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Abstract
Mast cell (MC) activation contributes considerably to immune responses, such as host pro-

tection and allergy. Cell surface immunoreceptors expressed on MCs play an important role

in MC activation. Although various immunoreceptors on MCs have been identified, the regu-

latory mechanism of MC activation is not fully understood. To understand the regulatory

mechanisms of MC activation, we used gene expression analyses of human and mouse

MCs to identify a novel immunoreceptor expressed on MCs. We found that Tek, which
encodes Tie2, was preferentially expressed in the MCs of both humans and mice. However,

Tie2 was not detected on the cell surface of the mouse MCs of the peritoneal cavity, ear

skin, or colon lamina propria. In contrast, it was expressed on mouse bone marrow–derived

MCs and bone marrow MC progenitors (BM-MCps). Stimulation of Tie2 by its ligand angio-

poietin-1 induced tyrosine phosphorylation of Tie2 in MEDMC-BRC6, a mouse embryonic

stem cell-derived mast cell line, and enhanced MEDMC-BRC6 and mouse BM-MCp adhe-

sion to vascular cell adhesion molecule-1 (VCAM-1) through α4β1 integrin. These results

suggest that Tie2 signaling induces α4β1 integrin activation on BM-MCps for adhesion to

VCAM-1.

Introduction
Mast cells (MCs) are bone marrow (BM)–derived mononuclear cells, found in various tissues,
such as the skin and mucosae, that function as sentinel cells in response to pathogens or other
signs of infection [1]. Conversely, MCs are also associated with pathological conditions such as
allergy through their production of proteases, vasodilating substances, cytokines, and lipid
mediators [2].
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Numerous studies have reported that the number of MCs increases at the inflammatory
sites of allergic diseases in humans and allergic disease models in mice [3–5], probably as a
result of the recruitment of MC progenitors (MCp) to those sites [6–9]. Like other leukocytes,
MCp recruitment to peripheral tissues is regulated by integrins expressed on MCps [6,10]. To
migrate across vascular endothelial cells (ECs) into peripheral tissues, MCps require the α4β1
and α4β7 integrins on their surface to bind to their ligands, mucosal addressin cell adhesion
molecule-1 (MAdCAM-1) and vascular cell adhesion molecule-1 (VCAM-1), on the vascular
ECs [7,11–13]. Especially in inflamed tissues, such as lung and skin, MCp binding to VCAM-1
but not to MAdCAM-1 is essential for MCp transmigration [7,12]. However, the role of che-
mokine receptors on MCps remains obscure [14,15], and the mechanism of integrin activation
on MCps is not fully understood.

After recruitment to the inflammatory site, several cell surface receptors promote MC acti-
vation to enhance immune responses [16]. The high-affinity Fc receptor for IgE (FcεRI) has a
critical role in MC activation [17,18]. In addition, other receptors on MCs, such as Toll-like
receptors, cytokine receptors, complement receptors, and purinergic receptors recognize the
signs of inflammation and transduce activating signals in MCs [16,19]. To regulate MC activa-
tion, the MCs also express inhibitory receptors on their cell surface [20–24]. However, the reg-
ulatory mechanisms of MC activation remain incompletely understood.

Furthermore, even though various receptors that are involved in MCp recruitment and MC
activation have been identified on the cell surface of MCps and MCs, there are still no effective
strategies to regulate these events through modulation of the receptor functions for the treat-
ment of allergic diseases. For these reasons, we sought to identify a novel signal-transducing
receptor on MCps or MCs that regulates MCp or MC activation.

Methods

Human samples
Peripheral blood mononuclear cells were isolated from the blood of healthy volunteers. Written
informed consents were obtained from the volunteers. This study was approved by the ethical
review boards of the University of Tsukuba.

Mice
C57BL/6 mice were purchased from Clea Japan (Tokyo, Japan). All mice used were 8–12-week-
old females or males. All animal experiments in this study were carried out humanely after
receiving approval from the Animal Ethics Committee of the Laboratory Animal Resource Cen-
ter, University of Tsukuba, and in accordance with Fundamental Guideline for Proper Conduct
of Animal Experiment and Related Activities in Academic Research Institutions under the Juris-
diction of the Ministry of Education, Culture, Sports, Science and Technology.

Cells
Human peripheral blood–derived cultured MCs (PB-MCs) were generated, as described [22].
Human T cells (CD3+), B cells (CD19+), and monocytes (CD14+) were isolated from human
peripheral blood mononuclear cells by using a MACS cell separation system (Miltenyi Biotec,
Bergisch Gladbach, Germany).

Mouse BM–derived cultured MCs (BMMCs) were generated, as described [25].
Mouse ear skin cells were isolated as previously described [26] with a minor modification.

In brief, ear tissue was minced, resuspended in RPMI 1640 medium containing 10% FBS and
400 U/mL collagenase type 2 (Worthington Biochemical Corporation, Lakewood, NJ),
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incubated at 37°C for 60 min in an orbital shaker, and passed through nylon wool mesh. Cells
were then analyzed by flow cytometry.

Mouse colon lamina propria cells were isolated, as previously described [27] with a minor
modification. In brief, colon tissues were opened longitudinally, minced into 5 to 10 mm
pieces, and washed extensively with cold PBS. Mucosal pieces were incubated twice with 5 mM
EDTA (Sigma-Aldrich, St. Louis, MO) in Hanks’ balanced salt solution (HBSS) (Sigma-
Aldrich) for 30 min at 37°C, washed with cold PBS and then incubated for 50 min in HBSS
containing 400 U/ml collagenase type 2 and 0.1 mg/mL DNase I (Worthington Biochemical
Corporation). Large debris was removed from the cell suspension by passage through nylon
wool mesh. Cells were isolated by using Percoll density gradient centrifugation (GE Healthcare
Biosciences, Little Chalfont, U.K.), and analyzed by flow cytometry.

The mouse embryonic stem cell–derived mast cell line MEDMC-BRC6 was generated at
RIKEN BioResource Center (Tsukuba, Japan) [28].

RNA sequencing (RNA-seq)
Total RNA of human PB-MCs, T cells, B cells, and monocytes were extracted by using an
RNeasy Mini kit (Qiagen, Hilden, Germany), and a Ribo-Zero rRNA Removal Kit (Illumina,
San Diego, CA) was used to remove ribosomal RNA. RNA-seq was performed according to the
protocol described in the SOLiD Total RNA-Seq Kit (Life Technologies, Carlsbad, CA). The
library was subjected to emulsion PCR (SOLiD™ EZ Bead™ Emulsifier kit, Life Technologies) to
generate clonal DNA fragments on beads, followed by bead enrichment (SOLiD™ EZ Bead™
Enrichment kit, Life Technologies). Enriched template beads were sequenced on a SOLiD
5500xl sequencer as single-end, 75-bp reads (Life Technologies). The SOLiD 5500xl output
reads were aligned against the human genome reference sequence (hg19) by using LifeScope
version 2.5.1 (Life Technologies) to generate BAM files, and subsequent data analysis was per-
formed in Avadis NGS (Strand Scientific Intelligence Inc., San Francisco, CA). The RNA-seq
dataset generated in this study was deposited in NCBI's Gene Expression Omnibus under the
accession number GSE71247.

Gene data analyses
To select genes encoding immunoglobulin (Ig)-like receptors or C-type lectin/C-type lectin-
like (CLECT) receptors, and immunoreceptors containing signaling motif sequences or cata-
lytic domains in their intracellular portion, we analyzed the predicted amino acid sequences of
genes expressed in human PB-MCs by using the NCBI conserved domain database [29] and
in-house Perl scripts. The amino acid sequences of signaling motifs are shown in S1 Table. To
analyze gene expression in mouse MCs, we used the microarray data (GSE10246). Gene
expression values in MCs were defined as the maximum value of the MC samples in
GSE10246. The sample names in GSE10246 are shown in S2 Table.

To analyze the extent of specific gene expression in human MCs, data from our RNA-seq
analysis were used. The extent of specific gene expression was calculated as the average of each
fold change (FC) in gene expression between the MCs and the other cell types (T cells, B cells,
and monocytes).

To analyze the extent of specific gene expression in mouse MCs, data from GSE10246 were
used. Gene expression for each cell type was defined as the maximum value of the samples of
each cell type (S2 Table). The extent of specific gene expression in mouse MCs was calculated
in the same manner as for the human data.
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Antibodies
Phycoerythrin (PE)/cyanine (Cy) 7-conjugated anti-human c-Kit (104D2) monoclonal anti-
body (mAb), allophycocyanin (APC)/Cy7-conjugated anti-mouse CD8a (53–6.7), CD11b
(M1/70), and B220 (RA3-6B2) mAbs, APC/H7-conjugated anti-mouse CD4 (GK1.5) mAb, BD
Horizon V450-conjugated anti-mouse Gr-1 (RB6-8C5) mAb, Pacific blue-conjugated anti-
mouse CD3e (500A2) mAb, biotin-conjugated anti-mouse CD4 (GK1.5), CD8a (53–6.7),
CD11b (M1/70), B220 (RA3-6B2), and TCRβ (H57-597) mAbs, unconjugated anti-β1 integrin
(Ha2/5 and 9EG7) mAbs, and fluorescein-conjugated streptavidin were purchased from BD
Biosciences (San Jose, CA). Fluorescein isothiocyanate (FITC)-conjugated anti-mouse CD27
(LG.3A10) and Sca-1 (D7) mAbs, PE-conjugated anti-human Tie2 (33.1) and anti-mouse β7
integrin (FIB27) mAbs, PE/Cy7-conjugated anti-mouse c-Kit (2B8) mAb, APC-conjugated
anti-mouse ST2 (D1H9) mAb, PerCP/Cy5.5-conjugated anti-mouse β7 integrin (FIB27) mAb,
biotin-conjugated anti-mouse TER-119 (TER-119) and Tie2 (TEK4) mAbs, and unconjugated
anti-β7 integrin (FIB27) mAb were purchased from BioLegend (San Diego, CA). FITC-conju-
gated anti-mouse FcεRIα (MAR-1) mAb, and biotin-conjugated anti-mouse FcεRIα (MAR-1)
mAb were purchased from eBioscience (San Diego, CA). Biotin-conjugated anti-mouse Gr-1
(RB6-8C5) mAb was purchased from Beckman Coulter (Pasadena, CA). Horseradish peroxi-
dase (HRP)–conjugated anti-phosphotyrosine (pTyr) Ab (4G10 platinum) was purchased
fromMerck Millipore (Darmstadt, Germany). Unconjugated anti-Flag (M2) mAb and anti-
Flag polyclonal Ab were purchased from Sigma-Aldrich. HRP-conjugated anti rabbit IgG Ab
was purchased from GE Healthcare Biosciences.

Flow cytometry
Flow cytometric analyses and cell sorting were performed by using FACS LSRFortessa and
FACS Aria flow cytometers (BD Biosciences), respectively. FlowJo software (Tree Star, Ash-
land, OR) was used for data analyses. Dead cells were stained and excluded by using Propidium
iodide solution (P4864, Sigma-Aldrich) or Zombie Violet Fixable Viability Kit (423114,
BioLegend).

Isolation of mouse BM-MCp
Mouse BM-MCps were isolated, as previously described [30]. For analyses of Tie2 expression on
BM-MCps, BM cells were stained with anti-lineage mAb cocktail (including Pacific blue-conju-
gated anti-CD3 mAb, BDHorizon V450-conjugated anti-Gr-1 mAb, and APC/Cy7-conjugated
anti-CD4, CD8, CD11b, and B220 mAbs), PE/Cy7-conjugated anti-c-Kit mAb, FITC-conjugated
anti-FcεRIα, CD27, and Sca-1 mAbs, PerCP/Cy5.5-conjugated anti-β7 integrin mAb, and APC-
conjugated anti-ST2 mAb. Tie2 expression on BM-MCps was analyzed by flow cytometry (FACS
LSRFortessa flow cytometer, BD Biosciences) with biotin-conjugated anti-Tie2 mAb, followed by
PE-conjugated streptavidin.

For BM-MCp isolation, BM cells were stained with biotin-conjugated mAbs specific for
lineage markers: TCRβ, CD4, CD8, B220, CD11b, Gr-1, and TER-119. Cells were then incu-
bated with Streptavidin-Particle Plus-DM (BD biosciences). Lineage positive cells were
removed by BD IMagnet (BD biosciences). The remaining cells were stained with FITC-conju-
gated anti-Sca-1 and CD27 mAbs, PE-conjugated anti-β7 integrin mAb, PE/Cy7-conjugated
anti-c-Kit mAb, APC-conjugated anti-ST2 mAb, and biotin-conjugated mAbs (anti-TCRβ,
CD4, CD8, B220, CD11b, Gr-1, and TER-119) specific to lineage markers and biotin-conju-
gated anti-FcεRIαmAb, followed by APC/Cy7-conjugated streptavidin. BM-MCps (lineage−

c-Kit+ FcεRIα− Sca-1− CD27− β7 integrin+ ST2+) were sorted by flow cytomery (FACS Aria
flow cytometer, BD Biosciences).
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Complementary DNA synthesis and real-time (RT)-PCR
Total RNA was extracted with Isogen reagent (Nippon Gene, Tokyo, Japan), and cDNA was syn-
thesized by using a High Capacity RNA-to-cDNA Kit (Applied Biosystems, Carlsbad, CA). Tek
expression was measured with quantitative RT-PCR, performed with SYBR Green master mix
(Applied Biosystems) and the specific primers. The Gapdh expression level was used as an inter-
nal control to normalize data. Primer sequences of the target genes are: Tek, forward, 5’-GTG
AAGGTCGAGTTCGAGGA-3’, reverse, 5’-CCCTGTCCACGGTCATAGTT-3’; Gapdh, for-
ward, 5’-TGGTGAAGGTCGGTGTGAAC-3’, reverse, 5’-ATGAAGGGGTCGTTGATGGC-3’.

Establishment of transfectants
MEDMC-BRC6 transfectants stably expressing wild-type (WT) Tie2 or mutant Tie2 lacking
the cytoplasmic portion (ΔCyt) and tagged with a Flag at the N-terminus were established as
previously described [25], by transfection with WT Tek cDNA and mutated Tek cDNA encod-
ing the extracellular and transmembrane portions subcloned into the pMXs retroviral vector
[31].

Biochemical analysis
To analyze the tyrosine phosphorylation of Tie2, MEDMC-BRC6 transfectants were stimu-
lated with recombinant human angiopoietin-1 (Ang1) (923-AN; R&D Systems, Minneapolis,
MN) (250 ng/mL) for 3 to 10 min at 37°C, lysed with 1% NP-40 lysis buffer, and immunopre-
cipitated with an anti-Flag M2 mAb (F3165; Sigma-Aldrich). Immunoprecipitates were
resolved by SDS–PAGE, transferred onto polyvinylidene difluoride membranes by electro-
blotting, immunoblotted with HRP-conjugated anti-pTyr Ab (4G10 and PY20; Merck Milli-
pore) and an anti-Flag polyclonal Ab, followed by an HRP-conjugated anti-rabbit IgG Ab.
Proteins were detected by enhanced chemiluminescence (Thermo Fisher Scientific, Wal-
tham, MA).

Adhesion assay
MEDMC-BRC6 transfectants (3 × 104 per well), mouse BM-MCps (5 × 103 to 1 × 104 per
well), or mouse BMMCs (3 × 104 per well) were incubated in the presence or absence of recom-
binant human Ang1 (923-AN; R&D Systems) (250 ng/mL) with or without a neutralizing anti-
β1 integrin mAb (Ha2/5) (20 μg/mL), a neutralizing anti-β7 integrin mAb (FIB27) (20 μg/mL),
or a control Ab (hamster IgM, rat IgG2a) (20 μg/mL) for 30 min to 1 h. Cells were then cul-
tured for 1 h in flat-bottomed 96-well plates that were precoated with a human IgG1 Ab
(AG502; Merck Millipore) or mouse VCAM-1-Fc (643-VM; R&D Systems) (3 μg/mL) for 16 h
and blocked for 1 h with PBS containing 2% BSA. After removal of the non-adherent cells by
gentle washing with PBS, the number of adherent cells in 20 mm2 per well was counted under
a BZ-X710 All-in One Fluorescence Microscope (Keyence, Osaka, Japan).

Statistical analysis
Statistical analyses were performed by using the two-tailed Student’s t-test (GraphPad Prism
5, GraphPad Software, La Jolla, CA) for quantitative RT-PCR assay or the ANOVA test with
the post-hoc Tukey-Kramer test (GraphPad Prism 5, GraphPad Software) for adhesion
assays.
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Results

Identification of Tek expression in MCs
To identify a novel receptor that regulates MC activation, we performed RNA-seq analysis of
human MCs, which were induced by culture of CD34+ hematopoietic stem cells (HSC) in
peripheral blood [22,32]. Human peripheral blood-derived MCs (PB-MCs) were found to
express 16,869 genes. By using the NCBI conserved domain database [29] to analyze the pre-
dicted amino acid sequences, we selected 383 and 59 genes encoding proteins that belong to
the Ig-like receptor superfamily and the CLECT receptor family, respectively (Fig 1A). We
then used in-house Perl scripts and the NCBI conserved domain database to select genes
encoding receptors that potentially mediated activating or inhibitory signals through the
amino acid sequences (S1 Table) of following signaling motifs or catalytic domains in their
intracellular regions: immunoreceptor tyrosine-based activation motif (ITAM), immunorecep-
tor tyrosine-based inhibitory motif (ITIM) or ITIM-like amino acid sequences, PI3K binding
motif, or conserved catalytic domains of protein tyrosine kinases (PTKc) and protein tyrosine
phosphatase (PTPc) (Fig 1A, S3 Table). Next, we examined the gene expression levels of the
candidates in mouse MCs by using the published microarray data (GSE10246) based on
BMMC analysis, and selected genes with a normalized expression level of more than 100 (Fig
1A, S3 Table). Finally, to select genes preferentially expressed in MCs compared with other cell
types, we analyzed the extent of specific expression in MCs by using the RNA-seq data from
human cells and the data from GSE10246 (Fig 1B). On the basis of our results, we focused on

Fig 1. Tek expression in MCs. (A) Candidate genes were selected on the basis of humanMC gene expression data obtained from RNA-seq analysis (1),
the NCBI conserved domain database (2)(3), in-house Perl scripts (3), and mouse MC gene expression data obtained from the microarray data (GSE10246)
(4). (B) The expression of selected genes in MCs were compared with that in other cell types by using human (GSE71247) and mouse (GSE10246) gene
expression data. MCs, mast cells; T, T cells; B, B cells; Mos, monocytes; NK, natural killer cells; DCs, dendritic cells; MPs, macrophages.

doi:10.1371/journal.pone.0144436.g001
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the Tie2-encoding gene Tek, which was expressed at higher levels in human and mouse MCs
compared with other cell types.

Tie2 is expressed on BMMCs and BM-MCps in mice and PB-MCs in
humans
Next, we analyzed Tie2 expression on the cell surface of mouse MCs. Although BMMCs
expressed Tie2 on the cell surface (Fig 2A), Tie2 was not expressed on MCs in the peritoneal
cavity, ear skin, or colon lamina propria (Fig 2B). Since BMMCs are considered immature
compared with tissue-resident MCs, on the basis of their granule contents [33,34], we hypothe-
sized that MCps in the bone marrow (BM-MCps) might also express Tie2. As predicted, Tie2
was expressed on BM lineage− c-Kit+ FcεRIα− Sca-1− CD27− β7 integrin+ ST2+ cells (Fig 2C)
that has been defined as BM-MCp population [30]. In addition, Tek expression was detected in
sorted BM-MCps, and it was significantly higher than that in sorted MCs of peritoneal cavity

Fig 2. Tie2 is expressed on BMMCs and BM-MCps in mice and PB-MCs in humans. (A) Mouse BMMCs were generated as described in the Methods.
Tie2 expression on BMMCs was analyzed by staining with an isotype control Ab and an anti-mouse Tie2-specific mAb. Stained cells were analyzed by using
flow cytometry. (B) MCs in mouse peritoneal exudate cells (PECs), ear skin cells, and colon lamina propria (LP) cells were detected by using the Abs
described in the Methods. Tie2 expression on each cell was analyzed as described in A. (C) Mouse BM-MCps were detected as described in the Methods.
Tie2 expression on BM-MCps was analyzed as described in A. Lineage markers: CD3, CD4, CD8, CD11b, B220, and Gr-1. (D) Mouse BM-MCps were
sorted as described in the Methods. Mouse PEC-MCs were sorted by using the Abs described in the Methods and flow cytometry. Tek expression was
measured by using real-time reverse transcription-PCR. (E) Human PB-MCs were generated as described in the Methods, and Tie2 expression was
analyzed by flow cytometry. Shaded histograms show staining of isotype control Ab. Data showmean values ± SEM (n = 5). ***p < 0.001.

doi:10.1371/journal.pone.0144436.g002
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(Fig 2D). We found that Tie2 was also expressed on human PB-MCs, which were characterized
by c-Kit+ cells after the culture of CD34+ HSCs in the presence of SCF, IL-6, and IL-3 [22,32]
(Fig 2E).

Tie2 signaling enhances MEDMC-BRC6 cell adhesion to VCAM-1
through α4β1 integrin
To study the function of Tie2 on MCps, we established MEDMC-BRC6 transfectants, which
express either WT Tie2 (WT/MEDMC-BRC6) or Tie2 lacking the cytoplasmic portion (ΔCyt/
MEDMC-BRC6). Cell surface expression of Tie2 was comparable between WT/
MEDMC-BRC6 and ΔCyt/MEDMC-BRC6 (S1 Fig). After treatment of the transfectants with
angiopoietin-1 (Ang1), which is an agonistic ligand of Tie2 [35], tyrosine phosphorylation of
Tie2 was upregulated in WT/MEDMC-BRC6, but not in ΔCyt/MEDMC-BRC6 (Fig 3A).
These results indicate that Ang1 induces Tie2 signaling in MEDMC-BRC6.

In inflammatory conditions such as allergic diseases, MCps migrate across vascular ECs
into the inflamed tissue via the interaction of α4β1 and α4β7 integrins on MCps with VCAM1
on ECs [7,11,12]. Yet, Ang1-Tie2 signaling enhances cell adhesion to extracellular matrix via
β1 integrin [36–38]. In addition, since Ang1 is expressed by peri-endothelial mural cells [39],
we hypothesized that Ang1-Tie2 signaling in MCps may participate in MCp migration across
vascular ECs by regulating MCp adhesion to VCAM-1 via α4β1 integrin. To test this hypothe-
sis, we treated WT/MEDMC-BRC6 and ΔCyt/MEDMC-BRC6 with Ang1, both of which
expressed α4 integrin and β1 integrin (S1 Fig), and examined the adhesion of these cells to
plate-coated VCAM-1. We found that treatment with Ang1 enhanced MEDMC-BRC6 adhe-
sion to VCAM-1, which required the cytoplasmic portion of Tie2 (Fig 3B). We then assessed
the involvement of α4β1 integrin in this enhancement of adhesion. The addition of a neutraliz-
ing Ab against β1 integrin into this assay completely abolished the effect of Ang1-Tie2 signal-
ing on MEDMC-BRC6 adhesion to VCAM-1 (Fig 3C). These results indicate that Tie2
signaling is involved in α4β1 integrin-mediated adhesion of MEDMC-BRC6 to VCAM-1.

We used two clones of anti-β1 integrin mAb (clone Ha2/5 and 9EG7) to analyze the β1
integrin expression on the transfectants (S1 Fig). Clone Ha2/5 recognizes both active and inac-
tive form of β1 integrin, and clone 9EG7 recognizes an activation-associated epitope of β1
integrin. The binding of clone 9EG7 was downregulated in ΔCyt/MEDMC-BRC6 compared
with WT/ MEDMC-BRC6 (S1 Fig). In contrast, the downregulation of the binding of clone
Ha2/5 in ΔCyt /MEDMC-BRC6 was markedly less, compared with that of clone 9EG7 (S1 Fig).
These results indicate that the difference of clone 9EG7 binding between WT and ΔCyt/
MEDMC-BRC6 was due to less active form of β1 integrin on ΔCyt/MEDMC-BRC6.

Ang1 treatment enhances mouse BM-MCp adhesion to VCAM-1
through α4β1 integrin
To examine whether Tie2 expressed on MCps regulates adhesion of MCps to VCAM-1, we
sorted mouse BM-MCps from BM by means of flow cytometry. Similarly to MEDMC-BRC6
transfectant, while BM-MCps showed enhanced adhesion to plate-coated VCAM-1 after treat-
ment with Ang1 (Fig 4A), the Ang1-induced enhancement of BM-MCp adhesion to VCAM-1
was completely abolished in the presence of a neutralizing Ab against β1 integrin (Fig 4B).
These results indicate that Tie2 signaling is involved in the α4β1 integrin-mediated adhesion of
MCps to VCAM-1.

It is reported that Ang1-Tie2 signaling enhances β1 integrin expression in HSCs and neo-
plastic glial cells [37,38]. To examine whether Ang1 treatment enhances β1 integrin expression
or activation in MEDMC-BRC6 transfectants and BM-MCps, we used two clones of anti-β1
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integrin mAbs (Ha2/5 and 9EG7) as described at the previous sub-section. As a result, binding
of both mAbs against β1 integrin to MEDMC-BRC6 transfectants and BM-MCps were not
enhanced after Ang1 treatment (S2 Fig). These results indicate that Ang1 treatment did not
upregulate the expression of β1 integrin on the cell surface.

Unlike the adhesion of MEDMC-BRC6 transfectants, BM-MCp adhesion to VCAM-1 was
not inhibited so extensively by adding a neutralizing Ab against β1 integrin. Since α4β7

Fig 3. Tie2 signaling enhances MEDMC-BRC6 adhesion to VCAM-1 through α4β1 integrin. (A) WT/
MEDMC-BRC6 and ΔCyt/MEDMC-BRC6 transfectants were established as described in the Methods.
Transfectants were stimulated with Ang1 (250 ng/mL), and immunoprecipitated (IP) with an anti-Flag mAb.
Tyrosine phosphorylation of Tie2 was analyzed by blotting with anti-pTyr Ab. (B) WT/MEDMC-BRC6 and
ΔCyt/MEDMC-BRC6 were treated with Ang1 (250 ng/mL) or not and incubated on hIgG1- or VCAM-1-Fc-
coated wells. Adherent cells, as observed blue-colored, were counted by using a microscope (20 mm2 per
well). (C) Neutralizing anti-β1 integrin Ab (20 μg/mL) or control Ab (20 μg/mL) was added under the
conditions described in B. Cells were incubated on VCAM-1-Fc-coated wells, and adherent cells were
similarly counted. WT, WT/MEDMC-BRC6; ΔCyt, ΔCyt/MEDMC-BRC6. Scale bars, 200 μm. Data show
mean values ± SEM (n = 3 or 5). ***p < 0.001.

doi:10.1371/journal.pone.0144436.g003

Tie2 Signaling in Mast Cell Progenitor

PLOS ONE | DOI:10.1371/journal.pone.0144436 December 11, 2015 9 / 16



integrin is also involved in VCAM-1 dependent MCp transmigration to peripheral tissue [7],
we examined the involvement of β7 integrin in BM-MCp adhesion to VCAM-1 by adding a
neutralizing anti-β7 integrin Ab into the adhesion assay. As a result, adding both anti-β1 integ-
rin and anti-β7 integrin Abs inhibited BM-MCp adhesion to VCAM-1 greater than adding
each of the Ab (S3 Fig). However, even in the condition that both neutralizing mAbs were
added, BM-MCp adhesion to VCAM-1 was not inhibited completely. This result indicates that
adhesion through integrins other than β1 and β7 integrin or other mechanisms are also
involved in the BM-MCp adhesion to VCAM-1.

Ang1 treatment enhances mouse BMMC adhesion to VCAM-1 through
α4β1 and α4β7 integrin
To examine whether Ang1 treatment activate α4β7 integrin as well as α4β1 integrin for adhe-
sion to VCAM1, we used mouse BMMCs, which, unlike MEDMC-BRC6 transfectants,
expressed β7 integrin as well as β1 integrin (S1 and S4A Figs). Ang1 treatment enhanced
BMMC adhesion to VCAM-1 (S4B Fig), and this effect was completely abolished by addition
of a neutralizing Ab against β1 integrin (S4C Fig). However, addition of a neutralizing Ab

Fig 4. Ang1 treatment enhancesmouse BM-MCp adhesion to VCAM-1 through α4β1 integrin (A)
Mouse BM-MCps were stimulated with or without Ang1 (250 ng/mL) and cultured in wells that were precoated
with human IgG1 Ab or mouse VCAM-1-Fc. Adherent cells, as observed blue-colored, were counted by using
a microscope (20 mm2 per well). (B) Neutralizing anti-β1 integrin Ab (20 μg/mL) or control Ab (20 μg/mL) was
added under the conditions described in A. BM-MCps were incubated on VCAM-1-Fc-coated wells, and
adherent cells were similarly counted. Scale bars, 200 μm. Data showmean values ± SEM (n = 3 or 5).
*p < 0.05, ***p < 0.001.

doi:10.1371/journal.pone.0144436.g004
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against β7 integrin also significantly suppressed the effect of Ang1 treatment on the BMMC
adhesion (S4D Fig). These results indicate that, although β1 integrin play a major role in
BMMC adhesion to VCAM-1, β7 integrin is also involved in the adhesion induced by Ang1.

Discussion
Tie2, a receptor-type tyrosine kinase, is expressed on vascular and lymphatic ECs, HSCs, and
tumor-associated monocytes [39–41]. Ligands of Tie2 include Ang1 and angiopoietin-2
(Ang2) [39]. There is evidence that in both ECs and HSCs Ang1-Tie2 signaling promotes cell
survival, migration, and cell adhesion to extracellular matrix such as fibronectin and collagen
via integrin [36,39,42]. Although we found that Tek was preferentially expressed in MCs, it has
remained unclear whether Tie2 is expressed on the cell surface of primary MCs and, if it is,
what its functional role might be in MC activation.

We showed that although mouse BMMCs expressed Tie2, matured MCs in the mouse
peripheral tissues did not (Fig 2A and 2B). The reason for this difference may be that the gene
expression data from the human and mouse MCs used for the selection of Tie2 were obtained
from in vitro differentiated MCs. In primary cells, we detected Tie2 expression on mouse
BM-MCps in both protein and mRNA levels (Fig 3C and 3D). These results suggest that Tie2
expression on the cell surface is restricted to immature MCs and is suppressed after matura-
tion. We found that Tie2 was also expressed on human PB-MCs (Fig 2E), which are immature
MCs, consistent with the case of mouse immature MCs. In addition, lower expressions of Tek
in mouse matured tissue MCs compared with the expression in hematopoietic progenitor cells
can be also observed in the gene expression database (https://www.immgen.org).

We found that stimulation of Tie2 with Ang1 enhanced adhesion of MEDMC-BRC6 trans-
fectants and mouse BM-MCps to VCAM-1 via α4β1 integrin (Figs 3 and 4). These results are
consistent with previous reports that Ang1-Tie2 signaling enhances adhesion of HSCs and
neoplastic glial cells to extracellular matrix via β1 integrin [36–38]. Moreover, there have been
reports that the concentration of Ang1 is increased in the serum and lungs of patients with
asthma [43,44]. These reports suggest that serum Ang1 may stimulate MCps to enhance their
migration across vascular ECs into inflamed tissues. However, this concept is controversial,
because another study reported a decrease, rather than an increase, in the serum titer of Ang1
in asthmatic patients [45]. The expression of Ang2, another ligand of Tie2, had also been
reported to increase in asthmatic lung [43]. Ang2 is classically known to antagonize the
Ang1-Tie2 interaction and to promote EC destabilization at the inflammatory site [46],
whereas higher concentration of Ang2 have agonistic effects on Tie2 signaling and enhance EC
survival [47,48]. Although further analyses are required, the role of the angiopoietin-Tie2 sys-
tem in MCp transmigration is a promising target for the treatment of allergic diseases, by regu-
lating the recruitment of MCps to inflamed tissues and preventing the increase in MC numbers
at the site of inflammation.

The smaller effect of Ang1 treatment on BM-MCp adhesion to VCAM-1 may be due to a
lower expression level of Tie-2 compared to WT/MEDMC-BRC6 transfectant. In addition, it
may also be caused by the presence of Ang1 produced by stromal cells, including osteoblasts,
and hematopoietic progenitor cells, in the BM [49,50], which had partially activated Tie2 on
BM-MCps in the BM before isolation.

The expression of β1 integrin and the activation-associated epitope of β1 integrin that is rec-
ognized by clone 9EG7 were not enhanced by Ang1 treatment (S2 Fig). Since clone 9EG7 can
recognize α4β1 integrin in the absence of the ligands [51,52], it may be possible that Ang1-Tie2
signaling enhances the transformation of α4β1 integrin from intermediate affinity form to high
affinity form by promoting outside-in signaling after the interaction with VCAM-1.
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Although Ang1 treatment of WT/MEDMC-BRC6 increased tyrosine phosphorylation of
Tie2 and adhesion to VCAM-1, both tyrosine phosphorylation and adhesion were also
detected even before the treatment at a lower level (Fig 3A and 3B). In addition, less active
form of β1 integrin was expressed on ΔCyt/MEDMC-BRC6 than on WT/MEDMC-BRC6 (S1
Fig). These results may be caused by ligand-independent Tie2 dimerization in WT/
MEDMC-BRC6, as reported in HEK293T transfectant expressing Tie2 showing tyrosine phos-
phorylation of Tie2 without any stimulation [53].

Ang-1 is also known to regulate HSC quiescence in BM hematopoietic niches [37]. In addi-
tion, hematopoietic stem and progenitor cells are retained in BM hematopoietic niches through
the interaction between α4β1 integrin expressed on their surface and VCAM-1 present on cells
that comprise the niches [54–56]. Thus, our data suggest that Ang-1 may also regulate
BM-MCp retention in BM hematopoietic niches via Tie2 signaling.

To analyze Tie2 function more definitively in primary cells, Tie2-deficient cells are required.
However, since Tie2-deficient mice die between E10.5 and E12.5 [39], we could not analyze the
function of Tie2 using Tie2-deficient BM-MCps. The establishment of MCp-specific Tie2-defi-
cient mice will foster more precise analysis of Tie2 function in MCps.

Supporting Information
S1 Fig. Tie2 and Integrin expressions on MEDMC-BRC6 transfectants. The numbers indi-
cate ratios of mean fluorescence intensity (MFI) of anti-Tie2 mAb or anti-integrin mAb stain-
ing to that of isotype control Ab staining.
(TIF)

S2 Fig. β1 integrin expressions after Ang1 treatment.MEDMC-BRC6 transfectants and
mouse BM-MCps were incubated in the presence or absence of Ang1 (250 ng/mL) for 90 to
120 min. β1 integrin expressions were then analyzed by flow cytometry. Histograms of solid
lines show staining of anti-β1 integrin mAbs to cells incubated with (red) and without (black)
Ang1. Shaded histograms show staining of isotype control Abs to cells incubated without
Ang1.
(TIF)

S3 Fig. Involvement of β1 and β7 integrins in mouse BM-MCp adhesion to VCAM-1.
Mouse BM-MCps were cultured with neutralizing anti-integrin Abs or control Abs (20 μg/mL
each) in wells that were precoated with human IgG1 Ab or mouse VCAM-1-Fc. Adherent cells
were counted by using a microscope (20 mm2 per well).
(TIF)

S4 Fig. Ang1 treatment enhances mouse BMMC adhesion to VCAM-1 through α4β1 and
α4β7 integrin. (A) β1 and β7 integrin expressions on BMMCs were analyzed by flow cytome-
try. (B) Mouse BMMCs were treated with or without Ang1 (250 ng/mL) and cultured in wells
that were precoated with human IgG1 Ab or mouse VCAM-1-Fc. Adherent cells, as observed
blue-colored, were counted by using a microscope (20 mm2 per well). (C) Neutralizing anti-β1
integrin Ab (20 μg/mL) or control Ab (20 μg/mL) was added under the conditions described in
B. BMMCs were incubated on VCAM-1-Fc-coated wells, and adherent cells were similarly
counted. (D) Neutralizing anti-β7 integrin Ab (20 μg/mL) or control Ab (20 μg/mL) was added
under the conditions described in B. BMMCs were incubated on VCAM-1-Fc-coated wells,
and adherent cells were similarly counted. Scale bars, 200 μm. Data show mean values ± SEM
(n = 4 or 5). �p< 0.05, ���p< 0.001.
(TIF)
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