
Zebrafish behavioral profiling identifies multi-target 
antipsychotic-like compounds

Giancarlo Bruni1,†, Andrew J. Rennekamp1,2,†, Andrea Velenich3,†, Matthew McCarroll4,5, 
Leo Gendelev5,9, Ethan Fertsch4,5, Jack Taylor4,5, Parth Lakhani4,5, Dennis Lensen3, Tama 
Evron3, Paul J. Lorello6, Xi-Ping Huang7, Sabine Kolczewski8, Galen Carey3, Barbara J. 
Caldarone6, Eric Prinssen8, Bryan L. Roth7, Michael J. Keiser5,9, Randall T. Peterson1,2, and 
David Kokel4,5

1Cardiovascular Research Center and Division of Cardiology, Department of Medicine, 
Massachusetts General Hospital and Department of Systems Biology, Harvard Medical School, 
149 13th Street, Charlestown, Massachusetts, 02129, USA 2Broad Institute, 7 Cambridge Center, 
Cambridge, Massachusetts 02142, USA 3Teleos Therapeutics, 196 Boston Avenue, Suite 2400, 
Medford, MA 02155, USA 4Department of Physiology, University of California, San Francisco, 
California 94158, USA 5Institute for Neurodegenerative Disease, University of California, San 
Francisco, California 94143, USA 6NeuroBehavior Laboratory, Harvard NeuroDiscovery Center 
and Department of Neurology, Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, 
Massachusetts 02115, USA 7Department of Pharmacology and NIMH Psychoactive Drug 
Screening Program, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 
27759, USA 8Roche Pharmaceutical Research & Early Development, Roche Innovation Center 
Basel, Basel, Switzerland 9Departments of Pharmaceutical Chemistry and of Bioengineering & 
Therapeutic Sciences, University of California, San Francisco, California 94158, USA

Abstract

Many psychiatric drugs act on multiple targets and therefore require screening assays that 

encompass a wide target space. With sufficiently rich phenotyping, and a large sampling of 

compounds, it should be possible to identify compounds with desired mechanisms of action based 

on their behavioral profiles alone. Although zebrafish (Danio rerio) behaviors have been used to 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding author. david.kokel@ucsf.edu.
†Co-First Author

AUTHOR CONTRIBUTIONS
GB performed the behavior-based chemical screen and preliminary analysis of the data. AR analyzed the finazine compounds. AV 
designed statistical analyses to profile the reference set and analyze all the zebrafish data. LG performed target prediction and 
enrichment calculations and interpreted data with MJK. MM, EF, JT, PL, DL, TE and GC performed the zebrafish behavioral profiling 
and interpreted the data. PJL performed the rodent work and analyzed the data with BJC. XPH performed the target binding assays 
and analyzed the data with BLR. SK and EP designed the psychiatric drug reference set. RTP and DK designed the experiments and 
wrote the paper. All authors analyzed the data and edited the manuscript.

Competing financial interests
AJR, DK and RTP declare competing financial interests in the form of a pending patent application, No. PCT/US2015/037755, 
covering the finazine compounds described in this manuscript. AV, TE, GC and DL are full time employees of Teleos Therapeutics. 
DK and RTP consult for Teleos Therapeutics. SK and EP are full time employees of F. Hoffmann – La Roche Ltd.

HHS Public Access
Author manuscript
Nat Chem Biol. Author manuscript; available in PMC 2016 November 30.

Published in final edited form as:
Nat Chem Biol. 2016 July ; 12(7): 559–566. doi:10.1038/nchembio.2097.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rapidly identify neuroactive compounds, it remains unclear exactly what kind of behavioral assays 

might be necessary to identify multi-target compounds such as antipsychotics. Here, we developed 

a battery of behavioral assays in larval zebrafish to determine if behavioral profiles could provide 

sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic 

drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated animals 

could be used to identify previously uncharacterized compounds with desired antipsychotic-like 

activities and multi-target mechanisms of action.

 Introduction

Polygenic psychiatric disorders, such as schizophrenia, will likely require systems-

modulating therapeutics, which are difficult to identify without complex in vivo readouts. 

The most effective antipsychotic drugs bind to many receptors in the nervous system and 

unlike “magic bullet” drugs (including many antibiotics and some chemotherapeutics that 

act on single molecular targets), antipsychotics are thought to act via poly-pharmacology on 

many targets simultaneously1. The prototypes of most antipsychotic drugs including 

chlorpromazine, haloperidol, and clozapine were originally discovered via their behavioral 

phenotypes in vivo2. It has been difficult, but not impossible3, to identify antipsychotics and 

other multi-target drugs using traditional target-based assays on isolated receptors in vitro4. 

Given that there are no known biomarkers for most psychiatric disorders, behavior 

phenotyping is an attractive endpoint for central nervous systems (CNS) drug screens. 

However the time, space, and financial resources required for high-throughput (HT) 

behavioral drug screening using traditional animal models are prohibitive.

Antipsychotic drugs, including haloperidol and clozapine bind to a wide range of targets 

including dopamine, serotonin, histamine and adrenergic receptors that collectively 

contribute to their efficacy and their side effects1,5,6. Haloperidol, a typical antipsychotic 

drug and potent D2 antagonist is known to bind at least 20 molecular targets in the human 

brain1. Used to treat patients since the 1960s, haloperidol is one of the most efficacious 

therapeutics to treat schizophrenia and has been designated a core drug on the WHO Model 

List of Essential Medicines7,8. Clozapine, an atypical antipsychotic, binds more tightly to 

serotonin receptors9 and causes fewer extrapyramidal side effects10, but can also cause rare 

and fatal agranulocytosis and myocarditis as well as seizures11. Attempts to develop better 

antipsychotics by enhancing potency and selectivity at specific receptors have been largely 

unsuccessful1,12, underscoring the unmet need for compounds with multi-target 

mechanisms. Identifying compounds with antipsychotic-like phenotypes may elucidate new 

therapeutic mechanisms and accelerate the development of therapeutics with improved 

safety and side effect profiles.

With sufficiently rich behavioral phenotyping, and a large sampling of compounds, it should 

be possible to identify neuroactive compounds that possess desired multi-target mechanisms 

of action. Despite their differences, the receptors, cell types and neuronal architectures that 

underlie human and zebrafish CNS functions are highly conserved13,14. Antipsychotics, 

antidepressants and anxiolytics affect swimming patterns in adult and larval zebrafish via 

conserved molecular targets15–18. Although zebrafish behaviors have been used to rapidly 
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identify neuroactive compounds and predict their mechanisms of action, such predictions 

have so far been limited to compounds with relatively simple mechanisms, like enzyme 

inhibitors13,14,19–21. It remains unclear whether larval assays can provide sufficient 

phenotypic resolution to identify and classify compounds with more complex multi-target 

mechanisms such as antipsychotics.

 Results

 A battery of scalable behavioral assays

To generate rich behavioral profiles that can resolve complex and subtle differences between 

compounds, we devised a battery of 10 behavioral assays in larval zebrafish. The battery 

included two acoustic stimulus response (ASR) assays, five visual stimulus response (VSR) 

assays and three assays that combined acoustic and visual stimulus responses (AVSR). 

Together, these assays used five different stimuli including red light (600 nm), blue light 

(420 nm), violet light (405 nm), low magnitude sound (60 dB) and high magnitude sound 

(70 dB) (Supplementary Results, Supplementary Fig. 1). These stimuli were presented in 

various contexts and combinations that elicited robust and reproducible patterns of activity 

as measured by a motion index (MI) that quantifies the amount of larval zebrafish motor 

activity in each well of a 96-well plate (Fig. 1a). For example, in the ASR1 assay, low-

magnitude acoustic stimuli elicited weak motor responses. In the ASR2 assay, high-

magnitude acoustic stimuli elicited strong motor responses that habituated over time. The 

VSR assays contained various combinations of violet, blue and red stimuli. We found that 

violet light increased motor activity, whereas red or blue light reduced motor activity (Fig. 

1a). In the AVSR assays, acoustic and light stimuli were combined to diversify stimulus 

contexts. These zebrafish assays were not intended to simulate any specific behavioral 

phenotype or disorder in humans; the molecular mechanisms and neuronal circuitry that 

control these responses are still incompletely understood. However, we hypothesized that the 

wide variety of stimuli and contexts would provide a means to reproducibly elicit behavioral 

signatures that are uniquely affected by specific classes of neuroactive compounds such as 

antipsychotic drugs.

 Psychiatric drugs alter zebrafish behaviors

To determine how different classes of psychiatric drugs affected the various zebrafish 

behaviors assessed by this battery of assays, we generated a reference set of behavioral 

profiles from animals treated with 14 psychiatric drugs in three therapeutic classes including 

antipsychotics, antidepressants and anxiolytics (Supplementary Table 1). These 14 drugs 

were selected to test the behavioral battery against a range of compounds with diverse 

structures and mechanisms that span a range of therapeutic activities. To quantify how these 

treatments affected behavior, we compared both the shape and magnitude of their behavior 

profiles to control profiles. Most compounds changed the shape of the behavioral profile, 

increasing the phenotypic distance from control animals in a dose-dependent manner (Fig. 

1b, y-axis). At high concentrations, many compounds also caused a dose-dependent decrease 

in the average MI magnitude (Fig. 1b, marker size). Only one drug out of 14 (tianeptine, an 

antidepressant) failed to show an effect possibly due to poor bioavailability in zebrafish. 

Interestingly, duloxetine, another antidepressant, reduced the average MI magnitude at low 
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concentrations, but then brought it back toward normal levels at the highest concentrations 

tested. Perhaps this pattern reflects duloxetine’s engagement of different targets at different 

concentrations, a well-established phenomenon of small molecule drugs22. These data 

indicate that different psychiatric medicines had measurable affects on larval zebrafish in the 

high-throughput battery of behavioral assays.

To determine if different classes of psychiatric drugs caused behavioral phenotypes that are 

characteristic of that class, we calculated all pairwise distances between the behavioral 

profiles of animals treated with compounds in each therapeutic class, and represented the 

data set in two dimensions using multi-dimensional scaling (Fig. 1c). We found that 

behavioral profiles of antipsychotics (at various concentrations) tended to cluster more 

closely with other antipsychotics (at various concentrations) than with antidepressants or 

anxiolytics. In addition, antidepressants and anxiolytics also appeared to cluster into distinct 

behavioral groups, although the phenotypic differences between them were less pronounced 

(Fig. 1c). Because the behavioral profiles of antipsychotic-treated animals clustered together, 

this suggests that the battery of behavioral assays captured class-specific effects of 

antipsychotic drugs.

 Antipsychotic drugs cause specific behavioral profiles

To determine if these behavioral profiles could be used to discriminate between different 

types of psychiatric drugs, we calculated phenotypic distances between each behavioral 

profile in the reference set (Supplementary Table 1). We then used the average behavioral 

profile of each compound at each concentration to rank all other profiles by their similarity 

to the query profile. We refer to this kind of analysis as a “phenoBlast” because the process 

of ranking compounds based on their behavioral similarity is reminiscent of using the 

popular BLAST algorithm23 to identify related nucleotide sequences (although the 

underlying algorithms are unrelated). We found that the behavioral profiles of haloperidol-

treated animals were most similar to profiles from other animals independently treated with 

haloperidol on different days (Fig. 2). Haloperidol profiles also resembled the profiles 

caused by aripiprazole (at low concentrations) as well as clozapine and olanzapine (at high 

concentrations) (Fig. 2). Similarly, the behavioral profiles of aripiprazole-treated animals 

matched most closely the behavioral profiles of animals treated with aripiprazole and 

haloperidol (Fig. 2). Profiles from animals treated with the atypical antipsychotic clozapine 

were most similar to profiles from other wells treated with clozapine or with olanzapine 

(Fig. 2). Olanzapine-treated wells were most similar to other wells treated with olanzapine 

(Fig. 2). Finally, risperidone profiles were similar to both risperidone and aripiprazole (Fig. 

2). These data indicated that the behavioral profiles of antipsychotic drugs were most similar 

to the profiles of other antipsychotic drugs, rather than the profiles of animals treated with 

other psychiatric medicines (Fig. 2). Like antipsychotic profiles, the behavioral profiles 

caused by antidepressants and anxiolytics also preferentially matched profiles from within 

the same mechanistic class (Supplemenatry Fig. 2). These data suggest that the behavioral 

profiles generated by the phenotyping battery reflect specific drug mechanisms and may be 

useful for identifying uncharacterized compounds with similar mechanisms and phenotypes.
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Among the compounds in the test set, behavioral profiles from haloperidol treated animals 

were among the most effective at recalling other antipsychotic drugs (Fig. 2). To further 

understand how haloperidol affected zebrafish behavior, we analyzed zebrafish treated with 

different concentrations (1.25–80 μM). We found that haloperidol reduced motor activity at 

very high concentrations (20– 80 μM) as shown previously in both zebrafish and mice18,24 

(Fig. 1b). Unexpectedly, at lower concentrations, haloperidol (2.5 –10 μM) changed the 

shape of the behavioral profile without reducing its average magnitude (Fig. 1b). To analyze 

this low concentration phenotype more closely, we treated half of a 96-well plate (48 wells) 

with haloperidol (5 μM) and the other half with DMSO (equal volume) to generate high-

resolution average behavioral profiles of each treatment condition (Fig. 3a). Given that 

haloperidol is known to reduce locomotor activity in larval zebrafish18, we were surprised to 

find that haloperidol (5 μM) increased MI magnitude at many points in the time series. 

Hierarchical clustering of behavioral profiles based on pair-wise phenotypic distances 

revealed that haloperidol and DMSO treated wells clustered into different groups 

(Supplementary Fig. 3), indicating that this behavioral phenotype is robust and reproducible. 

To determine if other antipsychotic drugs can also stimulate zebrafish motor behavior, we 

analyzed five additional typical antipsychotic drugs including two butyrophenones 

(bromperidol and droperidol) and three phenothiazines (prochlorperazine, thioridazine and 

phenothiazine). We found that all five of these antipsychotics also cause haloperidol-like 

phenotypes (Fig. 3b). These data suggest that many antipsychotic drugs cause similar 

patterns of behavior and that behavioral profiling in larval zebrafish may be useful for 

identifying compounds with antipsychotic-like activity.

 PhenoBlast for haloperidol-like compounds

Based on its robust and reproducible behavioral phenotypes, we sought to determine if 

haloperidol’s behavioral profile could be used to identify additional compounds with 

antipsychotic-like phenotypes and mechanisms. We screened a 24,760 compound-library 

(including 4,300 known bioactive compounds and 20,000 uncharacterized compounds) and 

more than 5,000 DMSO controls, and compiled the behavioral profiles into a database. 

Using the average profile of three haloperidol (5 μM)-treated wells to query the database, we 

identified the top 100 hit compounds that caused haloperidol-like phenotypes 

(Supplementary Fig. 4a, Supplementary Table 2). Among these 100 hit compounds were 23 

annotated bioactive drugs including 9 antipsychotics and antipsychotic-like compounds, 4 

antihistamines, 10 compounds with other annotations and 5 false positive DMSO-treated 

control wells (Supplementary Fig. 4b). The top-ranked hit compound, bromperidol, is a 

close structural and functional analog of haloperidol25. Among the 9 known antipsychotic 

drugs identified in the screen, 6 were butyrophenone derivatives and 3 were tricyclics. The 

fourth ranked hit compound, DO 897/99, has been under investigation for treatment of 

schizophrenia26 and the fourteenth ranked compound, lidoflazine, is structurally related to 

the diphenylbutylpiperidine class of antipsychotics (e.g. amperozide, clopimozide, 

fluspirilene and pimozide). Haloperidol has antihistamine activity27, suggesting a reason 

why antihistamines were identified in the screen. It is unclear why other known bioactive 

compounds (of various annotated mechanisms) were identified among the top hits 

(Supplementary Table 2). These compounds may reflect poorly understood haloperidol 

activities or be false positives. Because the phenoBlast identified many known antipsychotic 
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and antipsychotic-like compounds among the top hits, we hypothesized that some of the 72 

uncharacterized compounds might also have antipsychotic-like activities.

 Antipsychotic-related target predictions

To determine if the hit compounds acted via haloperidol-like mechanisms, we predicted 

receptors for both the hit compounds and the known antipsychotics identified in the screen 

using the similarity ensemble approach (SEA)28. For both compound sets, we found that the 

top 20 SEA predictions were predominantly schizophrenia-related targets including 

dopamine and serotonin receptors (Supplementary Table 3). Strikingly, out of the 1,873 

possible targets surveyed by SEA, the dopamine D2 and serotonin 2a receptors were the top 

two predicted targets in both sets. These data suggest that many of the uncharacterized hit 

compounds act through classic antipsychotic-like mechanisms. We next asked to what extent 

the known antipsychotics and the uncharacterized hit compounds shared a distinct predicted-

target profile, as compared to the underlying compound library. Using a guilt-by-association 

“enrichment factor” (EF) metric29, we compared EFs of targets predicted for the known and 

uncharacterized compounds against target EFs calculated for 1,000 size-matched control 

groups randomly selected from the compound library (Fig. 4a, Supplementary Fig. 5). We 

observed a strong overlapping target signature between the known and uncharacterized 

compounds, versus no consistent target pattern for the controls. As before, the known and 

uncharacterized groups both achieved exceptional enrichment for serotonin and dopamine 

receptors, with an emphasis on serotonin type 2 and dopamine D2 receptors (Fig. 4a, 

Supplementary Table 4). The library-wide EF metric also uncovered shared enrichments for 

adrenergic receptors (ADA, ADR), voltage-dependent T-type calcium channels (CAC), and 

melanin-concentrating hormone receptors (MCH). Interestingly, both sets of compounds 

were also predicted to target sigma receptors (SGM), which were recently identified as a key 

target in zebrafish freezing behavior (see companion paper by Rennekamp et al.) and are 

implicated in a variety of physiological processes and in schizophrenia30. Although most 

predicted targets overlapped between known and uncharacterized groups, certain targets 

such as cytochrome P450 2J2 (CYP2J2) linked solely to the known antipsychotics, while 

telomerase reverse transcriptase linked solely to the uncharacterized compounds. These 

target predictions may represent off-target activities or possible new modes of action. 

Together, these data suggest that many of the uncharacterized hit compounds may act 

through similar targets as known antipsychotic drugs, including the sigma-1 receptor.

 Hit compounds show antipsychotic-like binding profiles

To test SEA target predictions, we measured the binding affinity of a subset of 22 

uncharacterized hit compounds at 60 human and rodent CNS targets in vitro31 (Fig. 4b). 

These compounds were selected based on phenotypic strength and structural diversity. For 

comparison, we also determined the binding profiles of haloperidol and bromperidol, two 

close structural analogs with very similar binding affinity profiles. We found that many hit 

compounds share a similar binding profile to haloperidol (Fig. 4b, Groups 1 and 2). 

Interestingly, other hit compounds showed little to no binding at any of the receptors tested, 

suggesting that these compounds may represent false positive hits in the screen or 

antipsychotic-like compounds with unknown mechanisms of action (Fig. 4b, Group 3). 
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Together, these data indicate that many compounds with haloperidol-like phenotypes in 

larval zebrafish also have haloperidol-like receptor binding profiles in vitro.

 Identification of finazines

To understand the structural relationships between haloperidol and the hit compounds, we 

analyzed their Tanimoto similarities. We found that the uncharacterized hit compounds, 

including those with very similar target binding profiles, were structurally distinct from 

haloperidol (< 30% Tanimoto similarity) (Supplementary Fig. 6). These compounds 

clustered into several structural classes. We focused our attention on a cluster of five very 

closely related hit compounds (61%–89% Tanimoto similarity), that share a piperazine-

containing maximum common substructure and that we named “finazines” (Fig. 5a). Only 

38 compounds in the library of more than 20,000 contained this substructure. As expected, 

each of the individual finazines shared a very similar receptor-binding profile as haloperidol 

in vitro (Fig. 4b, Group 2), suggesting that these compounds share similar mechanisms of 

action. Binding patterns between haloperidol and the finazines showed both similarities and 

differences. Like haloperidol, the finazines bound to serotonin-2, adrenergic alpha-2, 

dopamine, histamine and sigma receptors. However, unlike haloperidol, the finazines 

showed stronger binding at the dopamine and serotonin transporters (DAT and SERT) and 

weaker binding serotonin-1, alpha-1, and dopamine receptors. Because these compounds 

had similar structures, phenotypes and binding profiles, we chose to focus further 

experiments on a single member of the group (6657321) that we refer to as “finazine” to 

differentiate it from other members of the structural class.

To confirm that finazine causes haloperidol-like behaviors, we retested this compound and 

used its average behavioral profile at each concentration to query the reference database of 

psychiatric drugs. We found that finazine-treated animals behaved most similarly to other 

animals also treated (independently) with finazine, or to animals treated with two typical 

antipsychotic drugs: haloperidol and aripiprazole (Fig. 5b, Supplementary Fig. 7). These 

data indicate that finazine caused robust and reproducible antipsychotic-like phenotypes in 

the zebrafish. By contrast, the finazine profiles were less similarity to atypical antipsychotics 

(clozapine, olanzapine or risperidone), antidepressants or anxiolytics. Because finazine 

caused haloperidol-like behaviors in zebrafish, we hypothesized that finazine may also cause 

haloperidol-like phenotypes in mice.

 Finazine suppresses PCP-induced hyperactivity in mice

The zebrafish behavioral profiles described above do not resemble psychosis. Given the low 

face validity of the zebrafish model, we sought to test its predictive validity for identifying 

compound with translatable effects in a psychostimulant-induced schizophrenia model in 

mice. In humans, acute administration of psychostimulants such as phencyclidine (PCP), a 

NMDA receptor antagonist, induces psychosis-like symptoms resembling schizophrenia32. 

In mice, PCP induces a hyperlocomotion phenotype that can be reversed by haloperidol and 

other typical and atypical antipsychotic drugs33,34. Reversal of PCP-induced hyper 

locomotion is a standard screening assay for both typical and atypical antipsychotics35,36. To 

determine if finazine might have antipsychotic-like activity in mammals we injected three 

groups of mice with graded doses (25, 12.5 and 6.25 mg/kg). Thirty minutes after compound 
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treatment, mice were injected with PCP (5 mg/kg). We found that, like haloperidol, finazine 

reduced PCP-induced hyperactivity in mice (Fig. 5c). Baseline locomotor activity was 

unaffected in mice treated with the lowest dose of finazine (6.25 mg/kg). By contrast, at the 

two higher doses (12.5 and 25 mg/kg) finazine-treated mice exhibited a decrease in baseline 

locomotor activity, similar to what was observed in zebrafish and mice treated with high 

doses of haloperidol33. At high concentrations, many antipsychotic drugs, including 

haloperidol, cause extrapyramidal side effects in humans and catalepsy in rodents37. To 

further understand how finazine affects mouse behavior, we performed a modified Irwin 

observational battery38 and catalepsy test. At its lowest effective doses finazine (6.5 and 12.5 

mg/kg), caused less catalepsy than haloperidol (at 1 mg/kg) (Supplementary Fig. 8). In 

addition, mice treated with finazine showed no evidence of lethality, convulsions, excitation, 

abnormal gait, jumps, writhes, stereotypy, or head twitches, although they did exhibit tremor 

and Straub tail responses (Supplementary Table 5). As expected for any hit compound, this 

observation suggests that substantial medicinal chemistry would be necessary to reduce side 

effects and develop finazine for any potential therapeutic use.

 Discussion

Genomic databases and their search algorithms are fundamental tools in bioinformatics 

research. However, quantitative search tools for multi-dimensional phenotyping remain a 

key challenge in behavioral phenomics39. The basic local alignment search tool (BLAST) 

allows researchers to query nucleotide and protein databases for evolutionarily related 

sequences23,40. A conceptually similar bioinformatics tool, the Connectivity map, allows 

researchers to search for functional connections between compounds, genes and disease 

states using gene expression signatures41. Although researchers have developed BLAST-like 

approaches for searching cell division phenotypes in C. elegans42 and morphological 

phenotypes in yeast43, the phenoBlast concept has been difficult to apply to behavioral 

datasets which are typically smaller, more variable and less systematic than gene-expression 

databases. Here, we have used similarity metrics between motor activity profiles to describe 

a large collection of small molecules and identify antipsychotic-like compounds. This 

battery of high-throughput behavioral assays has enabled us to systematically quantify 

effects of thousands of compounds on vertebrate motor activity. The quantity and quality of 

the dataset have permitted us to conduct behavior-based connectivity mapping, using metrics 

conceptually related to those previously used in other fields of bioinformatics 41. We have 

designed phenoBlast to be modular. Data from additional assays can be easily added and 

would likely improve the resolution of each phenotypic profile. These need not be limited to 

behavioral or motion analyses44. For example, automated morphological phenotyping, and 

full brain calcium imaging are two rapidly developing areas of zebrafish phenotyping with 

great potential for improving resolution of behavioral profiles45,46. Together, all of these 

assays have great potential for addressing current limitations in multi-dimensional 

phenotypic analyses. Here, we have applied the phenoBlast approach to haloperidol. In the 

future, it will be interesting to determine if the approach can be applied to additional classes 

of neuroactive compounds such as atypical antipsychotics, antidepressants or anxiolytics.

Although phenotypic approaches to neuroactive drug discovery in zebrafish may address 

some limitations of in vitro screening assays there are also many caveats including 
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insufficient phenotypic resolution and biological differences between humans and zebrafish. 

Although it is estimated that approximately 80% of human disease genes have a zebrafish 

ortholog47, molecular differences between these receptors may have important 

pharmacological effects. For example, the delta opioid receptor shows different 

pharmacology in mammals and zebrafish due to a single inactivating amino acid substitution 

in the ligand-binding site33. Because we still do not fully understand haloperidol’s 

mechanisms of action or the mechanisms underlying zebrafish behaviors, it is possible that 

some haloperidol-induced phenotypes in the fish may relate to off-target effects with little 

therapeutic value in humans. Such limitations are part of all model systems48. For the 

haloperidol-like compounds, such as the finazines, future studies are required to fully assess 

their potential as therapeutic candidates. Antipsychotic agents, like haloperidol, often cause 

extrapyramidal and other side-effects during chronic exposure49. Our data in mice suggest 

that finazine does not cause catalepsy at the same concentration that reduces background 

motor activity in mice. However, finazine does cause other side effects including tremor and 

the Straub tail response, suggesting that further optimization and safety testing would be 

necessary before contemplating any further exploration of potential therapeutic utility.

Historically, psychiatric drug candidates have shown high failure rates in clinical trials as 

compared to candidates in other therapeutic fields50. Several reasons account for this high 

failure rate including the requirement that CNS drugs pass the blood-brain barrier, the 

polygenetic nature of CNS disorders (which likely require multi-receptor rather than “magic 

bullet” drugs), and limited understanding of the therapeutic mechanisms of clinically 

efficacious drugs12. Using a phenotype-based behavioral readout during the initial phase of 

CNS drug discovery may increase the likelihood that hit compounds will meet these criteria. 

In summary, we have developed a phenoBlast approach for the rapid querying of in vivo 
phenotypic similarities among thousands of structurally diverse small molecules. The 

approach is unbiased, structure- and target-blind, and based solely on compounds’ 

behavioral effects. Not surprisingly, many compounds that share phenotypic signatures also 

share structural similarities and target-binding profiles. Thus, the phenoBlast approach 

provides a way to both validate structure and target-based hypotheses and also to discover 

structurally and mechanistically neuroactive compounds with multi-target mechanisms.

 Online Methods

 Aquaculture and chemical treatments

Fertilized eggs (up to 20,000 embryos per day) were collected from group matings of 

Ekkwill zebrafish (Danio rerio). Embryos were raised in hatching jars at 28 °C on a 14/10-

hour light/dark cycle until 3 days post fertilization (d.p.f.), then transferred to an incubator 

under the same conditions until 7 d.p.f. Groups of approximately 8–10 larvae (7 d.p.f.) were 

distributed into the wells of clear flat-bottom 96-square-well plates filled with E3 medium 

(300 μl). Larvae were then incubated at 25 °C on the bench top for 1 h prior to chemical 

treatment and subsequent experiments. Larval zebrafish are of indeterminate sex. All 

zebrafish protocols were approved by the UCSF Institutional Animal Care and Use 

Committee (Authorization Protocol number: AN107525-02B).
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 Chemical libraries and treatments

The Actiprobe library (TimTec Corporation) contains 10,000 compounds dissolved in 

DMSO at a stock concentration of 1mg/ml (~3 mM). The Chembridge library (Chembridge 

Corporation) contains 10,000 compounds dissolved in DMSO at a stock concentration of 1 

mM. The Spectrum Collection (MicroSource Discovery) contains 2,320 compounds 

dissolved in DMSO at a concentration of 10mM. The Prestwick library (Prestwick 

Chemical) contains 1,280 approved drugs dissolved in DMSO at a stock concentration of 10 

mM. The Neurotransmitter library (Biomol International; cat. No. 2810) contains 700 

compounds dissolved in DMSO at a stock concentration of 10 mM. All compounds were 

diluted in E3 buffer and screened at 10 μM final concentration and < 1% DMSO. Negative 

controls were treated with an equal volume of DMSO. Stock solutions were added directly 

to zebrafish in the wells of a 96-well plate, mixed and allowed to incubate for 1 h at room 

temperature before behavioral evaluation in the Behavioral Battery of assays. Reordered hit 

compounds were dissolved in DMSO and added to wells as described above. Each drug in 

the reference set was tested at seven concentrations, twelve wells per concentration, and in 

triplicate (on different days). Concentration ranges were identified by range finding 

experiments.

 Chemoinformatics

We used the similarity ensemble approach (SEA) algorithms to predict candidate molecular 

targets for each compound as previously described51. Instant JChem was used for structure 

database management and substructure searching, Instant JChem 14.7.14.0, 2014, 

ChemAxon (http://www.chemaxon.com). Chemical similarities were computed as Tanimoto 

similarities using rdKit52. SEA enrichment factor (EF) calculations were calculated as 

described53. We calculated EF’s for targets predicted for each compound within two preset 

groups (8 known antipsychotics, 72 uncharacterized antipsychotic-like compounds from the 

screen) against baseline groups of random compounds. As the baseline we enumerated 1,000 

groups, each comprising 72 compounds randomly selected from the entire screening library. 

To be included in the enrichment analysis, target predictions had to achieve SEA p-values ≤ 

1e-10, and we required at least 2 target-group pairs for the known antipsychotics and at least 

5 such pairs for the larger uncharacterized compounds and for the random compound sets. 

We retained target-group predictions with EF > 2.0 and q-values ≤ 1e-10, which left 58 

enriched targets across the known and uncharacterized antipsychotic sets. Only 182 targets 

total (including the targets for the random groups) passed these enrichment filters, out of the 

total of 1,873 SEA target predictions possible. Of the 1,000 random baseline groups, 63% 

did not have any target passing these enrichment filters whatsoever.

 CNS receptor profiling

For known psychoactive compounds, binding profiles were downloaded from the PDSP Ki 

database54. Ki values greater than 10,000 nM or missing were set to 10,000 nM. Normalized 

Ki (npKi) values were computed as described55. For uncharacterized hit compounds, in vitro 
binding assay and Ki data were generated by the National Institute of Mental Health’s 

Psychoactive Drug Screening Program (NIMH PDSP), contract no. 
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HHSN-271-2008-00025-C (NIMH PDSP) as described. Complete assay details are found 

online at (http://pdsp.med.unc.edu/PDSP%20Protocols%20II%202013-03-28.pdf).

 Automated behavioral phenotyping in zebrafish

We captured digital videos of zebrafish in a battery of 10 behavioral assays containing 

combinations of acoustic and light-based stimuli. Digital videos of animals in 96-well plates 

were recorded at 25 or 34 frames per second using an AVT Pike 210 camera mounted on a 

0.08x telecentric lens (Optoengineering) such that the entire 96-well plate was captured in 

each frame. Stimuli were applied to all wells of the entire 96-well plate simultaneously. 

Light stimuli were generated using high-intensity LEDs (LEDNGIN) in red (650 nm, 11 

μW/mm2), blue (560 nm, 18 μW/mm2) and violet (400 nm, 11 μW/mm2) wavelengths. Low 

magnitude (60 dB) and high magnitude (70 dB) acoustic stimuli were generated using push-

style solenoids to tap the stage. Stimulus control and data management were accomplished 

using computer scripts (Matlab). The 96 well plate was illuminated from below with infrared 

(850 nm) LEDs. The behavioral battery, including video capturing and raw data processing, 

took approximately 10 minutes per plate. Approximately 10–20 plates could be analyzed per 

camera-day. To quantify behavioral activity elicited by the stimuli, a motion index (MI) was 

calculated by frame differencing within the region of interest around each well of the plate. 

The MI was calculated by: MI= sum(abs(framen-framen−1)). This MI correlates with the 

overall amount of motor activity observed in the well. Complete stimulus protocols for each 

assay are included in Supplementary Table 6 and 7.

 Phenotype quantification, phenoBlast ranking and statistics

A motion index (MI) is calculated for each well by frame differencing digital video of the 

behavioral battery. This MI time series is referred to as a “behavioral profile”, and consists 

of MI values at a total of 10,500 time points. To quantify the phenotypic distance between 

two time series v and w we used the angular distance d = arcos(v.w/(||v|| ||w||))/pi, where ‘.’ 

is the canonical inner product and ‘|| ||’ is its induced norm. The reference data set of 

psychoactive drugs was replicated three times over different days (see below) and, in order 

to mitigate batch effects, query phenotypes from a given replicate were only allowed to find 

matching phenotypes in the other two replicates. When querying with the time series of 

compound x at concentration c1 from replicate A, we ranked all phenotypes in the data set 

by increasing distance to this query time series and we indicated as r(y,c2,B|x,c1,A) the 

ranking of compound y at concentration c2 from replicate B. We then computed the heatmap 

phenoBlast ranking as geometricMean [r(y,c2,B|x,c1,A), r(y,c2,C|x,c1,A), r(y,c2,A|x,c1,B), 

r(y,c2,C|x,c1,B), r(y,c2,A|x,c1,C), r(y,c2,B|x,c1,C)]. When considering the overall amount of 

motion for a given time series, we first normalized the baseline by subtracting the 5th 

percentile MI, and then averaged the resulting MIs over time. Hierarchical clustering was 

performed using the complete-linkage algorithm. The haloperidol query for the high-

throughput screen was calculated by averaging the time series from three replicate 

haloperidol-treated wells. The 29,760 compounds in the screen were ranked based on their 

phenoBlast score, defined as the L1 distance between each of the 29,760 time series (s) from 

the haloperidol query (q): d = sumi(|si −qi|).
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The size of a phenotypic effect is compound-dependent and dose-dependent. Compounds in 

the chemical library were screened in a single well and concentration, with the 

understanding that only compounds with strong phenotypic would emerge as hits. At the end 

of the screen it became apparent that phenotypic effects similar to the effects produced by 

haloperidol at 5uM were enough to be selected as preliminary hits. The characterization of 

the hit list in and the estimate of false positive rates helped guide power analysis in follow-

up studies. For the reference compounds we dedicated an entire 96-well plate per compound 

to avoid phenotypic similarity being driven by two or more compounds being tested on the 

same plate. Most compounds go from inactive to sedative/lethal within a 50-fold 

concentration range. Based on this observation we designed dose-response plates to test 7 

concentrations per compound increasing the concentrations by multiplicative factors of 2, 

covering concentrations from x to 64 x, where x is a compound-dependent concentration 

determined in preliminary experiments. The 8th row on a plate was dedicated to DMSO-

treated control wells. We then used all the 12 wells on a row to generate time series to 

mitigate the effect of random bursts of larval activity that add noise to the time series for 

single wells. Three replicates of the dose-response plates described above were screen on 

three different days, both to estimate and to mitigate the effects of day-to-day variability.

No animal samples were excluded after performing the experiments. Larvae were randomly 

transferred from their hatching basins to the 96-well plates. Compounds were assigned 

random identifiers (mixing pharmacological classes), sorted by identifier, and screened 

according to that order. The investigators were blinded during the screen and the analysis of 

the chemical library compounds and not blinded during the screen and the analysis of the 

reference compounds.

 Code Availability

Code availability by request

 Mouse phenotyping

Male C57BL/6J mice (9–10 weeks at testing) were obtained from Jackson Laboratories (Bar 

Harbor, ME). Mice were group-housed 4 per cage in Techniplast ventilated cages and were 

maintained on a 12/12-hr light/dark cycle (lights on 0700 EST). The room temperature was 

maintained at 20–23°C with relative humidity at approximately 50%. Food and water were 

available ad libitum for the duration of the study, except during testing and all testing was 

conducted during the light phase of the light dark cycle. The behavioral tests were conducted 

according to established protocols approved by the Harvard Medical Area (HMA) Standing 

Committee on Animals IACUC in AALAC-accredited facilities, and in accordance with the 

Guide to Care and Use of Laboratory Animals (National Institutes of Health 1996). 

Locomotor activity was measured in Plexiglas square chambers (27.3 x 27.3 x 20.3 cm; Med 

Associates Inc.) surrounded by infrared photobeam sources and detectors, as the total 

distance traveled (cm) assessed by infrared beam breaks. Mice were tested under ambient 

light and data were collected by Med Associates software. Mice were injected with 10% 

DMSO vehicle or finazine (6.25, 12.5, or 25 mg/kg in 10% DMSO) and locomotor activity 

was monitored for 30 minutes (baseline total distance). Mice were then administered saline 

vehicle or PCP (5 mg/kg) and activity was measured for an additional 60 minutes. 
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Antagonism of PCP-induced hyperactivity was used as the measure of antipsychotic 

efficacy. All compounds were administered by intraperitoneal (IP) injection in a volume of 

10 ml/kg. Locomotor activity was measured as total distance traveled (cm), assessed via 

infrared beam breaks. Locomotion prior to PCP administration (baseline, 0–30 m) and 

locomotion post PCP administration (PCP, 30–60 m) were analyzed by one-way analysis of 

variance (ANOVA) with finazine (0, 6.25, 12.5, 25) as the independent variable. All 

significant effects were followed up with the Fisher’s PLSD post hoc test. An effect was 

considered significant if p<0.05 (Statview for Windows, Version 5.0).

 Modified Irwin observational battery and catalepsy testing

To test for catalepsy, C57BL/6J males (Jackson Laboratory) of approximately 9 weeks of 

age were injected IP with 10 ml/kg haloperidol (Sigma Aldrich) or finazine1 prepared in 

10% DMSO in saline. As a control, 10% DMSO was used as a vehicle injection. Recording 

of time in a cataleptic position was carried out at 30, 60, 90, 120, and 180 min after 

injection. Catalepsy was defined as the amount of time spent on a horizontal steel rod (~0.5 

cm in diameter, positioned ~4.5 cm above the surface of the testing surface). The time 

during which each mouse maintained this position was recorded up to a maximum of 2 min. 

Following each cataleptic measurement, mice were observed for clinical signs. The 

following signs were recorded as present or absent for each mouse at each time point: 

Lethality, Convulsions, Tremor, Straub Tail, Excitation, Abnormal Gait, Jumps, Writhes, 

Stereotypy, Head Twitches. Data were analyzed by ANOVA followed by Fisher’s LSD post 

hoc test.

 Source and purity of compounds

Psychiatric drug reference compounds were purchased from the following sources at the 

indicated purity. Haloperidol (Sigma-Aldrich, NA), Aripiprazole (Sigma-Aldrich, >98%), 

Clozapine (Tocris, >99%), Olanzapine (Sigma-Aldrich, >98%), Risperidone (Sigma-

Aldrich, >98%), Bupropion (Sigma-Aldrich, >98%), (S)-Duloxetine (Sigma-Aldrich, 

>98%), Excitalopram (Sigma-Aldrich, >98%), Imipramine (Sigma-Aldrich, >98%), 

Tianeptine (Sigma-Aldrich, >98%), Buspirone (Sigma-Aldrich, NA), Fenobam (Sigma-

Aldrich, >98%), Alprazolam (Sigma-Aldrich, NA), Diazepam (Sigma-Aldrich, NA).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Antipsychotics and other psychiatric drugs affect zebrafish behavior
(a) Plot showing the average motion index (MI) of control animals as a function of time. 

Assay names and their order in the battery are indicated as x-axis labels. The MI time series 

(black) is the average of 48 time-series, each obtained from a well containing 8 larvae and 

the shaded area (gray) covers ± 3*sem. All wells were located on the same 96-well plate. (b) 

Line plots showing phenotypic distance (y-axis) of the indicated compounds from DMSO 

control phenotypes at the indicated concentration (x-axis). The phenotypic distance of the 

DMSO phenotype from itself (0μM) is arbitrarily set to 0.1. The phenotype for each 

condition (compound & concentration) is the average of 36 time-series obtained from 36 

wells screened over 3 daily experiments of 12 wells each. Each well contained 8 larvae. The 

phenotypic distances shown are distances between average phenotypes, so effectively n=1. 

Marker size represents, for each phenotype, the MI averaged over time, i.e. the area under 

the curve for the MI time series. Colors represent different classes of psychiatric drugs 

(Blue, antipsychotics; yellow, antidepressants; purple, anxiolytics). (c) Multi-dimensional 

scaling representation of the pairwise distances between MIs of animals treated with the 

indicated compounds. Larger marker sizes indicate greater concentrations. Gray circles 

represent equal volumes of DMSO. Each data point is the average of the same 36 time series 

used for panel b.
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Figure 2. Antipsychotic drugs cause specific behavioral profiles in the test battery
Chemical structures (left) of each reference compound queried and heat maps (right) 

showing a matrix comparing queries (rows) and reference compounds (columns). Note that 

each cell of the matrix is divided into eight segments representing increasing concentrations 

of the indicated reference compound (left to right). Heat map color represents the 

phenotypic similarity ranking as indicated in the color bar (see Methods). Color saturation 

represents the magnitude of the behavioral distance from DMSO controls, such that darker 

colors represent larger magnitudes. Each condition (compound & concentration) is the 

average of 36 time-series obtained from 36 wells screened over 3 daily experiments of 12 

wells each. Each well contained 8 larvae.
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Figure 3. Haloperidol causes complex behavioral phenotypes in the zebrafish
(a) Average MI of animals treated with haloperidol (5μM) or DMSO (n= 48 wells per 

condition). (b) Heat maps showing the effect of indicated antipsychotic compounds on 

zebrafish motor activity. For every drug treatment, each of the three rows represents a single 

well (8 larvae). The x-axis indicates time and specific assays administered as shown in panel 

a. Color indicates percentile ranking of the motion index relative to DMSO controls (8 wells, 

each containing 8 larvae).
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Figure 4. Hit compounds show haloperidol-like target profiles
(a) Library-wide target signatures for known antipsychotics and uncharacterized compound 

hits as calculated by SEA. Heat map of shared target enrichments for known and 

uncharacterized groups, as compared to 1,000 randomly-selected size-matched groups from 

the underlying screening library. Out of 1,873 possible targets, fewer than 58 were 

significantly enriched for the known or uncharacterized groups. The y-axis shows the 58 

enriched targets for the known and uncharacterized groups. 50 random groups are shown for 

context. Significantly enriched target classes for known and uncharacterized groups were: 5-

HT: serotonin receptors, ADA and ADR: alpha and beta adrenergic receptors, CAC: voltage-

dependent T-type calcium channels, DRD: dopamine receptors, HDA: histone deacetylases, 
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HRH: histamine receptors, SGM: sigma receptors; for others see Supplementary Table 4 for 

full list. Enrichment factors (EF) of ≥ 2.0 and q-value ≤ 1e-10 are shown in blue, on a log 

scale. (b) Binding affinity profiles (as computed npKi values) of 22 uncharacterized hit 

compounds (rows) at 60 human and rodent CNS receptors in vitro (columns) in addition to 

haloperidol and bromperidol controls.
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Figure 5. Finazine phenocopies haloperidol in zebrafish and in mice
(a) The five compound structures in the finazine cluster (arrow). (b) Heat map showing the 

phenotypic similarity rank of 14 psychiatric drugs (columns) relative to the finazine query at 

each indicated concentration (rows). Each cell in the matrix is divided into 8 segments to 

represent different concentrations, and similarity rank is indicated in the color bar. (c) Plot of 

mouse locomotor activity as measured by distance traveled (y-axis) during the 

psychostimulant (PCP)-induced locomotor assay. Different treatments are as indicated; 

DMSO indicates the vehicle control and 6557321 indicates finazine. PCP was administered 

at 30 min (arrow). Values are mean ± sem.
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