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Abstract

Dysregulation of miRNAs expression plays a critical role in the pathogenesis of genetic, multifactorial disorders and in
human cancers. We exploited sequence, genomic and expression information to investigate two main aspects of post-
transcriptional regulation in miRNA biogenesis, namely strand selection regulation and expression relationships between
intragenic miRNAs and host genes. We considered miRNAs expression profiles, measured in five sizeable microarray
datasets, including samples from different normal cell types and tissues, as well as different tumours and disease states.
First, the study of expression profiles of ‘‘sister’’ miRNA pairs (miRNA/miRNA*, 59 and 39 strands of the same hairpin
precursor) showed that the strand selection is highly regulated since it shows tissue-/cell-/condition-specific modulation.
We used information about the direction and the strength of the strand selection bias to perform an unsupervised cluster
analysis for the sample classification evidencing that is able to distinguish among different tissues, and sometimes between
normal and malignant cells. Then, considering a minimum expression threshold, in few miRNA pairs only one mature miRNA
is always present in all considered cell types, whereas the majority of pairs were concurrently expressed in some cell types
and alternatively in others. In a significant fraction of concurrently expressed pairs, the major and the minor forms found at
comparable levels may contribute to post-transcriptional gene silencing, possibly in a coordinate way. In the second part of
the study, the behaved tendency to co-expression of intragenic miRNAs and their ‘‘host’’ mRNA genes was confuted by
expression profiles examination, suggesting that the expression profile of a given host gene can hardly be a good estimator
of co-transcribed miRNA(s) for post-transcriptional regulatory networks inference. Our results point out the regulatory
importance of post-transcriptional phases of miRNAs biogenesis, reinforcing the role of such layer of miRNA biogenesis in
miRNA-based regulation of cell activities.
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Introduction

The discovery of microRNA-based post-transcriptional regula-

tion of gene expression added a novel level of genetic regulation to

a wide range of biological processes, including cell differentiation,

organogenesis and development [1–3]. Dysregulation of miRNAs

expression plays a critical role in the pathogenesis of genetic and

multifactorial disorders (http://www.mir2disease.org/) and of

most, if not all, human cancers [4].

Two different aspects of miRNAs biogenesis have been studied

by integration of genomic information with sequence and

expression data, specifically i) the strand selection bias, affecting

all miRNAs and involving the mature pairs (‘‘sister’’) derived from

the same hairpin precursors; and ii) the processing of intragenic

miRNAs with the corresponding host gene transcripts.

With regard to strand selection bias, two different mature

miRNAs sequences can be derived from the same precursor hairpin:

a major, the stable and prevalent form, and a minor, the unstable

one, degraded. The two forms are associated to different sets of

target genes, thus contributing in different ways to the regulation of

cell activities; experiments conducted on selected miRNAs pairs

demonstrated that they could be both functionally effective [5].

According to the conventional model, Dicer cleaves the pre-

miRNA hairpin to produce a miRNA duplex (,22 nt), which is

incorporated into the RISC. The RISC recognizes the duplex,

unwinds it, selects the guide miRNA strand (while degrading the

passenger strand), and mediates recognition and silencing of target

RNAs. To date, such asymmetry of the strand selection process is

considered determined by differential thermodynamic stability of

alternative sister miRNAs (‘‘strand bias’’ theory, as in [6,7]),

although additional features possibly acting as miRNA strand

selection determinants in humans and flies were also investigated

[8]. In contrast, fragmentary but interesting evidences of regulated

and tissue-dependent paired expression of sister miRNAs have

been reported [5]. To support this, a recent paper has been

published reporting sequencing and characterization of bovine

miRNAs [9], which underlined that only 60% of them displayed

thermodynamic stability-dependent strand selection bias. These
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studies introduced innovative concepts and unravelled that i) both

sister mature miRNAs may be accumulated in some tissues and

cell types, and ii) the strand selection might not be deterministic

but tissue-specific, so that a given strand could be guide strand in a

specific cell type and passenger in another one. The crucial

pathogenetic role of the passenger strand has been pointed out by

a study on thyroid cancer [10].

Our results on genome-wide investigation of co-expression

relationships between mature sister miRNAs highlight that

different biological contexts most likely share complex mechanisms

of strand selection regulation, leading either to alternative

expression of a single mature form or to concurrent expression

of both mature sister miRNAs.

Another aspect of miRNAs characteristic is the co-expression of

intragenic miRNAs and host genes which is crucial to i) elucidate

possible transcriptional and post-transcriptional regulatory circuits

and ii) clarify, from a methodological point of view, whether host

genes expression data may be profitably used as proxy of

intragenic miRNAs expression.

Mature miRNAs can cause translation inhibition or mRNA

cleavage, by base pairing with the 39 untranslated region (39-UTR)

of their target mRNAs, depending on the complementarity degree

between the miRNA and its target sequence [11,12]. Target

mRNAs of miRNAs can be predicted by computational methods.

Although comparative evaluations of different target prediction

methods provided some kind of ranking of the sensitivity of

different algorithms [13–15], it is well known that any available

software produces a large fraction of false positive predictions.

This might be due not only to the limited comprehension of the

molecular basis and effect of miRNA-target pairing, but also to

context dependency of post-transcriptional regulation. Thus, the

integration of target predictions with miRNA and target mRNA

expression profiles has been proposed to select functional miRNA-

mRNA relationships, according to increasing experimental

evidences which supported the miRNA mechanism of target

degradation rather than translational repression. Since miRNAs

tend to down-regulate target mRNAs [16–18], the expression

profiles of genuinely interacting pairs are expected being anti-

correlated. The integrative analysis [19–21] allows the selection of

plausible in-silico predictions [22], gaining insights into the

reconstruction of regulatory networks that govern genetic

pathways of important biological processes. The main limitation

of such integrative approach is the relative shortage of matched

miRNA/mRNA expression datasets (i.e. miRNA and mRNA

expression measures in exactly the same set of biological samples).

Recently, some evidences have been provided that in specific

contexts some miRNAs are co-expressed with their host genes

[23–25]. This led to suggestion that miRNA host genes expression

profiles might be used as possible proxy for the expression profile

of the embedded miRNA [26]. Other reports, as Polster et al. 2010

[27], pointed out specific cases of discordant expression of miRNA

and host genes. To clarify if and how much intragenic miRNAs

are co-expressed with host genes, we thus collected different

human datasets of miRNAs and genes expression profiles in

normal tissues and tumour samples and extensively studied the co-

expression of intragenic miRNAs and their host genes, to obtain a

fairly broad picture of their relationship.

Results

Table 1 shows details about microarray-based expression

datasets considered for each different analysis performed in this

study. Datasets were selected to obtain expression profiles of large

numbers of known miRNAs, measured in many samples,

representing fairly different biological contexts. As detailed in

the Materials and Methods section, out four microarray-based

datasets including matched miRNA and gene expression profiles,

two regard blood cells (Multiple Myeloma and normal plasma cells

samples (MM) [20], Acute Lymphoblastic Leukaemia samples

(ALL) [28]) whereas the other two regard parietal lobe cortex

(normal and with in Alzheimer’s disease, ALZ) and prostate

(normal and cancer). A fifth dataset, include miRNA only

expression profiles in 8 different cancer types and corresponding

normal tissues samples (MCN) [29]. The number of miRNAs

represented in each expression dataset is also indicated in Table 1.

We considered all mature miRNAs in miRBase, where 676

(corresponding to 869 mature sequences) were assigned to unique

genomic locations whereas the remaining were discarded, since

unmapped or corresponding to more than one different localiza-

tion per miRNA.

Expression of sister mature miRNA pairs belonging to the
same hairpin

Two different mature miRNA sequences (miRNA/miRNA*)

are generated from a fraction of precursor hairpins and are

associated to different sets of target genes and regulated cell

activities. We considered expression profiles of mature miRNAs,

obtained by microarray platforms specifically designed to measure

mature forms.

Table 1. Schema of expression datasets used for different levels of analyses in this study.

DATASETS

Matched miRNA and genes
expression data

miRNA-only expression
data

MM ALL ALZ PRO MCN

Total number of miRNAs in the original series matrix 722 470 462 373 722

ANALYSES sister miRNA pairs ! ! ! ! !

Intragenic miRNA/host
gene

Co-expression ! ! ! !

Real/Proxy for network
reconstruction

! ! ! !

Among five expression datasets obtained by microarray technology, four comprise matched miRNA and gene expression, whereas one includes only miRNA expression
data.
doi:10.1371/journal.pone.0023854.t001

Host Genes, Strand Selection and miRNA Expression
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Part of miRNA hairpin sequences is represented, in each

dataset, by two different mature miRNAs, each one associated to

an individual expression profile. Identical mature pairs derived

from hairpins belonging to different genomic localizations were

considered only once, obtaining a set of 237 couples of sister

mature miRNAs from the same hairpin represented in the MCN,

MM datasets was considered. In ALL, ALZ and PRO datasets we

found respectively 32, 37 and 95 sister miRNA pairs.

The investigation of expression relationships between sister

miRNA pairs provided interesting clues about strand selection bias

regulation. We were willing to understand if one miRNA in the

pair is more expressed than the other in all tissues/cell types/

conditions or if the strand selection bias may be cell/tissue-specific.

The cluster analysis of samples and of miRNAs pairs according to

standardised per sample log2(ratio) between expression values of

59 and 39 sister miRNAs provides a general picture of expression

prevalence among sister miRNA pairs. Only five miRNA pairs are

represented in all considered datasets (Figure S1). The heatmap in

Figure 1 shows patterns of 59/39 prevalence for a set of 95 sister

miRNAs in 211 samples deriving from the combination of three

datasets giving rise to the maximum number of miRNA pairs

(MM, PRO and MCN). It is worth notice that heatmaps in

Figure 1 and S1 are not quantitative results derived from

expression data meta-analysis, but rather they provide qualitative

information about the prevalence among sister miRNA pairs.

We found that the standardised log2(ratio) of expression values

between two sister miRNAs, is able to fairly well separate different

samples/tissue types. Even if a laboratory/study effects can not be

excluded, normal and malignant B cells, derived from the same

dataset (MM) are correctly separated, suggesting that standardised

log2(ratio) of expression values may help distinguish normal and

tumour samples. Figure 1 shows that, for a considerable fraction of

the pairs, the same miRNA is the most expressed in the majority of

considered samples. No general prevalence of 59 or 39 strands was

observed. Among pairs expressed at comparable level in part of

considered samples, only minority are associated to standardised

Figure 1. Variability of strand selection bias across samples. The heatmap evidences patterns prevalence for a set of 95 59/39 sister miRNA
pairs obtained by the combination of three out of five considered datasets giving rise to the maximum number of represented miRNA pairs (MM, PRO
and MCN). The group includes 211 samples representing normal and malignant B cells plus two sets of solid tumours and corresponding normal
tissues. Lines and columns of the heatmap respectively represent miRNA pairs and samples ordered by hierarchical cluster analysis of standardized
per sample expression values log2(ratio) of sister miRNA pairs. Samples are tagged according to cell or tissue type and to normal or cancer state, to
facilitate the interpretation of sample clustering. The red-blue colour scale indicates the extent of prevalence of one or another miRNA in the pair. A
positive (red) value indicates that, in a given sample, the 59 miRNA is more expressed than the 39 miRNA, negative (blue) values indicates the opposite
case and comparable expression values between sister miRNAs are indicated by log2(ratio) values around 0 and are shown in white or pale colours.
The heatmap shows clearly the existence of pairs in which only one miRNA is prevalent across the majority of samples, but also pairs showing
variable strand selection bias in different sample groups, representing different tissue types. Moreover, sample clustering based on standardized per
sample log2(ratio) of sister miRNAs expression values is able to fairly well classify different tissues, and in case of MM, to distinguish normal and
malignant B cells.
doi:10.1371/journal.pone.0023854.g001

Host Genes, Strand Selection and miRNA Expression
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log2(ratio) of expression values close to zero in all considered

samples. We can conclude that for the large majority of pairs the

strand selection bias may be tissue/cell specific. Indeed, the

heatmap shows lines in which positive and negative values are

mixed, corresponding to sister miRNA pairs showing a not

deterministic strand selection bias. At least two sets of miRNAs

seem to be expressed in B cells with inverse ratio respectively to

other tissues. For instance, 22 pairs shows mean values of

expression log2(ratio) in the two sample sets of opposite sign, and

16 miRNA pairs shows mean values of expression log2(ratio) in

MM and in all the other samples differing at least one point in the

scale of standardised values.

Many mature miRNAs are characterized by low expression

values, slightly over background, and possibly associated to

miRNA cellular concentrations insufficient to guarantee the

biological activity. Thus, as explained in Methods, mature

miRNAs were tagged as ‘‘expressed’’ in a given sample whenever

the expression level was higher than the median of all expression

values in the matrix. Then, sister miRNA pairs may be

alternatively (i.e. only one out of two sister miRNAs is present)

or concurrently expressed (both miRNA and miRNA* are present)

in a given sample. Therefore, for each of the five considered

datasets, miRNA pairs fall in one of the following categories

(Figure 2, Table 2):

Figure 2. miRNA sister pairs categories. miRNA sister pairs were classified according to their tendency of being concurrently or alternatively
expressed in those samples in which at least one of the pairs is expressed over the threshold (median of all expression values). Left panels show the
criteria for classification, using example expression profiles in four theoretical samples (S1-4) for a general miRNA pair (miR/miR*). Single miRNAs are
considered expressed in those samples with signal intensity over the threshold (black dotted line). A sister pair may result alternatively (A) or
concurrently (C) expressed, in a given sample. Then, considering expression in all samples, a sister pair will be: alternatively expressed (A; the two
miRNAs of the pair are never expressed together in considered samples); alternatively expressed in some samples and concurrently expressed in
others (AC); always concurrently expressed in the same set of samples (C). For each category, right panels show example expression profiles in MM
samples of specific miRNA pairs belonging to the category.
doi:10.1371/journal.pone.0023854.g002

Host Genes, Strand Selection and miRNA Expression
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– A: alternatively expressed, with concurrent expression never

occurring in considered samples;

– C: concurrently expressed pairs in the same set of samples

(expressed concurrently whenever expressed);

– AC: miRNAs pairs resulting alternatively expressed in some

samples and concurrently expressed in others.

According to microarray data, the majority of miRNA pairs

(60%625%, mean and standard deviation across datasets) belong

to the AC class, whereas a more or less small percentage results

always concurrently expressed (11%610%, maximum 27%). Pairs

showing pure ‘‘alternative’’ behaviour, according to the classical

biogenesis model, represent less than one quarter of total expressed

pairs, in average (23%67%). When two mature forms are

expressed in the same sample, we considered the comparability

between their expression levels, as per sample expression ratios

distribution among C pairs expression levels, in those samples

showing concurrent expression. We considered that two expres-

sion levels are comparable when their absolute value of expression

log2(ratio) not exceeds 1. Excluding the PRO dataset, in which

only one C pair was recorded, in the remaining datasets in average

17%613% of miRNA pairs have comparable expression levels.

Moreover, the distribution of log2(ratio) among expression levels of

AC class miRNA pairs shows that about one third of them

(34%628%), are expressed at comparable level.

The heatmap in Figure S2 reports, for sister miRNA pairs and

datasets considered in Figure 1, patterns of prevalence recalculated

according the above reported miRNA pairs classification and

considerations.

miRNA are hosted by long genes
A few studies considered miRNAs host genes genomic length/

organization and their possible regulatory role. In particular,

Golan and colleagues [30] observed that miRNA genes are hosted

within introns of short genes and hypothesised that miRNA

integration into short genes might be evolutionary favourable due

to interaction with the pre-mRNA splicing mechanism. Here, we

evaluated the length of the 279 host genes in comparison with all

human genes. The average gene span of the 279 host genes

(180867 nt; Wilcoxon rank sum test p-value 2.2*10216, Figure 3) is

significantly longer (on average 6 times) than that of remaining 49,

506 human genes (29, 945 nt).

Limited co-expression of intragenic miRNAs and host
genes

We considered the pair-wise expression correlations of respec-

tively 309, 147, 148 and 170 mature miRNA/host gene pairs in

the MM, ALL, ALZ and PRO datasets (Table 3). In all datasets,

more than one half of miRNA/host pairs (63613, average and

standard deviation across datasets) were positively correlated, with

slightly positive value for the median correlation per dataset.

However using a criterion of FDR,0.01, no pairs meet a

correlation significance in the ALZ dataset, whereas in the

remaining datasets from the 5% to the 36% of correlations result

significant. Overall, our data indicated that in all four different

datasets a large majority of miRNA/host gene expression profiles

are not significantly positively correlated and are instead poorly

correlated or even anti-correlated, in contrast with the notion that

intragenic miRNAs are co-expressed with host genes.

We reasoned that about 20% considered host genes is associated

each to two mature miRNA forms, derived from the same hairpin

whereas the remaining host genes are associated to only one

mature miRNA. Since sister miRNA expression profiles may not

be considered independent, we carried out again, for each of the

Table 2. miRNA sister pairs classification.

PRO MM ALZ ALL MCN

# % # % # % # % # %

C 1 1.1 13 5.5 10 27 4 12.5 25 10.5

AC 75 78.9 197 83.1 7 18.9 19 59.4 144 60.8

A 19 20 26 11 10 27 9 28.1 65 27.4

Total expressed 95 100 236 99.6 27 73 32 100 234 98.7

Both not
expressed

0 0 1 0.4 10 27 0 0 3 1.3

Categories of miRNAs pairs derived from the same precursor were classified
according to their expression characteristics, for each dataset, in: alternatively
expressed (A); concurrently expressed (C) or alternatively expressed in some
samples and concurrently expressed in others (AC).
doi:10.1371/journal.pone.0023854.t002

Figure 3. Host genes are relatively long. The back-to-back histogram compares the length distribution of host genes with that of all human
genes. Host genes are longer than expected by chance and the difference is highly significant.
doi:10.1371/journal.pone.0023854.g003

Host Genes, Strand Selection and miRNA Expression
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four expression datasets, the above reported analysis of co-

expression between intragenic miRNAs and host genes, but

considering, for host genes including two mature miRNAs, only

the mature miRNA of the pair with the highest miRNA-host

correlation. Considering only the highest miRNA-host gene

correlation, when a pre-miRNA hosted in a gene produces two

mature forms, may give an overestimation of general miRNA-host

co-expression tendency. Anyway, the percentages of miRNA-host

correlations being positive, .0.25 and .0.5, for each dataset (data

not shown), resulted to be almost equal to that reported in Table 3

and showed limited co-expression of intragenic miRNAs with host

genes.

Impact of host genes expression used as proxy for
miRNAs on target selection

These observations discouraged the usage of host gene

expression profiles as a proxy to monitor the expression of its

embedded miRNA. Thus, we tested whether such procedure

affected the results of an integrated analysis of target prediction

with miRNA and target expression profiles, using datasets in

which real and not inferred miRNAs expression data are available.

In particular, for each of the four miRNA and genes matched

datasets, a comparative evaluation of results was obtained, by

contrasting two integrated analyses, the first (REAL) was

conducted on real miRNA and gene expression profiles, whereas

the second one (PROXY) was conducted on host genes expression

profiles, used as proxy for miRNAs, and gene expression profiles.

For each dataset, different numbers of miRNA and genes were

considered for target prediction, using TargetScan [31], after

filtering out those miRNAs with almost invariable profile (25%

with lower Shannon entropy) and/or weakly expressed (25% with

lowest average values). For each dataset, both for the REAL and

PROXY analysis, the sets of predicted relationships mostly

supported by expression profiles anti-correlation analysis were

identified according to different percentile cut-offs on miRNA-

target expression profiles anti-correlation values [19–21,26,32]. It

is worth notice that in different studies cutoffs around 1–3% were

considered adequately stringent for a selection of candidate

functional miRNA-target relationships.

A set of 2, 848 validated miRNA-target interactions, resulting

from Diana Tarbase [33] and/or miRecords [34] was collected to

provide an independent, also if narrow, true solution for

comparative evaluation. In total, 756 validated miRNA-target

relations were represented in the considered set of predicted

relations, with different small subsets represented for different

expression datasets. The average of total numbers of predicted

relations associated to negative correlation values in different

datasets (representing the group from which we selected most

supported relations according to anti-correlation ranking cutoffs)

was about 81, 500. For each dataset and each threshold, we

evaluated the number of validated relations included in the

selected set of supported relations, according to the Real and the

Proxy analysis, as compared with the expected number of

validated relations. The ratio between observed and expected

numbers of validated relations included in a selected set of

supported relations defines an ‘‘enrichment score’’, measuring the

helpfulness of expression profiles anti-correlation analysis to

identify functional regulatory interactions among simply predicted

relations. Figure 4 reports the variation of enrichment score,

against stringency of anti-correlation-based percentile threshold,

for each considered expression dataset. Plainly, the REAL analysis

is able to enrich in validated relations, when it focuses on anti-

correlated miRNA-target subsets defined with high stringency

(from 1% to 5%), but looses its power, as expected, at lower

stringency. Besides, the REAL analysis results outperform those of

the PROXY, which seems to find, almost in all datasets,

proportions of validated (over supported) relations comparable

or even lower than expected by chance, almost independently

from the applied stringency on anti-correlation. We observed also

that, for each considered expression dataset, the groups of

validated relations detected by the REAL and PROXY methods

are almost completely disjointed.

Discussion

In this study we exploited sequence, genomic and expression

information to investigate two main aspects of post-transcriptional

regulation in miRNA biogenesis, namely strand selection and

expression relationships between intragenic miRNAs and host

genes.

Our observations were based on a comprehensive collection of

miRNAs and genes/transcripts whose annotation and localization

was integrated with expression profiles computed from five large

microarray-based datasets, regarding different biological contexts

and including both normal and tumour/disease samples. At least 8

different tissues types are represented (breast, prostate, liver, ovary,

testes, lung, colon and brain) plus different T- and B-lineage blood

cells. The high number of samples and the broad coverage of cell

types would guarantee both significance and fair generality of the

obtained results.

The first evidence emerging from our analysis regards the

expression behaviour of pairs of sister mature miRNAs produced

from the same hairpin. As mentioned above, in the classic model

of miRNA biogenesis, the duplex of mature miRNAs is produced

by Dicer processing of the hairpin precursor. Then, a following

strand selection step determines which mature miRNA is the

degraded ‘‘passenger’’ strand and which is the major and stable

form that will act as guide for the mature miRISC complex in the

Table 3. Intragenic miRNAs and host genes correlations.

MM ALL ALZ PRO

miRNA-host gene correlation Total 309 % 147 % 148 % 170 %

Positive 199 64 81 55 77 52 138 81

.0.25 78 25 53 36 47 31 56 33

.0.5 33 11 20 13 21 14 13 8

FDR,0.01 34 11 8 5 0 0 60 36

The correlation between intragenic miRNA and host genes expression profiles tends to be slightly positive, but with prevalently low percentages of significantly
positively correlated pairs.
doi:10.1371/journal.pone.0023854.t003

Host Genes, Strand Selection and miRNA Expression
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post-transcriptional silencing of target genes. It is worth notice that

the two mature miRNAs have different sets of target genes and

may differently contribute to the regulation of cell activities. Our

analysis of expression profiles showed that, considering different

samples, representing different tissue types under various condi-

tions, the strand selection is highly regulated. In fact, we observed

miRNA pairs in which the same miRNA is the most expressed in

the majority of considered samples, as well as miRNA pairs

expressed at comparable level in almost all considered samples.

Nevertheless, the large majority of miRNA pairs show a not

deterministic strand selection bias, which may be highly regulated

since it shows tissue-/cell-/condition-specific modulation. This is

Figure 4. Enrichment in validated miRNA-target relations obtained by REAL and PROXY analyses of different datasets. Comparative
evaluation of integrated analysis results was performed using real miRNA and gene expression profiles (REAL) and host genes expression profiles, as
proxy for miRNAs, and gene expression profiles (PROXY). For each dataset, first we filtered out miRNAs with almost invariable or weak expression,
then we identified the miRNA and genes target prediction set using TargetScan. Both for the REAL and PROXY analysis, the groups of predicted
relationships most supported by expression profiles anti-correlation analysis were identified according to different percentile of anti-correlation cut-
offs. A subset of miRNA-gene validated relations, from Diana Tarbase and/or miRecords, provided an independent true solution for comparative
evaluation. The figure shows the variation of ‘‘enrichment score’’ (ratio between the observed number of validated relations, included in the selected
set of supported relations, and the expected number of validated relations, based on proportions) against stringency of anti-correlation-based
percentile cutoff. Each dataset is considered separately to compare REAL and PROXY analysis methods. The REAL method is able to enrich in
validated relations, outperforming the PROXY, when it focuses on anti-correlated miRNA-target subsets defined with high stringency. Also the REAL
method looses any power, as expected, at low stringency.
doi:10.1371/journal.pone.0023854.g004

Host Genes, Strand Selection and miRNA Expression
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confirmed by the fact that unsupervised analysis, using for samples

classification only information about the direction and the strength

of the strand selection bias, is able to distinguish different tissues,

and sometimes also different conditions (as normal and malignant

cells). Moreover, when considering a minimum expression

threshold, only a minority of pairs were expressed alternatively

in all considered cell types, whereas the majority were concur-

rently expressed in some cell types and alternatively in others. A

significant fraction of concurrently expressed pairs showed highly

comparable levels, suggesting that both the major and the minor

forms may contribute to post-transcriptional gene silencing,

possibly in a coordinate way. Also considering separately

alternatively and concurrently expressed pairs, the regulated

nature of the strand selection is evident. Our results on genome-

wide investigation of co-expression relationships of sister miRNAs

showed that different biological contexts share complex mecha-

nisms of strand selection regulation. This observation comple-

ments recent findings coming from deep sequencing of short

RNAs which recently conducted to identification of new miRNAs

[35], characterisation of miRNAs variants (isomiRs; partly

produced by alternative processing of precursors) [36,37], and

discovery of a novel class of miRNA-related RNA (micro-RNA

offset RNAs; moRNAs) distinct from miRNAs, but derived from

miRNAs precursors [38]. Indeed, the complexity of miRNA

biogenesis regulation is indicated by emerging evidences coming

from the present study of miRNAs expression and from

sequencing data analysis, continuously adding novel layers to

miRNAs biogenesis pathways and enriching possibilities for their

regulation.

The second aim of the study was to clarify to what extent

intragenic miRNAs were co-expressed with the corresponding host

genes. An intragenic miRNAs and host genes related behaviour

has been taken for proven by different Authors and used as a

strong assumption for the design of computational methods for

miRNA targets identification [26] or to go further and explore the

possible role of intragenic miRNAs in supporting the regulatory

activity of host genes products [39]. We considered four expression

datasets including expression profiles in various cell types (brain in

normal and with Alzheimer disease conditions, normal prostate

and prostate cancer, normal blood cells and different blood cell

diseases) and clearly showed, that the large majority of intragenic

miRNAs do not share similar expression profiles with their host

genes. Only 10% of miRNA and host gene pairs appear

significantly co-expressed. This may be partially explained by

the fact that not all miRNAs located in introns of protein coding

genes are under the transcriptional control of coding gene

promoter(s). In fact, Corcoran and colleagues (2009) [40]

experimentally identified mammalian miRNA Polymerase II

promoters by chromatin immunoprecipitation. They discovered

that the nearest ChiP-chip peak for a number of intragenic

miRNAs overlaps the host gene’s TSS but that reportedly one

quarter of intragenic miRNAs may be transcribed from their own

promoters and thus showing different expression behaviour and

modulation than the protein-coding gene transcript(s). This result,

as well our findings and considerations, encourage much more

detailed studies about transcriptional regulation of miRNAs

expression.

Results of the last part of our study are relevant mainly from a

technical and methodological point of view. As previously said,

host genes expression profiles were proposed as possible proxies for

the intragenic miRNA expression profile, when the latter is

unavailable, to identify most probable miRNA target genes. We

conducted two integrated analysis of target prediction and

expression profiles, one using real miRNA and gene expression

profiles, and the second using host genes expression profiles as

proxy for miRNAs, and gene expression profiles. The comparative

evaluation of the two methods was based on an independent true

solution, represented by a set of validated regulatory interactions.

This allowed to measure and compare the effectiveness of the two

methods in finding validated regulatory interactions, among the

subset of predicted miRNA-target relations supported by negative

correlations of expression profiles. Our results support the

usefulness of the integrated analysis conducted on real miRNAs

expression profiles, when stringency is kept reasonably high.

Moreover, as expected from previous observations about intra-

genic miRNAs and host genes scarce co-expression, we experi-

enced that the use of host genes expression as a proxy for miRNA

profiles for the integrated analysis seems not significantly enrich in

validated relations.

In conclusion, our analysis of miRNA sister pairs expression

prevalence across samples from five sizeable and diverse

expression datasets showed that the large majority of miRNA

pairs show a not deterministic strand selection bias, which may be

highly regulated, since it presents tissue-/cell-/condition-specific

modulation. Our conclusions strengthened recent evidences about

the previously underestimated importance of the strand selection

regulation, reinforcing the role of such layer of miRNA biogenesis

in miRNA-based control of cell activities. Furthermore, our results

showed that most host genes and intragenic miRNAs are scarcely

co-expressed. In specific cases, they might be co/expressed but

mainly in a cell/tissue-specific way. This actually does not rule out

the importance of already documented cooperation of specific

intragenic miRNAs and host genes products, but proves that the

expression information of corresponding host genes can hardly be

used as estimator for actual expression of the co-transcribed

miRNA and encourage more detailed studies of transcriptional

regulation of miRNAs expression.

Materials and Methods

microRNAs and genes: sequences and genomic positions
We obtained 49, 506 human genes and 132, 056 transcripts

sequences from ENSEMBL (version 56) each associated to a

unique chromosomal position. The complete set of hairpin

precursors of human microRNA sequences was downloaded from

miRBase version 14, thus obtaining a set of 721 pre-miRNA

hairpin sequences and 904 mature miRNAs, 185 of which are

tagged as ‘‘minor’’, according to miRBase annotation (i.e. hsa-

miR-30e*). Hairpin miRNA sequences were aligned with the

version 37.1 of the human genome to establish their genomic

positions as start and end coordinates of the aligned region in a

specific chromosome and strand. Alignments associated to at least

95% sequence identities, calculated over the hairpin sequence

length, have been considered for miRNA genome position

definition. As genomic localization is referred to hairpin

sequences whereas miRNA microarray platforms measure

expression profiles of mature miRNAs, mature miRNAs to

hairpin correspondence info was used for data integration.

miRNA hairpins localizations were compared with those of

protein-coding genes to identify intragenic miRNAs, putatively

transcribed from the coding gene promoter [see Table S1 for

miRNA annotation, genomic localization and corresponding host

gene]. To define the miRNA-host gene relationships considered

in further analyses, only miRNAs fully included in genes spanned

regions were considered as intragenic. Specifically, 367 miRNAs

were categorized as intergenic and thus excluded, whereas 309

intragenic miRNAs, were associated with 279 protein-coding
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human host genes. Among these, 23 (8.5%) include at least two

miRNAs.

Expression datasets and chips annotation
Multiple Myeloma dataset (MM). MM dataset consists of

matched miRNAs and genes expression profiles from purified

plasma cells of thirty-nine human samples, including 33 patients

with multiple myeloma (MM), 2 with plasma cell leukaemia (PCL)

and 4 healthy donors. The miRNA expression was profiled on the

Agilent Human miRNA Microarray V2. The human miRNAs data

were re-annotated and normalized as suggested in [20]. MiRNA

data are publicly available under GEO accession GSE17498. The

gene expression was profiled on Affymetrix GeneChipH Human

Gene 1.0 ST Array. The raw intensity signals of genes were

extracted from CEL files and normalized using the default settings

of affy package for Bioconductor and re-annotated using Manhong

Dai custom cdf, HuGene10stv1_Hs_ENSG (available at http://

brainarray.mbni.med.umich.edu/Brainarray/Database/Custom

CDF/12.1.0/ensg.asp).

Acute Lymphoblastic Leukaemia dataset (ALL). ALL

dataset consists of matched miRNA and genes expression

profiles in nineteen adult Acute Lymphoblastic Leukaemia (ALL)

cases, including T-lineage and B-lineage cells, harbouring specific

molecular lesions [28](GEO accession GSE14834). Human

miRNA data obtained by Lc Sciences Human 470 miRHuman

9.0 microarray were processed using the same approach suggested

by the original paper. Gene expression was profiled on Affymetrix

GeneChipH Human Genome U133 Plus 2.0 Array. The raw

intensity signals of genes were extracted from CEL files and

normalized using the default settings of affy package for

Bioconductor and re-annotated using Manhong Dai custom cdf,

HGU133Plus2_Hs_ENSG (available at http://brainarray.mbni.

med.umich.edu/Brainarray/Database/CustomCDF/12.1.0/ensg.

asp).

Normal and Alzheimer’s parietal lobe cortex (ALZ). ALZ

dataset consists of 16 matched miRNA and gene expression

experiments, obtained by USC/XJZ Human 0.9 K miRNA-940-

v1.0 and Affymetrix Human Genome U133 Plus 2.0 Array, in

parietal lobe tissue from 4 Alzheimer Disease patients and 4 age-

matched controls (GSE16759) [41]. Human miRNA data were

processed using the same approach suggested by the authors. Gene

expression was profiled on Affymetrix GeneChipH Human Genome

U133 Plus 2.0 Array. The raw intensity signals of genes were

extracted from CEL files, normalized using the default settings of

affy package for Bioconductor, and re-annotated using Manhong

Dai custom cdf, HGU133Plus2_Hs_ENSG.

Normal prostate and prostate cancer (PRO). PRO

dataset consists of the subset of 140 matched miRNA and gene

expression experiments, obtained respectively by Agilent-019118

Human miRNA Microarray 2.0 and Affymetrix Human Exon 1.0

ST, of the prostate data reported in [42](GEO accession

GSE21032) regarding primary and metastatic prostate cancer

samples and control normal adjacent benign prostate. Human

miRNA data were processed using the same approach suggested

by the original paper. Gene expression profiles was obtain using

RMAExpress, a standalone GUI program to compute gene

expression summary values for Affymetrix Genechip data using

the Robust Multichip Average expression summary and to carry

out quality assessment using probe-level metrics.

Multiple cancers and normal tissues dataset (MCN). MCN

dataset includes miRNAs expression profiles in 32 samples from 14

different patients and 8 different tumour types, with tumour cells and

normal cells counterpart for each patient [29](GEO accession

GSE14985). Tissue samples were from various embryonic lineages:

one pair from breast, lymphoma and prostate; two from liver, ovary,

testes and lung and three from colon: two technical replicates are

included for ovary and testes samples. MiRNA expression was profiled

using Agilent Human miRNA Microarray 2.0, and the data processed

using the same approach suggested by Navon et al.

Analysis of sister miRNA pairs expression ratio
Mature miRNA pairs may be generated by both 59 and 39

strands of the hairpin stem. For historical reasons, miRNA names

are assigned in miRBase according to an inhomogeneous notation.

miR-X/miR-X* sister pairs refers to the fact that one miRNA of

the pair, the miRNA*, is the minor form. An older convention

used miR-142-s and miR-142-as. For other pairs, the strand is

explicitly indicated in the mature miRNA name (miR-X-5p/miR-

X-3p). The latter naming convention is most informative and

unambiguous and it will be used for future miRBase releases.

Thus, in the present study, we report mature miRNA according to

current miRBase names but the order of mature miRNAs in

considered sister pairs was kept consistent with the physical

position of mature sequences in the precursor, i.e. miRNAs are

given in 59 to 39 order. For each sister miRNA pair represented in

at least one of the five considered datasets, we calculated the per

sample log2(ratio) between expression values of 59 and 39 sister

miRNAs. Matrix values were standardised and used for cluster

analysis of samples and of miRNA pairs, using Euclidean distance

and average clustering. Then, for each dataset we considered not

expressed in a given sample those miRNAs associated to

expression values lower than the median of the dataset expression

matrix (i.e. low values were set to 0). We calculated the per sample

log2(ratio) between expression values of sister miRNAs as indicated

before, but miRNA pairs expressed in alternative way in a given

sample were associated to extreme values. When only one out of

two sister miRNAs was expressed over the threshold, log2(ratio)

values (generating 6‘) were artificially set to maxLog(ratio)+0.1, if

only the 59 miR is expressed, or to minLog(ratio)-0.1 in the

opposite case. Values of log2(ratio) of samples in which both

miRNAs of the pair are not expressed were not considered for the

clustering analyses.

Target predictions and integrated analysis of miRNAs and
target genes expression profiles

The integrated analysis of miRNAs and target genes expression

profiles combines target predictions with miRNAs and gene

expression data correlation-based analysis to identify, among

predicted target genes for each considered miRNA, those

regulatory relationships significantly supported by expression

data.

In details, the procedure comprises the identification of

miRNA target genes by computational predictions and compi-

lation of the adjacency matrix of targeting relationships, and the

computation of pair-wise relatedness of miRNAs and targets

from matched expression matrices, to identify relationships

supported by expression data, which could be used for post-

transcriptional regulatory networks reconstruction and study.

The set of microRNA-target predictions were defined using

TargetScan 5.1 considering both conserved and non conserved

sites that match the seed region of each miRNA. The pair-wise

Pearson correlation coefficient between miRNA and target

genes expression profiles in exactly the same samples was

calculated. We then selected as reliable and potentially

functional the subset of predicted relationships associated to

most negative Pearson coefficients. Different percentile-based
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cutoffs were applied, to define the groups of supported

regulatory interactions.

Supporting Information

Figure S1 Variability of strand selection bias across
samples among all considered datasets. Figure S1 shows

patterns prevalence for a set of 5 59/39 sister miRNA pairs

obtained by the combination of all considered datasets.

(TIF)

Figure S2 Variability of strand selection bias across
samples considering miRNA pair classification. Figure S2

reports patterns prevalence for a set of 95 59/39 sister miRNA

pairs obtained by the combination of three out of five considered

datasets giving rise to the maximum number of represented

miRNA pairs (MM, PRO and MCN). As detailed in Methods,

miRNA pairs concurrently or alternatively expressed were

associated respectively to the per sample standardised log2(ratio)

and to extreme values derived from observed distribution. Cluster

analysis performed with these values, produce an heatmap

showing both the regulation of the strand selection bias and

alternative expression occurrence in different samples.

(TIF)

Table S1 miRNAs genomic localization. Table S1 includes

miRNAs genomic localization and host genes.

(TXT)
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