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1  |  INTRODUC TION

The spread of infectious diseases is recognized as one of the most 
pressing global threats to biodiversity and ecosystem function 
(Cunningham et al., 2017; Daszak et al., 2000; Tompkins et al., 
2015). In recent decades, infectious diseases have devastated a 
range of wildlife groups (Berger et al., 1998; Hansen et al., 2005; 
Kim & Harvell, 2004; Lorch et al., 2016), often exacerbating species 

declines in ecosystems already stressed by climate change and hab-
itat destruction (Bosch et al., 2018; Brearley et al., 2013; Harvell 
et al., 2002). The persistence of many species will probably depend 
on their ability to adapt to environmental changes associated with 
increased disease prevalence, although selection for disease resis-
tance or tolerance may not keep pace with rates of pathogen evo-
lution and the emergence and turnover of novel diseases (Hawley 
et al., 2013; Ujvari et al., 2014).
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Abstract
Infectious diseases are recognized as one of the greatest global threats to biodiversity 
and ecosystem functioning. Consequently, there is a growing urgency to understand 
the speed at which adaptive phenotypes can evolve and spread in natural populations 
to inform future management. Here we provide evidence of rapid genomic changes in 
wild Australian blacklip abalone (Haliotis rubra) following a major population crash as-
sociated with an infectious disease. Genome scans on H. rubra were performed using 
pooled whole genome resequencing data from commercial fishing stocks varying in 
historical exposure to haliotid herpesvirus- 1 (HaHV- 1). Approximately 25,000 single 
nucleotide polymorphism loci associated with virus exposure were identified, many of 
which mapped to genes known to contribute to HaHV- 1 immunity in the New Zealand 
pāua (Haliotis iris) and herpesvirus response pathways in haliotids and other animal 
systems. These findings indicate genetic changes across a single generation in H. rubra 
fishing stocks decimated by HaHV- 1, with stock recovery potentially determined by 
rapid evolutionary changes leading to virus resistance. This is a novel example of ap-
parently rapid adaptation in natural populations of a nonmodel marine organism, high-
lighting the pace at which selection can potentially act to counter disease in wildlife 
communities.
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Detecting rapid evolutionary changes in populations impacted 
by environmental disturbance is often challenging. Disease- affected 
populations provide ideal models given disease exposure is an eas-
ily characterized selective pressure and studies of this nature have 
been greatly assisted by modern genomic technologies (Blanchong 
et al., 2016; Storfer et al., 2020). These technologies now allow for 
rapid and cost- effective estimates of genome- wide variation among 
populations spanning disease infection gradients and individuals 
with distinctive phenotypes related to disease response (Auteri & 
Knowles, 2020; Elbers et al., 2018; Grogan et al., 2018; Margres 
et al., 2018). Importantly, a number of studies using these technol-
ogies have reported rapid evolutionary changes across several gen-
erations in natural populations of nonmodel organisms impacted 
by disease, including Tasmanian devils (Sarcophilus harrisii) (Epstein 
et al., 2016; Hubert et al., 2018; Margres et al., 2018) and North 
American house finches (Carpodacus mexicanus) (Bonneaud et al., 
2011). Additionally, recent studies have reported evidence of rapid 
selection for disease- resistant genotypes across a single generation 
in North American sea stars (Pisaster ochraceus) and little brown bats 
(Myotis lucifugus), following rapid and severe population crashes due 
to infectious diseases (Auteri & Knowles, 2020; Schiebelhut et al., 
2018). Such studies are pivotal in highlighting the pace at which 
selection can act to counter disease in wildlife communities and 
opening up opportunities for interventions, such as deliberate trans-
locations of adaptive phenotypes, that can increase the adaptability 
of threatened populations (Hoffmann et al., 2020; Hohenlohe et al., 
2019). Despite this progress, the number of studies demonstrating 
rapid evolutionary responses to infectious diseases in natural popu-
lations remains limited and biased towards terrestrial systems.

Marine infectious diseases are responsible for incremental and 
mass mortalities in a variety of wildlife groups, including keystone 
and habitat- forming taxa (Clemente et al., 2014; Harvell & Lamb, 
2020; Harvell et al., 2007; Martin et al., 2016; Montecino- Latorre 
et al., 2016), and species supporting wild commercial fisheries 
(Cawthorn, 2011; Crosson et al., 2020; Lafferty et al., 2015; Marty 
et al., 2010). The Australian blacklip abalone (Haliotis rubra), a species 
targeted by the world’s largest wild abalone fisheries and a rapidly 
expanding aquaculture industry (FAO FishStat, 2021), was heavily 
impacted by disease between 2006 and 2010 (Mayfield et al., 2012). 
Beginning in 2006, abalone viral ganglioneuritis (AVG) caused by the 
haliotid herpesvirus- 1 (HaHV- 1) spread along the western coastline 
of Victoria in southeastern Australia, causing rapid and severe popu-
lation collapses (>90% mortality in some areas) and devastating both 
wild and farmed abalone stocks (Hooper et al., 2007). Despite the 
impact of AVG, abalone stocks in the Western Zone fishery have 
seen significant recovery (Western Abalone Divers Association, 
2020). It is possible that rapid evolutionary responses to the virus 
have contributed to this recovery, facilitated by the abalone’s short 
generation time (~4 years; Andrews, 1999), large population sizes 
(Mayfield et al., 2012) and high genetic variability that contributes to 
existing patterns of adaptation across the fishery (Miller et al., 2019).

Evolving immunity to HaHV- 1 depends on the availability of spe-
cific, heritable genetic variants within abalone populations that lead 

to resistant phenotypes. Indeed, previous research has demonstrated 
heritable genetic variation relating to herpesvirus immunity in sister 
Haliotid species, highlighting the possibility of evolved immunity in 
H. rubra. Challenge tests performed on New Zealand paua (Haliotis 
iris) and Japanese black abalone (Haliotis discus), involving controlled 
exposure to HaHV- 1, indicated complete immunity to AVG (Chang 
et al., 2005; Corbeil et al., 2017), with complementary transcriptomic 
analyses helping to characterize the genetic basis of the resistance 
(Bai, Zhang, et al., 2019; Neave et al., 2019). Similar tests on H. rubra 
yielded no evidence of resistance to AVG (Corbeil et al., 2016; Crane 
et al., 2013); however, these experiments were performed on animals 
from a limited number of locations affected by AVG. While complete 
immunity may not occur in H. rubra, the presence of AVG immunity in 
sister taxa hints at the potential for some level of resistance develop-
ing through standing genetic variation following AVG exposure.

For the first time in a decade AVG was recorded in 2021, leading to 
abalone mortalities at a few proximal fishing locations heavily impacted 
by AVG in the early 2000s (Agriculture Victoria, 2021). Unlike the first 
outbreak, animal mortality and disease spread has been minimal. While 
environmental and epidemiological factors may be contributing to the 
suppression of the disease (Bai, Li, et al., 2019; Corbeil, 2020), it is also 
possible that the mass mortality event from 2006– 2010 selected for 
adaptive phenotypes which is reducing the number of susceptible an-
imals and overall viral load within affected fishing stocks. To test this 
hypothesis, we investigate potential signatures of evolutionary changes 
in recovering H. rubra fishing stocks devastated by AVG. Specifically, 
we performed genome scans using pooled whole genome resequenc-
ing data on H. rubra specimens from fishing stocks varying in disease 
exposure. Our findings point to rapid changes in population- level allele 
frequencies over a single generation timescale in virus- affected fishing 
stocks, with stock recovery potentially determined by rapid evolution-
ary changes leading to virus resistance. This study highlights the pace 
at which adaptive phenotypes can potentially evolve and spread in 
wildlife communities to counter threats from infectious diseases. We 
discuss these findings in the context of future biosecurity management 
of Australian abalone fisheries and wildlife conservation more generally.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and DNA sequencing

Tissue biopsies were collected from 343 individual Haliotis rubra 
from 14 locations spanning the western and central coastline of 
Victoria. Locations were selected based on their known virus expo-
sure history according to records held by the Victorian wild fishing 
sector and the Victorian Fisheries Authority. During the outbreak 
event, rigorous PCR (polymerase chain reaction) testing and diver 
surveys were conducted across the fishery to determine the spatial 
extent of the virus and rates of local mortality at affected sites, esti-
mated from the abundance of dead and dying abalone and recently 
vacated shells (Gorfine et al., 2008). Based on these data we selected 
10 AVG- affected locations that showed >70% animal mortalities, 
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and four AVG- unaffected locations (Table 1, Figure 1). Sampling for 
five of the locations was coordinated in 2009 by the Department of 
Economic Development, Jobs, Transport and Resources (DEDJTR). 
It is expected that animals from these locations during this sampling 
period survived the virus event and represent the genomic variation 
preserved post- AVG. Sampling of the remaining nine locations was 
performed between 2015 and 2020. To avoid the potential swamp-
ing effects of intergenerational gene flow since the disease outbreak, 
sampling was biased towards fishing stocks expected to be largely 
self- recruiting based on biophysical connectivity models (Young 
et al., 2020), and toward large adult animals (expected to be either 
direct survivors or first- generation post- virus survivors). However, 
it is important to note that these fishing stocks are not completely 
self- recruiting entities given previous studies have demonstrated a 
lack of genetic structure across the fishery (Miller et al., 2016, 2019). 
This sampling was performed by contract divers, commercial fish-
ermen and our research team. At each location, individual abalone 
were collected within a 100- m2 area, with tissue biopsies consisting 
of 20 mg of muscle tissue from the abalone lip obtained using sterile 
dissection tools to avoid cross- contamination. Biopsied material was 
transferred to 2- ml microcentrifuge tubes containing 80%– 100% 
ethanol and stored at 4°C until required for genomic analysis.

Total genomic DNA was extracted from 10 mg of tissue using 
a DNeasy Blood and Tissue Kit (Qiagen) following the manufactur-
er’s instructions. Resulting DNA extracts were quantified using a 
Qubit version 2 fluorometer (Life Technologies). To obtain popula-
tion genomic data, we applied the Pool- Seq approach (Futschik & 
Schlotterer, 2010), which involves pooling the DNA of a large num-
ber of individuals from the same population and then sequencing 
the “population variability genome.” This was achieved by pooling 
equimolar amounts of individual DNA extracts from each sample 
location, splitting the 25 individuals per location into two pools per 

location consisting of DNA from 12 and 13 individuals, respectively, 
to account for potential sequencing bias. The resulting 28 pooled 
libraries were prepared for sequencing using the Nextera DNA 
Sample Preparation kit, pooled into a single Illumina NovaSeq S4 
flowcell (Illumina) and sequenced across all four lanes with the 150- 
bp paired- end protocol. Sequencing was performed allowing for 3× 
genome coverage per individual per pool, equating to 80– 100× ge-
nome coverage per population.

2.2  |  Data preparation

The Illumina NovaSeq sequencing yielded a total of 25 × 109 assigned 
150- bp reads, and a total of 45– 100 Gb of sequence data for each 
of the 28 pooled DNA libraries. Raw DNA sequence reads from the 
two separate pooled libraries per sample location were pooled for 
processing purposes. Raw sequences were processed using trimmo-
matic version 0.36 (Bolger et al., 2014) by removing Nextera adaptors 
and discarding all reads that had a Phred score below 20. All retained 
reads were subsequently aligned to the H. rubra reference genome 
(NCBI RefSeq QXJH00000000.1; Gan et al., 2019) using the ppalign 
package in the PoolParty pipeline (Micheletti & Narum, 2018) with 
default parameters. Single nucleotide polymorphisms (SNPs) were 
called using poolfstat (Hivert et al., 2018) where sites were required to 
have a read depth of 40– 200 reads to be called. SNPs with a minor al-
lele frequency of ≥0.05 were used for downstream genomic analysis.

2.3  |  | Estimating overall genetic structure

SNP frequencies over all loci were initially contrasted between all 14 
sample locations to determine patterns of overall genetic structure 

TA B L E  1  Site location details and corresponding codes for 14 collection locations of Haliotis rubra used for genomic analyses. Sample 
sizes and AVG exposure history are also provided

Zone and location Code Year sampled Sample size

GPS location

AVG statusLatitude Longitude

Port Macdonell PMC 2020 25 – 38.054 140.881 Unaffected

Inside Murrels MUR 2009 25 – 38.407 141.524 Affected

Inside Nelson ISN 2009 25 – 38.409 141.558 Affected

Lady Julia Percy LJP 2009 23 – 38.422 141.993 Unaffected

The Crags CRG 2009 25 – 38.390 142.135 Affected

Killarney KIL 2015 20 – 38.363 142.321 Affected

Levies LEV 2009 25 – 38.385 142.235 Affected

Childers Cove CHC 2019 25 – 38.490 142.672 Affected

Bay of Islands BIP 2019 25 – 38.582 142.827 Affected

Cat Reef CAT 2015 25 – 38.741 143.188 Affected

White Cliffs WCF 2015 25 – 38.758 143.330 Affected

Castle Cove CCV 2020 25 – 38.783 143.422 Unaffected

Parker River PKR 2020 25 – 38.855 143.538 Affected

Blanket Bay BLK 2015 25 – 38.827 143.586 Unaffected
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and population connectivity. The software poolfstat implemented in R 
(Hivert et al., 2018) was used to calculate global and pairwise measures 
of population differentiation (FST; Weir & Cockerham, 1984). Estimates 
of global and pairwise FST were also generated using a data set consist-
ing of only candidate loci identified from association analyses.

2.4  |  | Genotype × environment 
association analysis

To identify SNPs associated with virus exposure status, we performed 
a genotype × environment association analyses using baypass 2.1 
(Gautier, 2015). Analyses were performed under the auxiliary (AUX) 
covariate mode (- covmcmc and - auxmode flags), after scaling the varia-
bles with the - scalecov flag, using input files containing genotypic data 
for each sampling location and corresponding virus exposure history 
(exposed vs. unexposed). The underlying models explicitly account for 
the covariance structure among the population allele frequencies that 
originates from the shared history of the populations through estima-
tion of the population covariance matrix Ω, which removes the varia-
tion associated with demography (Bonhomme et al., 2010; Günther & 
Coop, 2013). The auxiliary covariate model specifically involves the 
introduction of a binary auxiliary variable to classify each locus as as-
sociated or not associated. This allows computation of posterior inclu-
sion probabilities (and Bayes Factors) for each locus while explicitly 
accounting for multiple testing issues. The auxiliary covariate model 
was applied with default parameters, a 5000 burn- in of iterations 
in the Markov chain Monte Carlo (MCMC) simulation, followed by 
25,000 iterations. To reduce artefacts due to potential variability be-
tween runs, we performed three independent baypass simulations. We 
then calculated the average Bayes Factor (BF), expressed in deciban 
units (dB), for each SNP as a quantitative estimate of the strength of 
association with virus exposure and the standardized allele frequency. 

For each SNP, the level of effect was assessed based on the BF models 
according to Jeffrey’s rule (Jeffreys, 1961). SNPs with BF scores ≥50 
were regarded as decisive associations with virus exposure and were 
retained as potential candidate loci.

2.5  |  Post hoc analyses including functional 
annotations

An analysis of principal components (PCA) was implemented in the 
adegenet package for R (Jombart, 2008; Jombart & Ahmed, 2011) to 
obtain a graphical depiction of patterns of genetic structure among 
virus- affected and unaffected stocks based on all candidate SNPs 
identified by baypass (BFs ≥ 50).

Total linkage disequilibrium (LD) among all candidate loci was cal-
culated using ldx, a package which uses an approximate maximum- 
likelihood approach from pooled resequencing data (Feder et al., 
2012). LD was calculated as r2, the square of the correlation between 
alleles of SNP pairs within the paired sequence reads of each popu-
lation. We subsequently calculated the average LD for each pairwise 
SNP comparison across sample sites. Next, we assessed the distribu-
tion of candidate loci and signatures of selection across the reference 
H. rubra genome consisting of 2854 annotated scaffolds varying be-
tween 1830 and 1.1 × 107 bp in length (Gan et al., 2019). This was 
achieved by regressing the total number of candidate loci against scaf-
fold length using the ggpubr package for R (Kassambara & Kassambara, 
2020). Scaffolds with exceptionally large numbers of candidate loci 
relative to scaffold length (deviating from a linear distribution) were 
interrogated further using the package ldblockshow (Dong et al., 2021) 
to measure pairwise linkage disequilibrium and haplotype blocks using 
the default - SeleVar option to calculate D′ (the ratio of the difference 
between the observed and expected frequency of a haplotype, and its 
maximum value when considering total allele frequencies).

F I G U R E  1  Sampling sites selected 
for population genomic analysis from 
southeastern Australia. Figure legend and 
colour coding of mapped sites indicate 
history of virus exposure. Refer to Table 1 
for sample codes
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snpeff version 2.0.3 (Cingolani et al., 2012) was used to map candi-
date SNP loci to the H. rubra genome and predict variant impacts: high 
(highly disruptive impact on protein function), moderate (nonsynony-
mous mutations, possible change in protein effectiveness), low (unlikely 
to change protein behaviour) or a modifier (synonymous mutations, 
noncoding or intergenic variant). Functional classification of candidate 
genes was achieved by aligning the peptide sequences for mapped 
candidate H. rubra genes with the annotated genomes for human 
(NCBI RefSeq IDs NC_000001– NC_000024), pacific oyster (RefSeq 
IDs NC_047559– NC_047568), scallop (RefSeq ID NC_007234.1) and 
the blue mussel (RefSeq ID NC_006161.1) using diamond (Buchfink 
et al., 2015). A maximum e- value of 1e−40 was set to conservatively 
estimate the likelihood of similar gene functions between taxonomies. 
Protein GI accessions from the top hit of diamond alignments were 
imported into the web- based version of the david bioinformatics tool 
(Huang et al., 2009a, 2009b), where corresponding annotations were 
generated. Given the challenges of functional annotations when deal-
ing with large numbers of loci, we took the conservative approach of 
annotating only gene homologues known to be associated with virus– 
host interactions, in particular herpesvirus response pathways, includ-
ing those in response to HaHV- 1 in the AVG- resistant H. iris.

3  |  RESULTS

3.1  |  Genotyping and overall population structure

Pooled whole genome resequencing of 384 Haliotis rubra speci-
mens from 14 locations yielded a total of 7,745,655 SNPs that 
were used for population genomic analyses. Estimates of overall 
genetic structure indicated a lack of structure and panmixia across 

the sampling distribution. Specifically, global FST did not differ sig-
nificantly from zero (FST = 0.00, p > .05), consistent with reports 
of panmixia from previous population genomic studies on H. rubra 
(Miller et al., 2016, 2019). Additionally, no pairwise estimate of FST 
between sampling locations was found to differ significantly from 
zero (Figure 2a). While some sample locations included in this study 
were chosen based on modelled dependencies on self- recruitment, 
our results and those of Miller et al. (2016, 2019) indicate that there 
is sufficient gene flow across all locations to supress signatures of 
genetic structure.

3.2  |  Genotype × environment association analysis

Our genome scans found 25,854 candidate SNPs with strong 
associations with virus exposure (BF > 50), with the PCA based 
on candidate loci revealing clear patterns of genetic structuring 
between locations varying in historical AVG exposure (Figure 3). 
Estimates of FST based on candidate loci also indicated significant 
genetic structure among sample locations (FST = 0.06, p < .05), 
with pairwise estimates suggesting significant genetic structure 
between virus- affected and - unaffected sites (Figure 2b). All pair-
wise estimates of FST including a single virus- unaffected location 
(LJP) were significantly different from zero, but estimates involv-
ing this location and other unaffected locations were notably 
weaker. To account for potential distorting effects associated with 
LJP, association analyses were repeated including all sites except 
LJP. Repeat analyses still recovered 21,039 candidate SNPs, with 
a PCA based on these candidate loci revealing consistent patterns 
of genetic structuring between locations varying in historical AVG 
exposure (Figure S1).

F I G U R E  2  Heatmap of pairwise estimates of genetic differentiation (FST) among sample locations based on (a) all 7,745,655 SNPs and (b) 
the 25,854 SNP loci associated with AVG exposure. *Virus- unaffected sample locations
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Estimates of LD were high at all locations (mean r2 = .61 ± 0.01 
SD) indicating nonrandom association of alleles, while comparisons of 
r2 between affected and unaffected stocks did not differ significantly 
(p > .05). Analyses suggest a genome- wide pattern, with regression 
analyses indicating a strong linear relationship between number of 
candidate loci and scaffold length (R2 = .83; Figure 4a). However, scaf-
folds QXJH01000030.1 and QXJH01000212.1 exhibited a higher 
number of candidate loci relative to scaffold length (deviating from 
the linear distribution), with candidate SNPs comprising 0.0062% 
and 0.0108% of the total scaffold nucleotides, respectively. Pairwise 
linkage among SNPs across the entirety of these scaffolds was high 
(D′ ≈ 1), with the detection of large haplotype blocks indicating large 
sections of the genome linked to virus exposure (Figure 4b).

3.3  |  Functional annotations

SNP loci showing significant associations with virus exposure 
were successfully mapped to the annotated H. rubra genome. sn-
peff analyses predicted 333 candidate loci to have moderate effect 
on protein function (involving nonsynonomous mutations), while 

489 candidates were predicted to have low effect, and 24,722 
candidates were recognized as noncoding or intergenic variants. 
Candidate loci that successfully mapped to H. rubra genome pep-
tide sequences were found to correspond with gene homologues 
in other animal systems including haliotids, nonhaliotid marine 
molluscs, crustaceans and humans. These include 13 gene homo-
logues linked to HaHV- 1 immunity in New Zealand pāua (Haliotis 
iris) and 13 genes associated with herpes virus response pathways in 
Japanese disk abalone (Haliotis discus hannai), decapod crustaceans 
(Penaues monodon and Procambarus clarkia) and humans (Table 2). 
An additional 10 peptides mapped to gene homologues associated 
with host– virus interactions in various haliotids (H. discus hannai, H. 
laevigata and H. ruscefens), decapod crustaceans (Pe. monodon and Pr. 
clarkia) and humans (Table 2). All gene homologues and known func-
tions are provided in Table 2. Notable findings include several genes 
linked to chitin- binding peritrophin- A domain, and the cytochrome 
P450 (CYP) 3A family, which have recognized associations with im-
mune responses in aquatic molluscs (Badariotti et al., 2007; Zhao 
et al., 2017) and humans (Fattahi et al., 2018), respectively. Also, the 
CREB- binding protein (CBP) was identified, which is associated with 
herpesvirus responses in humans (Chen et al., 2020; Gwack et al., 

F I G U R E  3  Plots of eigenvalues from 
the principal components analysis: (a) 
plot of axis 1 and 2 eigenvalues, and (b) 
density plot of axis 1 eigenvalues. Plots 
are based on candidate SNP genotypes 
from each of the 28 pooled whole genome 
resequencing libraries representing 
virus- affected (red) and unaffected (black) 
fishing stocks
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2001), as well as immune pathways for C- type lectins that are impor-
tant contributors to innate immune responses in invertebrates (Nam 
et al., 2016; Qin et al., 2019; Zhang et al., 2018).

4  |  DISCUSSION

We provide evidence of rapid genetic changes in as little as a single 
generation in wild Haliotis rubra populations decimated by HaHV- 1. 
Specifically, our genome scans identified SNP loci associated with 
virus exposure, many of which mapped to genes known to con-
tribute to HaHV- 1 immunity, herpes virus response pathways, and 
host– virus interactions in haliotids and other animal systems. These 
findings require experimental validation but are consistent with rapid 
evolutionary changes in H. rubra fishing stocks impacted by disease, 
with stock recovery potentially influenced by evolved resistance. 
This study highlights the pace at which selection can act to counter 
disease in wildlife communities by leading to an increased frequency 
of potentially adaptive genotypes. The implications of these findings 
are discussed in the context of future infectious diseases manage-
ment in abalone fisheries and wildlife conservation more generally.

4.1  |  Evidence of rapid evolution in H. rubra

Our analyses identified 25,854 SNP loci associated with AVG expo-
sure in H. rubra. Multiple lines of evidence point to selection being 

responsible for driving specific genetic variants to higher frequen-
cies in virus- affected populations, rather than random demographic 
factors such as bottleneck effects. Random demographic factors are 
capable of causing shifts in allele frequencies (particularly rare al-
leles) in populations that have suffered major declines, depending 
on the number of surviving individuals and the influence of random 
genetic drift in subsequent generations (Willi et al., 2022). However, 
the number of surviving abalone at virus- impacted locations still 
consisted of many 100s to 1000s of individuals (Western Abalone 
Divers Association, 2020) expected to maintain genetic diversity. 
Also, we have shown that the observed patterns of differentiation 
between virus- affected and unaffected fishing stocks are not being 
driven by rare alleles (Figure S2). Additionally, opportunities for al-
lele frequencies to be influenced by random genetic drift are limited 
given the animals included in this study are either survivors or F1/F2 
progeny of those survivors. Furthermore, we observed consistent 
genetic changes across a spatially replicated and stratified sampling 
distribution, which are unlikely to arise randomly in the absence of 
selection. Finally, we provide evidence of functional associations of 
candidate SNPs to genes known to contribute to disease adaptation 
in sister haliotid taxa, including a number of genes that contribute to 
HaHV- 1 immunity.

Despite the large number of candidate loci found to be associated 
with AVG exposure, it is likely that only some are directly influenced 
by selection and potentially contributing to AVG immunity. Evidence 
of LD between loci, and the noncoding and intergenic nature of most 
SNPs indicates many indirect associations due to physical linkage 

F I G U R E  4  (a) Regression analysis 
indicating a positive linear relationship 
between number of candidate SNPs 
(BF > 50) and scaffold length. Outlier 
scaffolds with a greater frequency of 
candidate SNPs relative to scaffold 
length are plotted in red. (b) Linkage 
disequilibrium heatmaps of scaffolds with 
the greatest number of candidate SNPs 
(QXH01000030.1 and QXJH01000212.1) 
generated with the package ldblockshow 
(Dong et al., 2021). Heatmaps depict the 
pairwise linkage disequilibrium measure of 
D′ (refer to colour key) between each SNP 
with a BF ≥ 50, while green lines link the 
relative position of the candidate SNPs to 
the heatmap. In addition, black triangle 
sections represent detected haplotype 
blocks; these are genomic regions of low 
recombination
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TA B L E  2  List of predicted genetic variant impacts, and genes that candidate loci mapped to. The table also includes gene functions, as 
well as the species from which these functions have been reported and their respective references

Number of 
candidate SNPs

Predicted variant 
impact Associated gene Associated gene function Species Reference(s)

Genes involved H. iris HaHV−1 immune response

17 Moderate, low, 
modifier

SLC1A2 Excitatory amino acid 
transporter 2, response to 
HaHV−1 exposure

Haliotis iris Neave et al., 2019

35 Moderate, low, 
modifier

CYP3A4 Response to HaHV−1 exposure Haliotis iris Neave et al., 2019

6 Moderate, 
modifier

ACE Response to HaHV−1 exposure Haliotis iris Neave et al., 2019

2 Modifier POU6F2 Response to HaHV−1 exposure Haliotis iris Neave et al., 2019

3 Modifier NLGN4X Response to HaHV−1 exposure Haliotis iris Neave et al., 2019

2 Modifier CYP3A7 Response to HaHV−1 exposure Haliotis iris Neave et al., 2019

1 Modifier Peritrophin 44 like 
(LOC105317660)

Chitin- binding peritrophin- A 
domain, response to 
HaHV−1 exposure

Haliotis iris Neave et al., 2019

1 Modifier Uncharacterized 
LOC105326593 
(LOC105326593)

Chitin- binding peritrophin- A 
domain, response to 
HaHV−1 exposure

Haliotis iris Neave et al., 2019

17 Modifier CHIT1 Chitin- binding peritrophin- A 
domain, response to 
HaHV−1 exposure

Haliotis iris Neave et al., 2019

15 Modifier CYP3A5 Response to HaHV−1 exposure Haliotis iris Neave et al., 2019

1 Modifier CYP3A43 Response to HaHV−1 exposure Haliotis iris Neave et al., 2019

14 Modifier Ganglioside GM2 
activator like 
(LOC105346019)

Chitin- binding peritrophin- A 
domain, response to 
HaHV−1 exposure

Haliotis iris Neave et al., 2019

1 Modifier Ganglioside GM2 
activator like 
(LOC105348613)

Chitin- binding peritrophin- A 
domain, response to 
HaHV−1 exposure

Haliotis iris Neave et al., 2019

Gene homologues associated with herpesvirus response pathways

2 Modifier CASP8 Herpesvirus response pathway Haliotis discus 
hannai

Nam et al., 2016

1 Modifier TAF10 Herpesvirus response pathway Homo sapiens Wagner & DeLuca, 
2013

1 Modifier ARNTL Herpesvirus response pathway Homo sapiens Edgar et al., 2016

7 Modifier EEF1D Herpesvirus response pathway Homo sapiens Boulben et al., 2003

2 Modifier SRSF7 Herpesvirus response pathway Homo sapiens Tang et al., 2019

6 Modifier Ube2r2 Herpesvirus response pathway Homo sapiens Beard et al., 2015

2 Modifier CREBBP Herpesvirus response pathway, 
C- type lectin containing 
or involved in c- type lectin 
pathway (invertebrate 
immune response)

Haliotis discus 
hannai, 
Procambarus 
clarkii, 
Penaeus 
monodon

Nam et al., 2016, 
Zhang et al., 2018, 
Qin et al., 2019, 
Wang & Wang, 
2013

2 Modifier SRPK1 Herpesvirus response pathway Homo sapiens Souki & Sandri- 
Golden, 2009

2 Modifier TAF6 Herpesvirus response pathway Homo sapiens Wagner & DeLuca, 
2013

1 Modifier TAB1 Herpesvirus response pathway Homo sapiens Jahanban- Esfahlan 
et al., 2019

1 Modifier Csnk2b Herpesvirus response pathway Homo sapiens Carter, 2011

4 Modifier Hnrnpk Herpesvirus response pathway Homo sapiens Schmidt et al., 2010
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with adaptive loci that are embedded in large haploblocks and re-
sponding to selection (Uffelmann et al., 2021). Further, it is possible 
that some candidate loci are in statistical linkage, sharing similar al-
lele frequency distributions across haploblocks and chromosomes 
(i.e. genetic indistinguishability; Skelly et al., 2016), and inflating the 
overall number of candidate loci. Despite the potential for linkage, 
a strong linear relationship between genome scaffold length and 
density of candidate SNPs was observed, suggesting a genome- wide 
response to virus exposure. Analyses indicate a higher incidence of 
candidate SNPs on two scaffolds, which could represent important 
gene- rich adaptive regions (Hohenlohe et al., 2012). However, fur-
ther work is needed to test their functional significance as the genes 
annotated within these regions are not known to contribute to virus 
resistance. Nevertheless, our analyses indicate that some candidate 
loci may be directly involved in disease adaptation in H. rubra.

In particular, functional annotations of candidate loci point to 
associations with genes and protein domains that contribute to 
HaHV- 1 immunity in the New Zealand pāua (Haliotis iris). Neave et al. 
(2019) first characterized genes associated with HaHV- 1 immunity in 
H. iris through transcriptome analyses of animals subject to HaHV- 1 

immersion challenge tests. Their study was the first to characterize 
the molecular basis of HaHV- 1 immunity in a haliotid species, and 
our study complements these findings by identifying a common set 
of genes involved in haliotid host response to HaHV- 1 exposure. 
Functional annotations of candidate loci also point to associations 
with genes and protein domains contributing to herpes simplex virus 
responses and immune responses in various haliotids and other ani-
mal systems. Importantly, our analyses indicate that a large number 
of candidate loci involve nonsynonymous mutations that are ex-
pected to have an effect on protein structure and function. It is also 
possible that some candidate SNPs recognized as being noncoding 
and intergenic variants might provide functionally important regula-
tory roles in genomic processes (Gusev et al., 2014; Li et al., 2012; 
Wei et al., 2020). Overall, these findings strongly support the notion 
that divergent adaptation, involving a polygenic response and pos-
sible selection for disease resistance phenotypes, has occurred in H. 
rubra fishing stocks impacted by AVG.

The results of this study point to rapid genetic changes in H. 
rubra fishing stocks impacted by disease. However, experimental 
validation will be needed to link any genetic changes to disease 

Number of 
candidate SNPs

Predicted variant 
impact Associated gene Associated gene function Species Reference(s)

1 Modifier PPP1CA Herpesvirus response pathway Homo sapiens Silva et al., 2015

Gene homologues associated with host– virus interactions

4 Modifier HIST1H2AA Abalone immune response Haliotis discus 
hannai

Nam et al., 2016

1 Low COTL1 Tropomyosin, abalone immune 
response

Haliotis discus 
hannai

Nam et al., 2016

1 Low, modifier PDIA3 Protein disulphide isomerase 
activity, abalone immune 
response

Haliotis discus 
hannai

Nam et al., 2016

1 Modifier HSP90AB1 Abalone immune response Haliotis discus 
hannai

Nam et al., 2016

4 Modifier Histone H2A 
(LOC105320412)

Abalone immune response Haliotis discus 
hannai

Nam et al., 2016

8 Low, modifier AVIL Gelsolin domain, abalone 
immune response

Haliotis discus 
hannai

Nam et al., 2016

1 Modifier Hsp70 member 12A 
(HSPA12A)

Abalone immune response Haliotis laevigata, 
Haliotis 
ruscefens, 
Haliotis discus 
hannai

Shiel et al., 2015, 
Brokordt et al. 
2015, Nam et al., 
2016

3 Modifier PSMA8 C- type lectin containing or 
involved in c- type lectin 
pathway (invertebrate 
immune response)

Haliotis discus 
hannai, 
Procambarus 
clarkii, 
Penaeus 
monodon

Nam et al., 2016, 
Zhang et al., 2018, 
Qin et al., 2019, 
Wang & Wang, 
2013

1 Modifier IRAK4 Toll- like receptor activity, 
innate immunity

Crassostrea 
gigas, Haliotis 
diversicolor

Tang et al., 2017, Ge 
et al., 2011

2 Modifier TIA1 Viral translation inhibition Homo sapiens McCormick & 
Khaperskyy, 2017

TA B L E  2  (Continued)
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resistance. Challenge tests involving the exposure of animals with 
putatively resistant genotypes to HaHV- 1 will help to determine 
if, and how much, HaHV- 1 resistance is determined by the candi-
date genotypes (Corbeil et al., 2016; Crane et al., 2013). Although 
previous challenge tests performed by Crane et al. (2013) showed 
no, or very low, resistance to HaHV- 1 in H. rubra, the animal source 
locations differ from those included in our study. This points to 
potential spatial variation in adaptive responses across the fishery, 
and possible genotype– environment interactions affecting the ex-
pression of resistant phenotypes in different environmental set-
tings (Hoffmann et al., 2020). Nevertheless, a large number of loci 
appear to be responding to the virus in our study, suggesting that 
changes in resistance will represent a polygenic response that can 
be followed by controlled breeding studies (Guarna et al., 2017; 
Gutierrez et al., 2018). The response to selection in these studies 
will depend on levels of heritable variation as well as the intensity 
of selection, which will determine the impact of the phenotypic 
change. Breeding studies and experimental trials will also be essen-
tial to assess trait heritability and genotype– environment interac-
tions, particularly if industry intends to control for resistance traits 
in a culture environment for breeding purposes (discussed below).

4.2  |  Implications for fisheries management

Re- emergence of AVG remains a significant threat to the economic 
viability of H. rubra fisheries in southeastern Australia (Corbeil, 
2020; Lafferty et al., 2015). Therefore, characterizing the spatial 
distribution and prevalence of disease- resistant genotypes will 
help managers identify stocks expected to be either resilient or 
vulnerable to AVG re- emergence. Previous population genomic 
research has indicated a lack of biological stock structure in these 
fisheries (Miller et al., 2016), suggesting that gene flow could con-
tribute to the spread of adaptive genotypes and resilience of naïve 
fishing stocks. Gene flow from unaffected parts of the fishery 
could also eventually reduce the frequency of adaptive genotypes 
over time in the absence of ongoing selection, but such effects are 
yet to become apparent. Whether selection for resistance will be a 
recurring process is still unclear, although the recent outbreak re-
corded in 2021 at several fishing locations previously impacted by 
AVG in the early 2000s indicates that this is a possibility. Notably, 
the recent outbreak has resulted in minimal animal mortality and 
disease spread, supporting the notion of evolved resistance fol-
lowing previous exposure to disease. Contrasting the genetic pro-
files of survivors and those that have succumbed to the virus at 
these locations as a result of the most recent outbreak will help 
to reinforce the findings of the current study. Similarly, the recent 
outbreak provides a unique opportunity to genomically select pu-
tatively resistant and vulnerable animals for challenge tests aimed 
at providing functional validation of AVG resistance.

Evidence of panmixia in H. rubra (Miller et al., 2016) suggests 
that standing genetic variation is likely to persist within disease- 
naïve populations allowing for in situ adaptation to HaHV- 1. 

However, strategic stock augmentation activities, involving the 
translocations of animals with AVG- resistant genotypes, could po-
tentially assist the spread of genotypes to reduce risks of vulnera-
bility across wild fisheries. Also, there may be future opportunities 
to biosecure farm fisheries through the establishment of AVG- 
resistant breeding programmes, similar to disease- related breeding 
programmes in other farmed mollusc, crustacean and finfish fisher-
ies around the world (Kjøglum et al., 2008; Moss et al., 2012; Potts 
et al., 2021; Ragone Calvo et al., 2003). Overall, these results add 
to those of Miller et al. (2019) demonstrating patterns of genetic 
adaptation across environmental gradients and the adaptability of 
H. rubra populations to new environmental conditions. This is perti-
nent in southeastern Australia where rapid changes in the physical 
marine climate are threatening commercial fisheries through shifts 
in species distributions (Johnson et al., 2011; Ling, 2008), changes 
in habitat and trophic interactions (Holland et al., 2021), and risks 
of infectious diseases (Oliver et al., 2017).

5  |  CONCLUSIONS

While it has been proposed that selection in some species may fail to 
keep pace with rates of pathogen evolution and the emergence and 
turnover of novel diseases (Hawley et al., 2013; Ujvari et al., 2014), 
our study demonstrates that rapid evolutionary responses within 
a single generation may be possible in large populations under ex-
treme selective pressure. This study highlights the value of genome 
scans for identifying signatures of potential adaptation among natu-
ral populations differing in virus exposure and characterizing puta-
tive genes that contribute to disease- resistant phenotypes. Future 
studies of this nature will be critical for understanding the potential 
for rapid evolution in other species threatened by infectious dis-
eases, informing the management of new outbreaks, and securing 
populations with little or no resistance.
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