−

X ); Xi 
and Xj are the numbers of DALY loss due to LRIs for country i and j; and 

−

X is average value of DALY for all 
countries, Wij is the spatial weight between i and j, n is equal to the total number of studied countries, and S0 is 
the aggregate of all the spatial weights.

For the hotspot analysis, Getis-Ord Gi* was applied to identify the statistically significant hot spots and 
cold spots of burden from LRIs for all the countries (183 countries) included from the six regions. The result-
ant z-scores (Gi*) and p-values designate the countries with either a high or low value for LRIs. The statistical 
significance of a z-score assigned to each area identifies the presence and intensity of local clusters of hot spots 
and cold spots of LRIs relative to the hypothesis of spatial randomness. Getis-Ord Gi* functions by looking at 
each feature within the context of neighboring values for the same feature, meaning the number of neighbors 
that have the same value for an indicator affects the clustering of hot spots and cold spots. If high values within 
d of other high values dominate the pattern, then the summation will result in high positive z-score values, and 
vice  versa95; practically, this confirms a neighbor effect. In this study, hot spots were defined as the areas with 
the highest LRIs burden and, spatially, whose neighbors had the same high values. Meanwhile, cold spots were 
the areas with the lowest LRIs burden and, spatially, whose neighbors had the same low values. The Getis-Ord 
Gi* index was calculated using formula,

(1)I =
n
∑n

i=1

∑n
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where Xi and Xj is number of DALY loss due to LRIs for country i and j, Wij is the spatial weight between i and j, 
and n is equal to the total number of areas analyzed. Moran’s I can be expressed in terms of the local Gi* values.

Statistical model and subgroup analysis. Descriptive statistics were presented to summarize the char-
acteristics of the variables examined in this study, and these include data of major exposures and outcomes—
PM2.5 and DALY loss due to LRIs, demographic factors, socioeconomic, healthcare status, behaviors, and mete-
orological factors. A generalized linear mixed model (GLMM) with a penalized quasi-likelihood (PQL) was 
applied in order to generate the study’s model in investigating the association between  PM2.5 and LRIs. In addi-
tion to offering a flexible approach, the GLMM was selected because this algorithm can consider both fixed and 
random effects in its calculation and has been applied in several environmental exposure studies related to health 
 outcomes97–99, as well as has widely been used in air pollution epidemiology  studies100–102. For model structure, 
we set DALY loss due to LRIs as the dependent variable (Y) and  PM2.5 as the main predictor (X1). Several fixed 
effect covariates, such as demographic, socioeconomic, healthcare status, lifestyle behaviors, and meteorological 
factors, were further examined. The unit of the dependent variable (DALY) is “years”, measured as a continuous 
variable, and our GLMMPQL model is based on a linear regression model. Country ID serves as the clustering 
unit and was treated as a random intercept and used to minimize the temporal correlation of outcomes due to 
repeated measurements within a country. In this case, random effect and residual error were assumed to have 
a multivariate normal distribution (Gaussian distribution). To model the yearly temporal variance–covariance 
structure, the continuous-time first-order autoregressive model, denoted AR (1), was used. Furthermore, in 
the case where spatial data were provided from distinct areas, in most popular implementations, a GLMMPQL 
can adjust the overall fixed effects while the structure of correlation remains nested within regions and allows 
for spatial autocorrelation only between observations in the same  region103, correlation between neighbors can 
be included in Bayesian implementations of GLMM models. Therefore, to deal with the spatial autocorrelation 
problem, we also added the term of the ‘continent’ in the GLMMPQL  calculation97. In addition, to ensure there 
was no multicollinearity issue across the adjusted covariates, the generalized variance-inflation factors (GVIFs) 
were then examined. In this study, we obtained GVIFs with a value less than four (< 4) for all  covariates104. As a 
result, we included all of those GVIFs values in the Supplementary Table S2.

To investigate the robustness of our association model, we developed six sensitivity models with different 
covariate settings. In detail, Model 1 only controlled for demographic factors; Model 2 included demographic 
factors (Model 1) and the proportion of alcohol consumption; Model 3 added the prevalence rate of smoking 
to Model 2’s inclusions; Model 4 added economic status for each country, as represented by income-level, to 
Model 3’s considerations; and Model 5 considered healthcare expenditure in addition to Model 4’s criteria. 
Model 6 adjusted for all covariates but excluded data from Eastern Mediterranean countries. We excluded data 
from Eastern Mediterranean countries in the sensitivity model to identify whether  PM2.5 still remains associated 
with the burden of LRIs after eliminating data from countries with the highest  PM2.5 (Supplementary Fig. S5); 
 PM2.5 is highly present in Eastern Mediterranean countries because the area is naturally covered by desert dust 
and has low levels of  vegetation105.

Subgroup analyses were also conducted in this study to determine whether the association between  PM2.5 and 
LRIs exists within various subpopulations. Since prior studies have confirmed cases of LRIs vary by age group 
and, specifically, children younger than 5 years of age experience LRIs at a disproportionately high  rate106,107, 
we conducted stratified tests for five age groups (< 5; 5–14; 15–49; 50–69, and ≥ 70 years). We also performed 
subgroup analyses for the six WHO regions, which include the African, American, European, Eastern Mediter-
ranean, Southeast Asian, and Western Pacific regions. In addition, subgroup analyses were performed across 
regions comparing the relationship between  PM2.5 and LRIs in areas with low and high levels of greenness. The 
greenness effect was considered in this stratified analysis because prior studies have stated that greenness can 
reduce the concentration of air pollutants such as  PM2.5 and can directly-indirectly reduce the health burden 
resulting from lower respiratory infections. For the country-level greenness measurement, we used NDVI data 
from the Terra Moderate Resolution Imaging Spectroradiometer provided by the National Aeronautics and 
Space Administration with spatial resolution 1 × 1  km296. NDVI images with the acquisition date closer to the 
mid-season were selected from January, April, July, and October; the selection of the months of data collection 
was considered for countries with two and/or four seasons. Then, we used the median of NDVI to classify the 
region as having a low or high exposure to greenness. Furthermore, the median values of NDVI globally and 
in the various regions are displayed in Supplementary Table S3. The spatial-statistical analyses were completed 
using ArcGIS 10.7.1 (Esri Inc., 23 Redlands, California, US) and R v. 3.6.3 developed by R Core  Team108. Coef-
ficient estimates were performed with 95% CI and p-values < 0.05 were deemed to be statistically significant.
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