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Chronic lymphocytic leukemia (CLL) is caused by the accumulation of malignant

B cells due to a defect in apoptosis and the presence of small population of

proliferating cells principally in the lymph nodes. The abnormal survival of CLL B cells

is explained by a plethora of supportive stimuli produced by the surrounding cells

of the microenvironment, including follicular dendritic cells (FDCs), and mesenchymal

stromal cells (MSCs). This crosstalk between malignant cells and normal cells can take

place directly by cell-to-cell contact (assisted by adhesion molecules such as VLA-4

or CD100), indirectly by soluble factors (chemokines such as CXCL12, CXCL13, or

CCL2) interacting with their receptors or by the exchange of material (protein, microRNAs

or long non-coding RNAs) via extracellular vesicles. These different communication

methods lead to different activation pathways (including BCR and NFκB pathways),

gene expression modifications (chemokines, antiapoptotic protein increase, prognostic

biomarkers), chemotaxis, homing in lymphoid tissues and survival of leukemic cells. In

addition, these interactions are bidirectional, and CLL cells can manipulate the normal

surrounding stromal cells in different ways to establish a supportive microenvironment.

Here, we review this complex crosstalk between CLL cells and stromal cells, focusing on

the different types of interactions, activated pathways, treatment strategies to disrupt this

bidirectional communication, and the prognostic impact of these induced modifications.

Keywords: chronic lymphocytic leukemia, microenvironment, mesenchymal stromal cells, extracellular vesicles,

prognostic factor

INTRODUCTION

During the last 20 years, the number of reports dealing with the interaction between chronic
lymphocytic leukemia (CLL) and the surrounding cells constituting its microenvironment has
increased exponentially. Focus has been placed on one particular actor in the bone marrow
microenvironment that is also present in several lymphoid tissues: mesenchymal stromal cells
(MSCs). The first evidence that the microenvironment is crucial for leukemic cell survival comes
from CLL cells undergoing rapid apoptosis when cultured alone but are rescued when cultured

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01422
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01422&domain=pdf&date_stamp=2020-08-19
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bstamato@ulb.ac.be
https://doi.org/10.3389/fonc.2020.01422
https://www.frontiersin.org/articles/10.3389/fonc.2020.01422/full
http://loop.frontiersin.org/people/977775/overview
http://loop.frontiersin.org/people/954573/overview
http://loop.frontiersin.org/people/729745/overview
http://loop.frontiersin.org/people/721697/overview


Dubois et al. CLL/Stroma Crosstalk

in direct contact with stroma. In the nineties, Panayitidis et al.
(1) and our group (2) were among the first to highlight that
this dependency plays a critical role in the pathophysiology of
CLL. In addition to direct contact via adhesion molecules, CLL
cells, as well as MSCs, communicate via the secretion of soluble
factors (including chemokines, cytokines, and growth factors)
that influence leukemic cell trafficking and homing within bone
marrow niches. These niches are sanctuaries providing different
survival signals and protect CLL cells from spontaneous and
drug-induced apoptosis. Parallelly, in secondary lymphoid tissues
such as lymph nodes, CLL cells interact with another actor of the
stromal microenvironment: the follicular dendritic cell (FDC).
FDCs are involved in the homing, the survival (3) and the
proliferation (4) of CLL B cells within the germinal centers by
producing several cytokines and chemokines (5, 6), by expressing
several adhesion molecules (7–9) for CLL cells or by direct
cell contact (3, 10). Recently, a new communication method
via the production of extracellular vesicles (EVs) also adds
complexity to these bidirectional CLL/MSC interactions. Using
different interactions, the leukemic clone is able to manipulate
the surrounding cells to recruit or to be recruited, re-educate
and literally transform the surrounding cells into a protective
microenvironment. In the present review, we summarize all
the available data describing the crucial role of the stromal
microenvironment in CLL, different manners of communication,
activated pathways and how they can be targeted and, finally, the
impact of this crosstalk on CLL patient prognosis.

CHRONIC LYMPHOCYTIC LEUKEMIA

Chronic lymphocytic leukemia (CLL) is one of the most common
leukemias in Western countries, accounting for 37% of cases
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with an incidence of 4.9 per 100 000, a male/female ratio of
1.9, a median age at diagnosis of 70 years old and more than
20 000 new cases diagnosed in 2019 in the United States (11).
The disease is caused by the clonal expansion of leukemic B
cells and is characterized by the expression of CD5, CD19, and
CD23 (12), a defect in apoptosis (13, 14), and for the majority
of CLL cells, a resting state (15, 16). However, proliferation
centers have been described (15, 17) and using a deuterium
oxide in vivo labeling method in which patients consumed
deuterated water (2H2O), the lymph node has been identified
as the anatomical site harboring the largest fraction of newly
born cells with a calculated birth rate up to 3.3% of the
clone per day (18). Another characteristic of CLL is its clinical
heterogeneity (19). Some patients have an indolent course and
live decades without any treatment, while others have a more
aggressive disease, need early treatment and have a shortened
survival. This heterogeneity can be predicted by a plethora of
prognostic markers. The mutation status of the immunoglobulin
heavy chain region (IgHV) (20), some cytogenetic abnormalities
based on the Döhner classification [del(17p), del(11q), trisomy
12, del(13q)] (21), the expression of zeta–associated protein 70
(ZAP70) (22), lipoprotein lipase (LPL) (23), CD38 (24), CD49d
(25), CD69 (26), some microRNAs [miR-29c and miR-223 (27),
miR-34a (28), miR-150 (29)], and the presence of pointmutations
(tumor protein 53–TP53) (30).

While the cell origin of the disease is still under debate, the
scientific community agrees that B cell receptor (BCR) pathways
are crucial for the selection, development, proliferation, and
survival of CLL clones (31–33). The BCR is composed of a
surface immunoglobulin (Ig) made of 2 heavy and 2 light chains
that are non-covalently associated with the heterodimer Ig-α/Ig-
β (also known as CD79a/CD79b). External antigens from the
microenvironment (34) as well as intra-BCR self-antigens (35)
trigger BCR signaling, leading to the recruitment of tyrosine
kinases [spleen tyrosine kinases (SYKs) and Lck/Yes novel
tyrosine kinase (LYN)] that phosphorylate the immunoreceptor
tyrosine-based activation motifs (ITAMs) of Ig-α/Ig-β (36). This
induces a cascade of downstream events, including activation
of Bruton’s tyrosine kinase (BTK) (37), phosphoinositide 3-
kinase (PI3K) (38), protein kinase C (PKC) and ras-dependent
extracellular signal-regulated kinase (ERK) (39), that ultimately
lead to the upregulation of nuclear factor kappa B (NFκB) (40).
This signaling cascade promotes CLL B cell survival (41, 42) and
has therefore been considered a very potent therapeutic target
that we will discuss in this review (43, 44).

MESENCHYMAL STROMAL CELLS

Mesenchymal stromal cells (MSCs) are among the first actors in
the CLLmicroenvironment that have been studied, even if, at that
time, they were not called MSCs (1). These cells were discovered
in 1968 by Friedenstein et al., who were the first to report
an adherent fibroblastic-like cell population that was able to
differentiate into osteoblasts, chondrocytes or adipocytes (45). In
1991, these cells were named “mesenchymal stem cells” by Caplan
et al. (46), and from then, the term “MSC” has been popular. The
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first source of MSCs was found in bone marrow, but several other
sources have been described (adipose tissue, Wharton’s jelly of
the umbilical cord, dental pulp, skin, etc.) in numerous organs in
which cell renewal is needed (47). MSCs are generally recovered
by simple plastic adhesion, resulting in a heterogeneous cell
population with different stemness potentials. Therefore, to avoid
any controversies, the term “stem” in “mesenchymal stem cell”
has been replaced by “stromal,” referring to a bulk population
with secretory, immunomodulatory, and differentiation potential
and homing properties (48). MSCs are heterogeneous cells and
cannot be defined by a single marker. Therefore, in 2006, the
International Society for Cellular Therapy (ISCT) proposed a
set of minimal criteria to define human multipotent MSCs
(49): [1] MSCs must adhere to plastic when maintained in
culture; [2] MSCs should express (≥95%) CD105, CD73, and
CD90, as measured by flow cytometry but should not express
(≤2%) hematopoietic markers (CD45, CD34, CD14 or CD11b,
CD79a or CD19, and HLA class II); and [3] finally, MSCs
should be able to differentiate into osteoblasts, adipocytes and
chondroblasts. The number of MSCs in bone marrow aspirate
represents ∼0.01–0.001% of the total population of nucleated
cells; therefore, in the majority of cases, MSCs require ex vivo
expansion to obtain a reasonable number of cells to establish
a feeder layer. Although these ex vivo expanded MSCs could
be different from native MSCs, some studies have already
shown that MSCs obtained from CLL patients present different
properties compared to healthy MSCs. In 1995, our group
observed increased production of transforming growth factor
β1 (TGFβ1) by CLL patient-derived stromal cells compared to
that of healthy stroma (50, 51). Pontikoglou et al. demonstrated
that CLL patient-derived MSCs exhibit a similar phenotype
compared to healthy MSC, as well as a similar differentiation
potential and a CLL apoptosis protection. On the other hand,
they also showed that these cells have defective cellular growth
due to increased apoptotic cell death and exhibit aberrant
production of stromal cell derived factor 1 [SDF1, also named
C-X-C motif chemokine ligand 12 (CXCL12)] or TGFβ1, two
important cytokines that are crucial for the survival of leukemic
cells (52). Janel et al. confirmed this low proliferative capacity
(53). In addition, they also observed increased culture failure,
a polygonal aspect and an increased proportion of senescence-
associated β-galactosidase-positive cells in CLL patient-derived
MSCs compared to those of healthy MSCs (53). These two
ex vivo reports suggest that CLL patient derived MSCs are
probably already dependent on leukemic clones, at least for
their long-term survival, as the leukemic clones are dependent
on MSCs for their own survival. While this phenomenon has
been reported for other malignancies such as multiple myeloma
(54), the dependency of MSCs from CLL cells and their low
proliferation rate have never been directly demonstrated in vivo.
In addition, it should be noted that several reported differences
between CLL-MSCs and age-matched healthy individual MSCs
are known as senescence-associated [reviewed in (55)] and are
therefore not necessarily linked to the disease itself. This is an
important limitation of in vitro studies with MSC: their ex vivo
expansion does not allow the study of “native” MSCs under
physiological situation.

FOLLICULAR DENDRITIC CELLS

Follicular dendritic cells (FDCs) are accessory cells located in
the central region of primary follicles and in the light zone
of normal germinal centers (56). Based on their dendritic
appearance, FDCs were mistakenly considered as a subset of
conventional dendritic cells. However, FDCs are from stromal
origin and emerge from perivascular precursors (57), unlike
conventional dendritic cells which are of hematopoietic origin.
They also have different functions: one of the most important
features of FDCs is their ability to capture antigen–antibody
complexes (called “immune complexes’’—IC) on their cellular
surface through the involvement of complement receptors 1
(CR1 or CD35) and 2 (CR2 or CD21) (58), and present
unprocessed antigen to the B cells. This was observed for the
first time in 1965 using high-resolution electron microscopic
autoradiographs and radioactively labeled microbial antigens
(59). In the following years, several different names such as
dendritic macrophages (60) or dendritic reticular (61) cells were
used for these cells. In 1978, Chen et al. finally introduced the
name FDCs (62) but admitted later that this name was not
ideal. However, even if it was demonstrated that FDCs did not
express class II MHC like conventional dendritic cells, the name
FDCs still remains. Because of their ability to bind IC, FDCs
are indispensable for secondary and tertiary lymphoid organ
development and maintenance. FDCs are normally localized in
secondary lymphoid organs such as the spleen or the lymph node
(10) however, in CLL patients, FDCs have also been observed in
nodular bone marrow infiltrates (63). Because of their cytokine
secretion, the adhesion molecules they carry, their ability to
activate BCR signaling, and their protective effect on the survival
of CLL B cells, FDCs represent another important player of the
stromal microenvironment, particularly in secondary lymphoid
organs. A schematic representation of the different CLL/FDC
interactions is shown in Figure 1 and is discussed below.

DIRECT CONTACT: CLL/STROMA
COCULTURE, HOMING, AND ADHESION
MOLECULES

When CLL B cells are removed from the human body and
plated alone in culture, they rapidly undergo apoptosis (13,
14). Co-culture of CLL B cells with MSCs prevents this cell
death (1, 2). However, efficient protection is achieved when
the two cell types are in contact, since separation with a filter
prevents the protection from apoptosis (2, 66–69). In addition
to protection from spontaneous apoptosis, this effect can be
extended to drug-induced apoptosis (67, 70, 71). Since the
first reports with primary MSCs, apoptosis protection has been
confirmed with different stromal cell lines, such as HS5 (human)
or M210B4 (mouse) (67). During co-culture, CLL B cells migrate
spontaneously to and beneath the feeder layer of MSCs. This
phenomenon is called pseudoemperipolesis to distinguish it
from true emperipolesis, which involves penetration of living
cells by other cells (66, 70, 71). This migration is induced by
chemoattractants produced by MSCs, especially CXCL12, which
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FIGURE 1 | Crosstalk between CLL B-cells and FDCs via direct contact or soluble factors. In secondary lymphoid organs, CLL B cells interact with FDCs via different

molecules, receptor/ligand couples including ICAM1/LFA-1 (8), VCAM1-VLA-4 (8), CD100/Plexin-B1 (9), immune complex/BCR (64), CXCR5/CXCL13 (10),

BCMA/BAFF or TACI/BAFF (65), or by transpresentation of IL-15 from FDCs to germinal center B cells (6). These interactions could lead to a leukemic cell survival via

a CD44-dependent mechanism involving up-regulation of Mcl-1 in CLL B cells (3), the activation NF-κB pathway (65), the migration, or the proliferation of leukemic

cells. Figure created with BioRender.com.

will be discussed in the next chapter. Similarly, in vitro coculture
of CLL B cells with HK cells, a follicular dendritic cell line, rescues
CLL cells from spontaneous and drug induced apoptosis (3).
Interestingly, this protection is at least partially mediated by a
CD44-dependent mechanism involving up-regulation of Mcl-1
in CLL B cells (3).

The binding of CLL B cells to stromal cells requires
simultaneous action of β1 integrin (ITGB1, also known as
CD29) and β2 integrin (ITGB2, also known as CD18) (72, 73).
The activation of these integrins occurs by heterodimerization,
creating a conformational change, increased affinity and
redistribution on the plasma membrane (74). These results were
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consistent with a more recent report that very late antigen-
4 (VLA-4), which is composed of a CD49d and CD29 dimer,
is an important integrin for retention of CLL cells in the
microenvironment by interacting with its ligand vascular cell
adhesion molecule 1 (VCAM-1 or CD106) on stromal cells (75).
In addition, Brachtl et al. demonstrated a prominent role of
CD49d in the homing of CLL cells to bone marrow niches and
in human bone marrow infiltration (76). Interestingly, activation
of VLA-4 and lymphocyte function-associated antigen 1 (LFA-1,
which is composed of CD11a and CD18—also known as αLβ2
integrin) is triggered by CXCL12 produced by MSCs (74, 77),
notably via the Janus kinase 2 (JAK2) pathway (78) but also
by BCR stimulation, reinforcing the adhesive capacities of CLL
B cells (79). While LFA-1 is involved in chemokine-mediated
migration of CLL cells from patients with lymphadenopathies
(80), in cells from the majority of CLL patients, there is a
defect in chemokine-induced inside-out activation of LFA-1 (81).
Interestingly, this defect can be overcome by the engagement of
vascular endothelial growth factor (VEGF) receptor(s) and VLA-
4 by their respective ligands (81). In addition to this activation
defect, Hartmann et al. also showed that CLL cells expressed
significantly reduced LFA-1 due to low β2 integrin transcripts
compared to healthy B cells (77). For some authors, LFA-1 is
not involved in the adhesion of CLL cells to bone marrow
MSCs (73) but is important for their adhesion to FDCs that
express high level of ICAM1 (7). Indeed, FDCs expressed ICAM1
and VCAM1 allowing, the interaction with LFA-1 and VLA-
4, respectively, on CLL B cell surface (8). Granziero et al. also
highlighted the interaction between CD100 (present on CLL
B cell surface) and Plexin-B1 (present on bone marrow MSCs
and FDCs) and showed that it extends CLL B cell viability and
enhances proliferation (9).

Coculture of leukemic cells with MSCs is associated with actin
polymerization (71, 82) and consequent cytoskeletal remodeling
in CLL cells. For other leukemias such as chronic myeloid
leukemia (83, 84) and acute lymphoblastic leukemia (85–87),
tunneling nanotubes have been identified as a novel mode of
intercellular crosstalk. Tunneling nanotubes are long and thin
membranous structures that allow the exchange of material [such
as mitochondria (85), vesicles or proteins (83)] between leukemic
cells and stromal cells. While it has never been described in CLL,
it is not impossible that tunneling nanotubes between CLL cells
and MSCs could be a new way of communication allowing the
transfer of mitochondria or proteins to CLL cells, as reported
for other leukemias. However, we should be cautious when
interpreting these results since the majority of data available
today for CLL/microenvironment interactions represent a two-
dimensional view of an in vitro coculture experiment. Therefore,
new 3D culture systems have been proposed to study leukemia
cells (88–90) and 3D coculture systems for studying specifically
CLL/microenvironment interactions are under investigation, as
presented in recent hematology congresses (91–93).

The contact between CLL B cells and MSCs induces dramatic
gene expression modifications (94, 95), including an increase
in antiapoptotic molecules such as B cell lymphoma 2 (BCL2)
(96, 97), B cell lymphoma-extra large (BCL-XL) (96, 98), myeloid
leukemia cell differentiation protein 1 (MCL1) (67, 71, 98), and

β-catenin (95), as well as soluble factors that will be discussed
below. Caveolin was also suggested to play a role in CLL survival
in coculture: indeed, caveolin is increased in cocultures of CLL
B cells with the NK. Tert stromal cell line (99) and play a
role in CLL development in the Eµ-TCL1 mouse model (100).
Numerous pathways are consequently activated within CLL B
cells, including Toll-like receptor (94) and BCR (29). How
BCR signaling is activated by MSCs is still unclear, but Binder
et al. suggested that a BCR with a common stereotyped heavy
chain complementarity-determining region 3 [from “subset1”
(33)] recognizes vimentin and calreticulin, which are highly
expressed on stromal cells (34). Interestingly, blocking vimentin
by recombinant soluble CLL BCR reduces stromal-mediated
apoptosis protection (34). In secondary lymphoid organ context,
FDCs are able to stimulate BCR and activate normal B cells via
FDC-bound antigen associated with CR1/2 (64). Heinig et al.
identified follicular stromal networks that locally interact with
leukemia cells isolated from Eµ-Tcl1, a CLLmousemodel (10). In
addition, these authors showed that the majority of leukemic cells
in contact with FDCs expressed proliferationmarkers, suggesting
that FDCs could participate to the stimulation and proliferation
of CLL B cells in germinal centers (10).

Other authors highlight the possible epigenetic modifications
induced by stromal cells. Xu et al. observed that CLL B cell
protection in the presence of the murine stromal cell line HESS-5
is associated with hypomethylation of the trimethylation of lysine
27 on histone H3 protein subunit (H3K27me3) (101). Coculture
with different stromal cell lines showed increased oxidative
phosphorylation in CLL, which probably helps to increase their
metabolism, allowing these cells to meet the energy demands for
transcription and translation (102).

Direct contact between CLL B cells and stromal cells also
induces modifications in the stromal cells. Mangolini et al.
showed that in a coculture system, neurogenic locus notch
homolog protein 2 (Notch2) is activated in MSCs and regulates
genes involved in inflammation and extracellular matrix
formation, which are both important components of the CLL
microenvironment (95). In addition, these authors demonstrated
that coculture stabilizes β-catenin in CLL, activating the wingless
integration site (Wnt) pathway. A schematic representation of
the different cell-to-cell contact interactions is shown in Figure 2.

SOLUBLE FACTORS: CYTOKINES,
CHEMOKINES, AND GROWTH FACTORS

Soluble factors play a key role in CLL B cell trafficking and
homing (103). Leukemic cells could travel in the body from the
peripheral blood to the bone marrow, where they receive survival
signals. Numerous cytokines are produced by bone marrow
MSCs, but one of the most studied cytokines is CXCL12, which
interacts with its receptor, C-X-C motif chemokine receptor
4 (CXCR4, also known as CD184), on leukemic cells (66, 69,
75). Möhle et al. showed that CLL B cells overexpress CXCR4
compared to normal B cells, making them more able to respond
to CXCL12 (104). This was confirmed by in vivo studies showing
that higher CXCR4 levels increase the risk for lymphoid organ
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FIGURE 2 | Crosstalk between CLL B-cells and MSCs via direct contact. CLL B-cells interact with MSCs by direct contact by different ways. First via pseudopods

that increase cell surface contact. Second by different receptors and ligands including Jagged1/Notch2 (95), LFA-1/VCAM1 (72, 73), VLA4/VCAM1 (75),

CD100/Plexin B1 (9), BCR/vimentin (34). Interestingly the CXCR4/CXCL12 axis plays a central role by triggering VLA-4 and LFA-1 axis (74, 77). BCR stimulation also

increase VLA-4 (79). All these interactions lead to the proliferation, the migration and/or the survival of leukemic cells by inducing the upregulation of several

anti-apoptotic protein including Bcl-2 (96), Mcl-1 (67, 71, 98), or Bcl-XL (96, 98). Figure created with BioRender.com.

infiltration (105). Interestingly, CXCR4 expression is dynamically
regulated on CLL cell surface. Using CXCR4 and CD5 staining
on deuterium-labeled cells, Callissano et al. indeed showed
that CXCR4dimCD5bright cell fraction is enriched in young,
vital and proliferating cells while CXCR4brightCD5dim fraction is
composed of older, less robust and resting cells (105). Based on
these data, these authors hypothesized lifecycle of CLL B cells:

on a stroma, CLL cells could be stimulated and activated. Then,
they begin to divide, to upregulate CD5 and to downregulate
CXCR4, detaching from the stroma, and are released in the
circulation (CXCR4dimCD5bright phenotype). Over time, cells
begin to re-express CXCR4 (CXCR4brightCD5dim phenotype).
These cells have the greatest chance of detecting and following
a CXCL12 gradient, thereby reentering lymphoid solid tissue
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and receiving prosurvival stimuli. The binding of CXCL12 to
CXCR4 induces actin polymerization, cytoskeletal remodeling,
transendothelial migration and tissue homing of leukemic cells
(66). In addition to its chemoattractant effects, CXCL12 has
also been shown to be a survival factor (71, 106). Following
CXCL12 binding, CXCR4 is downregulated on the CLL B
cell surface by endocytosis, making the cells less responsive
to CXCL12 and allowing their recirculation in the peripheral
blood (66). Interestingly, Saint-Georges et al. showed that BCR
stimulation also downregulated CXCR4 via protein kinase D
(PKD) phosphorylation (107). Consistent with these reports,
Ghobrial et al. showed that CXCR4 expression is decreased in
bone marrow or lymph nodes (108). This downregulation of
CXCR4 (coupled to the high expression of CD5) is therefore
used to identify cells that recently emigrated from tissue into
the blood circulation (105). CXCR4 activation triggers numerous
intracellular pathways, including the PI3K (82), signal transducer
and activator of transcription 3 (STAT3) (66), and p44/42
mitogen-activated protein kinase (MAPK) (106) pathways,
leading to BTK (109), ERK (110), and AKT serine/threonine
kinase 1 (AKT) (111) activation as well as calcium released (66).
Interestingly, BTK is rapidly activated by CXCL12 in leukemic
cells, indicating once more that the CXCL12/CXCR4 axis is
interconnected with the BCR pathway (109). Similar to the
CXCR4/CXCL12 axis, the CXCR5/CXCL13 axis also plays a role
in CLL homing and trafficking, since CXCR5 is overexpressed on
the CLL B cell surface and CXCL13 is secreted by stromal cells in
B cell areas of secondary lymphoid tissues (112): FDCs produce
CXCL13 which directs B lymphocytes to the “light zone” of the
germinal center (5). Using the Eµ-Tcl1 mouse model of CLL,
Heinig et al. demonstrated that CXCR5 depletion reduces Eµ-
Tcl1 leukemogenesis, CLL proliferation and that this chemokine
is indispensable for the recruitment of CLL cells into the germinal
center since CXCR5-defective cells localized in the marginal zone
of the B-cell follicle (10). In addition, these authors observed
that lymphotoxin α and β produced by CLL B cells stimulated
FDCs to produce CXCL13, suggesting that CLL/FDC reciprocal
interactions leads to stromal compartment remodeling (10).

The levels of several cytokines produced by leukemic cells
are dysregulated compared to those of healthy donors (113),
but the basal level can also be influenced by coculture with
MSCs, as demonstrated by Trimarco et al., who found that
coculture induced an increase in the production of interleukin
8 (IL-8), (C-C motif) chemokine ligand 4 (CCL4), CCL11, and
CXCL10 in the supernatant (114). However, based on mRNA
expression, Plander et al. showed that the increases in IL-6 and
IL-8 were due to MSCs (115). Other authors suggested that
the major IL-6 source in a coculture system is the leukemic
compartment (116). In addition, MSCs in coculture produce IL-
1β, while CLL B cells produce tumor necrosis factor α (TNFα),
suggesting that coculture creates an inflammatory environment
(115). Interestingly, IL-8 induces prolonged survival of CLL
B cells in vitro in an autocrine manner (117). The increase
in CXCL10 was specific to CLL/MSC coculture and was not
observed with normal B cells, suggesting a potential role in CLL
pathophysiology (114). Moreover, CXCR3, the CXCL10 receptor,
is expressed on the CLL B cell surface and mediates chemotaxis

(118). CCL4 and CCL3 have also been reported to be increased in
CLL B cells after coculture with nurse-like cells (NLCs) or after
BCR stimulation (42). It is believed that CCL4 and CCL3 attract
(C-C motif) chemokine receptor (CCR5)-positive regulatory T
cells (119) or monocytes/macrophages in vivo in conditions that
could confer survival signals to CLL B cells (42, 120–122). Using
CLL coculture with the human stromal cell line HS-5, Schulz et al.
similarly observed an increase in CCL2 secretion by stromal cells
that was involved in the recruitment of macrophages (94). Other
cytokines that can rescue primary CLL cells from apoptosis, such
as IL-1α and IL-15, are also produced by MSCs after CLL contact
by inducing PKC-β in stromal cells (123). IL-15 is also produced
by human FDCs in vivo and by an FDC cell line in vitro (6), and
has a paracrine and autocrine effect. Indeed, IL-15 is captured
by IL-15Rα on the surface of FDC/HK cells and this membrane-
bound form could, by transpresentation from FDCs to germinal
center B cells via cell-cell contact, trigger IL-15 signaling in B
cells (6) but also enhance human primary FDCs proliferation
and regulate their cytokine secretion (4). In line with these
observations in normal B cells, the addition of IL-15 in CLL/FDC
coculture enhances CLL proliferation (10).

In secondary lymphoid organs, similarly to NLCs, FDCs
produce the B cell-activating factor of tumor necrosis factor
family (BAFF), an essential factor for B cell homeostasis (124,
125) but also for the survival of CLL cells (126). Endo et al.
demonstrated that BAFF supports CLL B cell survival through the
activation of the canonical NF-κB pathway after binding to the B-
cell maturation antigen (BCMA) or the transmembrane activator
and calciummodulator and cyclophilin ligand-interactor (TACI),
two BAFF receptors (65).

Growth factors also sustain CLL B cell survival in a coculture
model. Gehrke et al. observed that VEGF produced by HS-
5 stromal cells but not CLL B cells is essential for their
coculture-mediated survival (127). Our group also suggested that
compared to healthy MSCs, the increased secretion of TGFβ1
by CLL-derived MSCs play a crucial pathogenic role in CLL
(50). In addition, Kay et al. observed an increase in VEGF,
thrombospondin-1 (TSP-1) and basic fibroblast growth factor
(bFGF) in the supernatant of a coculture system of primary
CLL B cells and CLL patient-derived MSCs (69). These authors
suggested that this increased secretion was due to MSCs (69).
In 2009, Ding et al. observed activation of the AKT pathway in
MSCs in coculture with leukemic cells, supporting the existence
of bidirectional interactions (68). One year later, the same authors
demonstrated that the platelet-derived growth factor (PDGF)
produced by CLL B cells is responsible for this activation and
induces VEGF production inMSCs in a PI3K-dependent manner
(128). A schematic representation of the different interactions
between CLL B cells and MSCs via the production of soluble
factors is shown in Figure 3.

EXTRACELLULAR VESICLES: A NEW WAY
OF CROSSTALK

In recent years, a new method of intercellular communication
via the exchange of extracellular vesicles (EVs) has been
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FIGURE 3 | Crosstalk between CLL B-cells and MSCs via soluble factors. CLL B-cells interact with MSCs by several soluble factors including cytokines (115, 117),

chemokines (42, 114), and growth factors (69, 127, 128). MSCs can produce CXCL10, CXCL13, CXCL12 that binds to their respective receptor on CLL B-cells

CXCR3 (118), CXCR5 (112), CXCR4 (66, 69, 75). The triggering of CXCR4/CXCL12 axis lead to the activation of several pathways including PI3K (82), MAPK (106), or

STAT3 (66) leading to the survival and the migration of the leukemic cells. Interestingly, BCR stimulation induces the downregulation of CXCR4 (107), the activation of

BTK (109), and the increased secretion of some cytokines. MSCs in coculture also produce IL-1β while CLL B-cells produce TNFα suggesting that coculture creates

an inflammatory context (115). Figure created with BioRender.com.

described. Observed 50 years ago as “platelet dust” (129),
EVs were long considered cellular debris, but today, they are
known to play important roles in several pathophysiological
processes, including immune responses, tissue regeneration,
blood coagulation (130), and crosstalk between normal/cancer

cells (131). EVs can be divided into 2 different groups based
on their origin: exosomes and microvesicles (also known
as ectosomes). Exosomes are released from multivesicular
bodies (late endosomes) at the plasma membrane and
generally have a size ranging from 30 to 150 nm, while
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microvesicles result directly from plasma membrane budding
and pinching and have a size between 100 nm and 1µm
(132, 133). EVs can shuttle and transfer their content
from one cell to another. Several reports have described
that EVs carry DNA fragments, different species of RNA
(mRNA, Y RNA, and microRNA), proteins, peptides or
lipids (134–137).

To date, few reports have described the role of EVs in
CLL B cells and MSC communication. Crompot et al.
were the first to highlight the impact of bone marrow
MSC EVs on CLL B cells in vitro (138). These authors
showed that MSC-derived EVs are rapidly incorporated
in CLL B cells and that they increase CLL cell migration,
suggesting that these EVs could give CLL cells survival
advantages in vivo. In addition, MSC-derived EVs protect
leukemic cells from spontaneous and drug-induced
apoptosis, as well as induce gene expression modifications.
Overlap of gene signatures induced by EVs with other
microenvironmental stimuli [such as BCR stimulation (139)
or NLC coculture (42)] suggested that a substantial part
of cell-to-cell communication is mediated by EVs. Finally,
several (but not all) effects of MSC-derived EVs mimic BCR
stimulation, which has been described as crucial in CLL B cell
survival (139, 140).

On the other hand, CLL B cells also release EVs that can
modulate their microenvironment. Paggetti et al. demonstrated
that exosomes can be taken up by stromal cells and transfer
microRNA-150 (29), microRNA-155 (141) and microRNA-146a
(142), which have been described in CLL B cells (135). Moreover,
leukemic exosomes induce an inflammatory phenotype in
stromal cells by increasing AKT and cyclic AMP response
element binding protein (CREB) phosphorylation via the NF-
κB pathway, resulting in a cancer-associated fibroblast (CAF)-
phenotype (135). Interestingly, this phenomenon is coupled to
the increase in VEGF, CXCL10, CCL2, IL6, intercellular adhesion
molecule 1 (ICAM1) or CXCL12, which are important molecules
involved in the homing of CLL cells that were previously
discussed (135, 143). Ghosh et al. reported that CLLmicrovesicles
carry Axl protein that could be transferred to MSCs, leading
to an increase in AKT phosphorylation (143). Farahani et al.
showed that CLL exosomes encapsulate an abundant amount
of microRNA-202-3p that, once integrated in stromal HS-5
cell lines, enhanced their proliferation and decreased apoptosis
by inducing the expression of genes such as c-fos and
ataxia telangiectasia mutated (ATM) (144). Interestingly, several
authors observed an enrichment in specific microRNAs in
exosomes compared to that of the cell compartment (135, 144,
145). As explained previously, BCR stimulation is crucial for
CLL B cell survival, and multiple microenvironmental stimuli,
such as MSC or NLC coculture, could trigger BCR signaling.
In this context, Yeh et al. observed that BCR stimulation
increases exosome production by CLL B cells but also modifies
their microRNA-150 and microRNA-155 content (145). These
data suggest that different microenvironmental stimuli could
be amplified via EVs. A schematic representation of the
influence of EVs in CLL B cell/MSC crosstalk is shown in
Figure 4.

TARGETING CLL/MSC CROSSTALK

As explained previously, CLL B cells migrate from the peripheral
blood to tissues in response to different chemokines. When
leukemic cells reach the stromal microenvironment, they enter
a protective niche against drug-induced apoptosis. Therefore,
mobilizing these cells out of these niches to increase their
chemosensitivity has been a proposed strategy. The first studies
tried to inhibit CLL/MSC crosstalk by acting extracellularly
on the CXCR4/CXCL12 axis. We showed that AMD3100 (also
known as plerixafor), a bicyclammolecule and specific antagonist
of the CXCR4 receptor (146), prevents the binding of CXCL12
and results in a decrease in pseudoemperipolesis and an
increase in chemosensitivity to different drugs (71). Recently,
a clinical trial combining plerixafor and rituximab (an anti-
CD20 antibody) confirmed an increase in cell mobilization in
peripheral blood but an overall response rate of 38% (147).
Other authors tried to target this axis using a CXCR4 antibody
(148) or by decreasing the expression of CXCR4 using a histone
deacetylase inhibitor (70, 149). Another proposed strategy was
to inhibit the ligand CXCL12 and not the receptor. NOX-A12,
an RNA oligonucleotide in the L-configuration that binds
and neutralizes CXCL12, has been shown to decrease CLL B
cell migration and increase chemosensitivity but surprisingly
increases pseudoemperipolesis (150). All authors agree that
inhibition of the CXCR4/CXCL12 axis is only an adjuvant and
therefore should always be coupled with a cytotoxic drug.

Since the CXCR4/CXCL12 and BCR pathways are
interconnected, another way to interfere with the migration and
homing of leukemic cells into a protective microenvironment
is to target the intracellular pathways using specific drugs.
One of the more potent and recently discovered drugs is
ibrutinib (previously called PCI-32765), a Bruton’s tyrosine
kinase inhibitor (37). This small molecule acts by covalently
binding cysteine 481 in the active site of BTK and consequently
inhibits downstream events such as MAPK, PI3K, or NF-κB
activation (151). This inhibition therefore results in a drastic
reduction in migration and adhesion of CLL B cells in the
lymphoid tissue (particularly the lymph node) and their
mobilization in peripheral blood (152, 153). In this context,
Tissino et al. reported a relationship between ibrutinib exposure
and impaired CLL cell adhesion on VCAM-1 substrates in vitro
and a progressive reduction of constitutive VLA-4 activation
during in vivo ibrutinib treatment (79). However, decrease of
VLA-4 activation by ibrutinib is still under debate since BTK
inhibition could be bypassed by triggering the CXCR4/CXCL12
axis (154) or by an exogenous BCR stimulation in a BTK-
independent manner involving PI3K (79). In contrast, other
authors observed that BTK inhibition prevents CXCL12-
induced triggering of LFA-1 and VLA-4 integrins (109). In
addition, ibrutinib also reduces the surface level of CXCR4
by inhibiting cycling from and to the membrane (153). Not
surprisingly, other drugs targeting BCR pathways, such as a
more specific BTK inhibitor (acalabrutinib; previously named
APC-196) (155), SYK inhibitor (fostamatinib) (156) or PI3K
inhibitor (idelalisib, duvelisib) (157, 158), will have very similar
effects on migration, homing and mobilization of leukemic

Frontiers in Oncology | www.frontiersin.org 9 August 2020 | Volume 10 | Article 1422

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Dubois et al. CLL/Stroma Crosstalk

FIGURE 4 | Crosstalk between CLL B-cells and MSCs via extracellular vesicles. Bi-directional communication exists between CLL B-cells and MSCs via the

production of extracellular vesicles by both cell types. MSC EVs increase the migration, the survival of CLL B-cells and change their gene expression profile (138). CLL

B-cells derived EVs can transfer microRNA (135, 144, 145) or protein (143) leading to the migration, the survival and the proliferation of MSCs (135). In addition, they

induce an inflammatory phenotype in stromal cells resulting into a cancer-associated fibroblast (CAF)-phenotype (135). Interestingly BCR stimulation increases the

production of CLL EVs (145). Figure created with BioRender.com.

cells in the circulation by inhibiting chemotaxis in response
to CXCL12 and CXCL13 and reducing adhesion to VCAM1
and fibronectin (159, 160). Complementarily, idelalisib or
duvelisib also significantly reduced the ability of stromal cells
to support CLL migration and adhesion (161). Another way to
disrupt CLL/MSC crosstalk and overcoming drug resistance in

CLL patients is to directly target PKC-β signaling pathway in
MSC: indeed, Park et al. showed that small-molecule PKC-β
inhibitors antagonize prosurvival signals from stromal cells and
sensitize tumor cells to targeted and non-targeted chemotherapy,
resulting in enhanced cytotoxicity (162). In addition, they
also showed that stromal PKC-β controls the expression of
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FIGURE 5 | Targeting the CLL/MSC crosstalk using CXCR4/CXCL12 and BCR signaling inhibitors. Several therapeutic strategies have been proposed to inhibit

CLL/MSC interactions. (a) blocking of CXCR4 using AMD3100 (71) or using a CXCR4 antibody (148); (b) blocking CXCL12 using NOX-A12 (150); (c) CXCR4/CXCL12

and BCR pathways are interconnected, another way to interfere is to target BCR pathway using different inhibitors: ibrutinib that inhibits BTK and downstream events

such as MAPK, PI3K, or NF-κB activation (151) but also reduces VLA-4 activation induced by CXCL12 binding (109) and cell adhesion (79). Acalabrutinib (155) that

similarly acts on the migration, the homing and the mobilization of leukemic cells in the circulation. Idelalisib or duvelisib also reduced the ability of stromal cells to

support CLL migration and adhesion (161); (d) finally, targeting the over-expression of BCL2 partially induced by the microenvironment has also been proposed

(163, 164). Figure created with BioRender.com.

adhesion and matrix proteins, required for activation of PI3Ks
and ERK-mediated stabilization of BCL-XL in tumor cells
(162). Microenvironment stimuli provided during CLL/MSC
coculture lead to the increase of BCL2 through Notch-1,
Notch-2, Notch-4 signaling (97). This could partially explain

the high level of BCL2 expression in CLL, real hallmark of
leukemic cells. Therefore, targeting BCL2 overexpression has
been proposed using venetoclax (or ABT-199), an efficient
and selective small-molecule inhibitor for BCL2 (163, 164). A
schematic representation of the different targeting strategies to
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TABLE 1 | Summary of CLL prognostic markers linked to microenvironment interactions.

Prognostic factor Correlation References Poor prognosis Link with microenvironment References

IgHV TFS, OS (20) Unmutated (UM) UM are more prone to apoptosis, more dependent

to microenvironment stimulus

(168)

(24) UM are associated with an ability to respond to BCR (169)

Stimulation by downregulation CXCR4 and CD62L (170)

ZAP-70 TFS, OS (22) High expression ZAP70+ CLL B-cells have better migration

capacities

(172, 173)

(171) Gene signature linked to migration, homing or

CXCR4/CXCL12 pathways

(166)

CXCR4/ CXCR3 Leucocyte counts, TTFT (174–176) Low expression Decrease in coculture, after BCR stimulation (137, 166)

CD69 PFS, OS (26) Positive Increase on CLL cells in coculture with MSCs (68, 166)

Increase on CLL cells after treatment with MSC EVs (138)

CD38 TFS, OS (24, 178) Positive Increase on CLL B-cells after 2 weeks in coculture

with stromal cells

(68)

LPL TFS, OS (171, 180, 181) High expression Increase in CLL B-cells after a BCR stimulation (179)

CCL3/ CCL4 TFS (121) High plasma level Increase after coculture with NLCs (42)

Increase after coculture with MSCs (114)

Increase after treatment with MCS-derived EVs (138)

IL-8 Other markers, OS (182) High plasma level Increase in the supernatant of CLL/MSC coculture (114, 115)

PDGF ZAP-70, CD38, need of

therapy

(128) High plasma level PRGF receptor were selectively activated in MSCs

by CLL conditioned medium

PDGF is were detected in CLL conditioned medium

(128)

VEGF ZAP-70, CD38, need of

therapy

(128) High plasma level VEGF is detected in CLL conditioned medium

PDGF induced MSC VEGF production

(127)

miR-29c TFS, OS (27) Low expression Decrease after BCR stimulation (138)

CD49d TFS, OS (184–186) Positive Increase on CLL B-cells in coculture with MSCs (183)

overcome the protection of the microenvironment is shown in
Figure 5.

THE MICROENVIRONMENT AND
PROGNOSTIC FACTORS

For almost 20 years, a plethora of prognostic markers have been
described to stratify CLL patients (165). Many of these markers
are linked to the capacities of CLL B cells to interact with their
microenvironment (166). The gold standard prognostic marker
is the mutation status of IgHV (167). Coscia et al. observed that
cells obtained from IgHV normal patients are more prone than
those with mutated IgHV cells to undergo spontaneous apoptosis
in vitro, suggesting that unmutated cells are more dependent on
survival stimuli from the microenvironment (168). In addition,
patients with unmutated IgHV have been shown to be more
responsive to external stimuli such as the BCR stimulation by
downregulating CXCR4 and CD62L (169, 170). These in vitro
results suggest that in unmutated IgHV CLL patients, leukemic
cells would be more likely to respond to MSC stimuli and be
more “BCR activable” in an in vivo situation leading to cell
survival. Several surrogate markers for IgHV mutation status
have also been described (165). Of these, ZAP70 expression has
been strongly associated with prognosis (22, 171). Interestingly,
numerous authors have shown that ZAP70+ CLL B cells have
better migratory capacities and that they are characterized by a

gene signature linked to migration, homing or CXCR4/CXCL12
pathways (166, 172, 173). Again, based on these in vitromigration
capacities, we could speculate that in ZAP70+ patients, cells
could have more opportunities to interact with MSCs but also
other protecting cells in the in vivo bonemarrow and lymph node
microenvironment. We also observed CXCR4 downregulation
on CLL B cells from patients with a poor prognosis when
they were co-cultured with MSCs, as well as an increase in
CD69 surface expression (166). The CXCR4 level was correlated
with leukocyte count (174), and when combined with CXCR3
expression, it has been proposed as a prognostic marker to
predict the time to first treatment (TTFT) (175, 176). The lower
expression of CXCR4 has also been observed in vivo on CLL
cells isolated from bone marrow or lymph node compared to
peripheral blood (177). Therefore, it is believed that CXCR4
downregulation in the tissues allows a recirculation of leukemic
cells in peripheral blood creating by this way their shuttling
between the different body compartments (18, 66, 105). Based on
this hypothesis, CXCR4high CLL cells would be more efficiently
attracted to bone marrow MSCs in vivo and, after contact,
will downregulate CXCR4. The increase in CD69 on leukemic
cells in coculture with MSCs (68, 166) or after treatment with
MCS-derived EVs (138) is also linked to prognosis, since CD69
positivity is associated with shorter progression-free survival
(PFS) and overall survival (OS) (26). The higher expression
of CD69 has also been observed in vivo on CLL cells isolated
from bone marrow or lymph node compared to peripheral
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blood (147) and is the reflection of the CLL activation status.
Another example is the high expression of CD38, which has been
described as an independent prognostic marker in CLL (24, 178)
and is upregulated on CLL B cells after 2 weeks in coculture with
stromal cells (68). However, it should be noted that this marker
can change during disease course, suggesting that MSC/CLL
in vivo interactions can also vary during disease. As described
above, leukemic cells can also receive BCR stimulation from the
microenvironment that induces dramatic changes in their gene
expression and secretion (139). Pallasch et al. demonstrated that
lipoprotein lipase (LPL) is increased in CLL B cells by BCR
stimulation (179). LPL has been described as a strong prognostic
marker (171, 180, 181). The release of CCL3 and CCL4 after
coculture with NLCs (42) or MSCs (114) or after treatment with
MCS-derived EVs (138) is another example showing that the
consequences of microenvironmental interactions could be used
as prognostic factors, since CCL3 and CCL4 levels in the plasma
of CLL patients are associated with the time from diagnosis to
initial therapy (121). Herishanu et al. observed that CLL3 and
CCL4 expression is increased in CLL cells from bone marrow
and even more from lymph node (177) suggesting that CLL/MSC
and CLL/NLC interaction probably also occurs in vivo. A similar
conclusion could be drawn for the increased secretion of IL-
8 (114, 115), PDGF (128), and VEGF (127) by MSCs in co-
culture and the association of elevated plasma levels of these
factors with high-risk factors and more advanced stage in CLL
patients (128, 182). The decrease in microRNA-29c after BCR
stimulation (138) could also explain its prognostic power (27).
CLL B cells in coculture with MSCs significantly upregulate the
expression of CD49d (183), which is also a very strong prognostic
marker (184–186). Taken together, these data suggest that several
prognostic markers are the direct consequence of leukemic cell
interactions with the microenvironment while others which do
not change along time (such as unmutated IgHV) define patients
whose cells are more able to respond to microenvironmental
stimuli in vivo. Table 1 summarizes the different prognostic
markers, their prognostic power in CLL and their link with
the microenvironment.

CONCLUSIONS

Over the last two decades, many reports have demonstrated
the different ways CLL B cells and stromal cells in the bone
marrow and lymph node communicate. These cell interactions
are bidirectional, inducing many changes in both cell types:

dysregulation of adhesion molecules, abnormal secretion of
cytokines, chemokines and growth factors and modification of
normal trafficking and homing. CLL cells are able to crosstalk
with close surrounding cells by direct cell-to-cell contact and
can communicate with distant cells via the production of
extracellular vesicles. CLL cells can modify healthy cells in
different ways, altering them from their physiological functions.
All these different interactions make it difficult to study this
topic exhaustively, but recent studies have highlighted crucial
and targetable pathways. Targeting BCR signaling has been
shown to mobilize leukemic cells out of their protective
microenvironment. Some new small molecules have already
demonstrated their efficacy in CLL patients, improving their
overall survival. Our knowledge of how leukemic cells are able
to interact also brings out a plethora of prognostic markers
that are only a reflection of how efficient this crosstalk is.
Despite some indirect data (such as serum level of some
cytokines or gene expression from CLL cells isolated from
different body compartments), the vast majority of the data
we have access to today about CLL/MSC interactions derive
from ex vivo studies. The ex vivo expansion of MSCs requiring
multiple passages, the use of stromal cell lines, the isolation
of CLL cells from patient blood or the use of leukemic cell
lines could not reflect all the aspects of the in vivo situation.
Therefore, further studies are needed to extensively understand
the “true” in vivo CLL/MSC biology. However, understanding
CLL/microenvironment communication has already helped
us discover new treatment strategies, but further functional
characterizations will open new ways to avoid patient relapse in
the future.
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