
Citation: Ibáñez, S. The New Di-Gold

Metallotweezer Based on an

Alkynylpyridine System. Molecules

2022, 27, 3699. https://doi.org/

10.3390/molecules27123699

Academic Editors: Wen-Hua Sun and

Victor Mamane

Received: 9 May 2022

Accepted: 7 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Communication

The New Di-Gold Metallotweezer Based on an
Alkynylpyridine System
Susana Ibáñez

Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA),
Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain; maella@uji.es

Abstract: We developed a simple method to prepare one gold-based metallotweezer with two
planar Au-pyrene-NHC arms bound by a 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine unit. This
metallotweezer is able to bind a series of polycyclic aromatic hydrocarbons through the π-stacking
interactions between the polyaromatic guests and the pyrene moieties of the NHC ligands. The
metallotweezer was also used as a host for the encapsulation of planar metal complexes, such as
the Au(III) complex [Au(CˆNˆC)(C≡CC6H4-OCH3-p)], for which there is a large binding constant of
946 M−1.

Keywords: metallotweezer; gold(I); host-guest chemistry; polycyclic aromatic hydrocarbons (PAHs)

1. Introduction

The modification of the properties experienced by guest molecules encapsulated in the
cavities of supramolecular structures have attracted the interest of chemistry researchers
during the last three decades [1,2]. The most efficient biologic receptors are enzymes, which
are conformationally flexible so that they can adapt to respond to the shape of specific
guest molecules [3,4]. Artificial hosts try to mimic such induced-fit conformational change
as a strategy for maximizing the binding with guests [5–8]. However, most synthetic hosts
are have structures with little flexibility, and thus the conformational changes observed are
always smaller than those shown in biological receptors.

During the last few years, we reported a series of metallotweezers based on the use
of two pyrene-bis-imidazolylidene-gold(I) arms bound with four different bis-alkynyl
spacers (Scheme 1) [9–15]. These tweezers benefit from the tendency of Au(I) complexes to
show linear geometry, and from the ability of the pyrene moieties to establish π–π-stacking
interactions. This, together with the metallophilic interactions that Au can establish with
some third-row transition metals [16–20], make these supramolecular entities behave as
effective receptors for planar organic molecules and some selected square planar transition
metal complexes. In the course of our research, we found that the supramolecular properties
of our metallotweezers were greatly influenced by the nature of the spacer connecting
the two flat arms of the molecule. In particular, we observed that the tweezer with the
anthracenyl spacer A had a great tendency to dimerize forming non-covalently bound
self-aggregated duplex complexes [9,10,12]. In contrast, the complex connected with the
xanthenyl spacer B served as a metalloligand for metals such as Cu+, Ag+, and Tl+ [11].
The complex with the carbazolyl spacer C was able to encapsulate planar aromatic guests
by approaching its two polyaromatic arms, and thus showed an interesting example of a
guest-induced-fit conformational arrangement [13,14]. Finally, the metallotweezer with
the rigid dibenzoacridine spacer D allowed preparing a mechanically-interlocked dimer,
which we named clippane, a term that we coined to refer to two-component MIMs formed
by two entangled molecular tweezers [15]. Mechanically interlocked molecules (MIMs) are
molecules that are held together because of their topologies, which favor the formation
of the so-called mechanical bonds. A mechanical bond, as was defined by Stoddart, is
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an entanglement in space between two or more components, such that they cannot be
separated without breaking or distorting covalent bonds between atoms [21].
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Scheme 1. Au(I)-based metallotweezers with pyrene-imidazolylidene-gold(I) arms.

As shown in Scheme 1, all the linkers that we used for the preparation of our met-
allotweezers are rigid, and therefore they were used with the aim to lead to strong and
selective binding to planar organic molecules. Flexible spacers, however, are more prone to
adapting their conformation to maximize substrate binding and hence operate through an
‘induced-fit’ mechanism, although the binding affinities are normally reduced due to the en-
ergy cost and entropy loss associated with the distortions and reduction of conformational
changes [22,23]. In this regard, during the last decade, Yam [24–28] and Wang [29–33],
prepared a series of alkynylplatinum tweezers bound by a rather flexible diphenylpyridine
spacer, whose binding affinities were found to be perturbed by π–π and metal–metal interac-
tions, producing dramatic color changes with diverse applications, such as the amplification
of chiroptical signals [33] and visible-light photocatalytic transformations [34].

With these precedents in mind, we thought that we could expand the family of our
tweezers by using a flexible diphenyl-pyridine spacer and study its abilities to form host-
guest complexes with planar organic and inorganic molecules. With all this in mind, we now
report the preparation of a tweezer containing a di-gold metallotweezer that combines two
pyrene-bis-imidazolylidene ligands with one 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine
linker.

2. Results and Discussion
2.1. Synthesis and Characterization

The metallotweezer 2 was obtained by following the synthetic procedure shown in
Scheme 2. The reaction between the pyrene-imidazolylidene-gold(I) complex 1 [35] and
2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine [27] in refluxing methanol in the presence of
NaOH afforded the dimetallic complex 2 in high yield (67%) (Scheme 2). Complex 2 was
characterized by means of NMR, IR and Uv-Vis spectroscopy, and mass spectrometry, and
provided satisfactory elemental analysis. Both the 1H and 13C NMR spectra are consistent
with the twofold symmetry of the molecule. The 13C NMR spectrum of 2 showed a signal at
193.06 ppm, which is characteristic of the Au-Ccarbene carbon. The mass spectrum showed a
peak at m/z 1717.8, which was assigned to [2+H]+. The infrared spectrum of 2 showed the
absorbance of the C≡C stretching at 2099.14 cm−1. The electronic spectrum of 2 in CH2Cl2
showed absorptions in the 270–370 nm region, which were assigned to π–π* intraligand
transitions of the pyrene and diphenyl-pyridine moieties of the molecule. The emission
spectrum of the same molecule in CH2Cl2 showed a strong vibronically resolved band
between 370–490 nm, coincident with the typical monomer emission band of pyrene.
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When the reaction was carried out in the presence of one equivalent of a planar Au(III)
complex 3 [36], the corresponding inclusion complex 3@2 was obtained in 78% yield. This
large yield is explained by the templation effect produced by the addition of the planar
Au(III) complex containing a CNC pincer ligand [36]. The mass spectrum (ESI-MS) of 3@2
showed a prominent peak at m/z 2274.9, which is due to [3@2+H]+, (Figure S28). The
Diffusion Ordered NMR spectrum (DOSY) showed that all the resonances displayed the
same diffusion coefficient, indicating that the molecule of [Au(CˆNˆC)(C≡CC6H4-OCH3-p)]
was associated with the molecular tweezer 2 forming a single assembly with 3 (DOSY;
Figure S30).

2.2. Molecular Recognition: Determination of Binding Affinities

In order to quantify the extent of the binding between 2 and the different guests as
electron-rich, electron-poor, and the complex of Pt(II) or Au (III) with 2,6-diphenylpyridine
(3) as ligands, we performed a series of 1H NMR titrations to determine the association
constants for the complexes formed. These were performed in CDCl3, at room temperature,
and at a constant concentration of 2 (1.0 mM). The 1H NMR titrations showed that, in all
cases, the addition of the PAH guest induced the upfield shifting of the signals due to
the protons of the pyrene units of 2, thus evidencing that the formation of the inclusion
complexes showed fast kinetics on the NMR timescale. As an example, Figure 1 shows the
selected region of 1H NMR spectra resulting from the titration 2 of 3. For this case it can
observed the resonance due to the proton of the N-CH2 group was shifted by–0.03 ppm.
In addition, all three signals due to the protons of the pyrene moiety of the receptor
were modified, which is a clear indication that they interact with the guest through a
π–π stacking event. Based on the changes observed, the constants were determined by
global fitting analysis [37,38], by processing the data using a 1:1 stoichiometric model. The
results indicated that the binding affinities of the electron-rich PAH guests were in the
order pyrene < triphenylene < perylene < coronene, as can be observed from the values
shown in Table 1. This order, together with the relative changes in the binding constants,
are consistent with the trend observed when comparing the binding affinities of PAH
guests with hosts with large portals and is a consequence of the more effective π–π-stacking
overlap produced as the electron richness of the guest increases (see Figure 2) [39–41]. The
effect of adding a hydrogen-bonding group to the PAH molecule has a positive effect in
the resulting binding constant, as can be seen when comparing the values obtained for
pyrene and 1-pyrenyl-methanol (entries 1 and 5) and perylene and 3-perylenyl-methanol
(entries 3 and 6). In both cases the incorporation of the hydroxyl group to the periphery
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of the PAH guest produces increased in the association constant, very likely due to the
stabilization produced by the hydrogen bonding interaction between the –OH group and
the lone pair of the nitrogen at the pyridine linker. If we compare the binding affinities of
the metallotweezer with those observed with the carbazole-connected metallotweezer [42],
higher affinity is observed with the pyridine linker-based tweezer, 2, except that the
rigid tweezer based on the dibenzoacridine-connected metallotweezer [42] has constants
of association which are much higher than those observed in the pyridine linker-based
tweezer, 2.
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Table 1. Association constants (M−1) for the complexation of 2 with PAHs [a].

Entry Guest K11 logK11

1 pyrene 30 ± 2 1.36
2 triphenylene 63 ± 8 1.80
3 perylene 112 ± 8 2.05
4 coronene 188 ± 24 2.28
5 1-pyrenyl-methanol 65 ± 8 1.82
6 3-perylenyl-methanol 169 ± 12 2.23
7 TNFLU 0 0
8 NTCDI 155 ± 8 2.19
9 Pt(CˆNˆC)(CO) 31 ± 0,5 1.49
10 3 946 ± 51 2.98

[a] K11 values calculated by global nonlinear regression analysis [37,38]. Titrations carried out by 1H NMR
spectroscopy, using constant concentrations of 2 (host) of 1.0 mM in CDCl3 at 298 K. Errors refer to the non-linear
regression fittings.

In the case of encapsulation of electron-poor molecules such as 2,4,7-trinitro-9-fluorenone
(TNFLU) and N,N′-dimethyl-naphthalenetetracarboxydiimide (NTCDI) (entries 7 and 8)
we observed lower association constant values. It is noteworthy that for the TNFLU ligand,
no change in the chemical shift of its signals was observed. This result is totally different
from the one observed in the other two clamps synthesized previously, where a large
increase in the association constant was observed, about 9933 M−1 [42]. With regard to the
encapsulation of metal complexes, some authors previously showed how metallotweez-
ers containing cationic alkynylplatinum arms displayed large association constants with
several neutral and anionic guest planar metal complexes, including [Pt(CˆNˆC)(CO)] and
[Au(CˆNˆC)(C≡CC6H4-OCH3-p)]. By using their alkynylplatinum-containing tweezer,
Yam and co-workers [27] observed that the association constant with 3 was found to be
logK = 4.43 under the same experimental conditions where we obtained an association
constant of 946 M−1 (logK = 2.98) for the encapsulation of the same metal complex with
2 (entries 10). The lower affinity found in our case is very likely due to the presence of
the electron-rich pyrene moieties, compared with the electron-deficient planar cationic
arms present in the Yam’s case, which are more prone to favor the electrostatic interaction
with planar electron rich metal complexes. In addition, in the Yam’s case, the binding
affinity between the host and the guest was strongly perturbed by Pt . . . M interactions,
whereas metallophillic interactions seem not to play a role in the formation of the host-guest
complex 3@2.

2.3. Photophysical Characterization

We wanted to have an estimation of the charge transfer produced in the interaction
between the electron-donating host and the different electron deficient guests upon host–
guest formation. Unfortunately, even the highest association constants that we found
were not large enough to produce significant amounts of the host–guest complexes at the
concentrations used to perform Uv-Vis and emission spectra (10−4–10−5 M), and therefore
we discarded these spectroscopic techniques for our studies.

The absorption spectra of the compounds show the characteristic bands of this type
of system and in the case of the encapsulation of the planar Au(III) complex there was an
increase in intensity (Figure S5). The spectra showed a featureless strong band centered
at 260 nm, assigned to the intraligand (IL) π–π* transitions of the alkynyl ligands, and
a series of bands between 280–370 nm due to the absorption of the polyaromatic spacer
and the pyrene moieties. On the other hand, the emission spectra of 2 and 3@2 showed a
strong luminescence featuring two vibronically resolved bands with peak maxima at 400
and 379 nm, which are coincident with the typical monomer emission bands of pyridine
and pyrene, respectively, in related diacetylide di-gold(I) complexes [43] and pyrene-based
NHC ligands [44,45]. However, in the complex 3@2 a lower-energy emission band was
observed at 450–550 nm (Figure S6) in the electronic emission spectra. In view of the fact
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that both the host complex 2 and the guest 3 do not absorb in this region, the formation of a
new emission band is probably derived from the host–guest interaction resulting from the
intercalation of the guest molecule into the cavity 2.

3. Conclusions

In this work we showed the encapsulating properties of a di-gold metallotweezer
toward a large series of planar guests. The receptor was benefited by the presence of a
2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine bis-alkynyl linker, which allowed the parallel
orientation of the two pyridine-imidazolylidene-Au(I) panels at a distance of about 7 Å.
When the reaction was carried out in the presence of the planar Au(III) complex, the
reaction directed towards the inclusion complex 3@2. The association constants were a few
lower than those observed for the other spaces based on the carbazolyl and dibenzoacridine
linker, due to the flexibility of the spacer, except for the Au(III) having similar association
constants. The lower affinity found in our case is very likely due to the presence of the
electron-rich pyrene moieties, compared with the electron-deficient planar cationic arms
present in Yam’s case, which are more prone to favor the electrostatic interaction with
planar electron-rich metal complexes.

4. Materials and Methods
4.1. General Procedures

The NHC-Au(I) complex 1 [35], 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine (A) [27],
N,N′-dimethyl-naphthalenetetracarboxy diimide (NTCDI) [46], [Pt(CˆNˆC)(CO)] [47], and
[Au(CˆNˆC)(C≡CC6H4-OCH3-p)] (3) [36] were prepared according to literature methods.
All other reagents were used as received from commercial suppliers.

4.2. Physical Measurements

Infrared spectra (FTIR) were performed on a FT/IR-6200 (Jasco) spectrometer equipped
with a Pro One ATR with a spectral window of 4000–400 cm−1. NMR spectra were recorded
on a Bruker 400 MHz using CDCl3 as solvents. High Resolution Mass Spectra (HRMS)
were recorded on a Q-TOF Premier mass spectrometer (Waters) with an electrospray source
operating in the V-mode. Nitrogen was used as the drying and cone gas at flow rates of
300 and 30 Lh−1, respectively. The temperature of the source block was set to 120 ◦C, and
the desolvation temperature was set to 150 ◦C. Capillary voltage of 3.5 kV was used in the
positive scan mode and the cone voltage was adjusted typically to 20 V. Mass calibration
was performed by using solutions of NaI in isopropanol/water (1:1) from m/z 50 to 3000.
Elemental analyses were carried out on a TruSpec Micro Series. UV/Visible absorption
spectra were recorded on a Varian Cary 300 BIO spectrophotometer using CH2Cl2 under
ambient conditions. Emission spectra were recorded on a modular Horiba FluoroLog-3
spectrofluorometer employing degassed CH2Cl2.

4.3. Synthesis and Characterization
4.3.1. Synthesis of 2

NaOH (40.00 mg, 1.002 mmol) and 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine (A,
28.01 mg, 0.072 mmol) were placed together in a round-bottom flask and dissolved in
methanol (20 mL). This mixture was heated at reflux for 1 h. Then, complex 1 (100.00 mg,
0.143 mmol) was added as a solid and the resulting suspension was heated at reflux for
4 h. The mixture was evaporated to dryness and the solid residue was extracted with
dichloromethane, and the solution was filtered through a short pad of Celite. Complex
2 was isolated as a white solid. Yield: 82.45 mg (67%). IR (ATR):
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(Cq pyridine), 125.41 (Cq pyr), 123.01 (CHpyr), 122.99 (CH phenyl), 121.75 (Cq acetylide), 120.92 (Cq acety-

lide), 118.59 (CH pyridine), 116.82 (CHpyr), 106.23 (Cq phenyl), 52.36 (NCH2CH2CH2CH3), 35.62 
(C(CH3)3), 35.06 (C(CH3)3 phenyl), 32.81 (NCH2CH2CH2CH3), 32.00 (C(CH3)3), 31,51 (C(CH3)3 

phenyl), 20.42 (NCH2CH2CH2CH3), 14.16 (NCH2CH2CH2CH3) (Figure S2). 

4.3.2. Synthesis of 3@2 
NaOH (40.00 mg, 1.002 mmol) and 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine (A, 

28.01 mg, 0.072 mmol) were placed together in a round-bottom flask and dissolved in 
methanol (20 mL). This mixture was heated at reflux for 1 h. Then, complex 1 (100.00 mg, 
0.143 mmol) and 3 (40.13 mg, 0.072 mmol) were added as solid and the resulting sus-
pension was heated at reflux for 4 h. The mixture was evaporated to dryness and the 
solid residue was extracted with dichloromethane, and the solution was filtered through 
a short pad of Celite. Complex 3@2 was isolated as a white solid. Yield: 128.20 mg (78%). 
IR (ATR): ʋ(C≡C): 2145.42 and 2105.89 cm–1. HRMS ESI-TOF-MS (positive mode): 2274.9 
[3@2+H]+ (Figure S28). Anal. Calcd. for C121H129N6OAu3: C, 63.90; H, 5.72; N, 3.70. Found: 
C, 63.86; H, 5.74; N, 3.70. 1H NMR (400 MHz, CDCl3): δ 8.65 (s, 4H, CHpyr), 8.39 (s, 2H, 
CHphenyl), 8.23 (d, 4H, CHpyr), 8.07 (s, 4H, CHpyr), 8.04 (d, 3JH-H = 8.0 Hz, 2H, CHAu(III)), 8.02 (s, 
2H, CHphenyl), 7.80 (dd, 3JH-H = 8.0 Hz, 3JH-H = 8.0 Hz, 1H, CHpyridine), 7.76–7.69 (m, 5H, 
CHpyridine+CHphenyl+CHAu(III)), 7.36 (dd, 3JH-H = 15 Hz, 3JH-H = 9.0 Hz, 4H, CHAu(III)), 7.40 (t, 3JH-H 
= 15 Hz, 3JH-H = 9.0 Hz, 4H, CHAu(III)), 7.24 (t, 3JH-H = 8.0 Hz, 3JH-H = 6.0 Hz, 2H, CHAu(III)), 6.87 
(d, 3JH-H = 9 Hz, 2H, CHAu(III)), 5.25 (t, 3JH-H = 8 Hz, 8H, NCH2CH2CH2CH3), 3.84 (s, 3H, 
OCH3Au(III)), 2.25–2.08 (m, 8H, NCH2CH2CH2CH3), 1.79–1.66 (m, 8H, NCH2CH2CH2CH3), 
1.62 (s, 36H, C(CH3)3), 1.44 (s, 18H, C(CH3)3 phenyl), 1.04 (t, 3JH-H = 8 Hz, 12H, 
NCH2CH2CH2CH3) (Figure S3). 13C{1H} NMR (100 MHz, CDCl3): δ 195.95 (Au-Ccarbene), 
167.06 (Cq Au(III)), 165.03 (Cq Au(III)), 156.80 (Cq phenyl), 151.27 (Cq phenyl), 149.23 (Cq), 149.09 (Cq), 
142.12 (Cq), 138.86 (Cq), 137.50 (CH pyridine), 136.80 (CHAu(III)), 133.28 (CHAu(III)), 132.13 (CH 

phenyl), 131.95 (CHAu(III)), 130.72 (CH phenyl), 128.45 (CHpyr), 128.00 (CHAu(III)), 129.75 (Cq), 
126.81 (CHAu(III)), 125.38 (Cq), 125.16 (CHAu(III)), 122.98 (CHpyr), 122.89 (CH phenyl), 121.71 (Cq 

acetylide), 120.89 (Cq acetylide), 119.07 (Cq acetylideAu(III)), 118.59 (CH pyridine), 118.57 (Cq acetylideAu(III)), 
116.82 (CHpyr), 116.70 (CHAu(III)), 113.82 (CHAu(III)), 106.21 (Cq phenyl), 55.46 (OCH3), 52.33 
(NCH2CH2CH2CH3), 35.61 (C(CH3)3), 35.05 (C(CH3)3 phenyl), 32.80 (NCH2CH2CH2CH3), 
32.00 (C(CH3)3), 31.50 (C(CH3)3 phenyl), 20.42 (NCH2CH2CH2CH3), 14.17 (NCH2CH2CH2CH3) 
(Figure S4). 

(C≡C): 2099.14 cm−1.
HRMS ESI-TOF-MS (positive mode): 1717.8 [2+H]+ (Figure S27). Anal. Calcd. for
C95H111N5Au2: C, 66.46; H, 6.52; N, 4.08. Found: C, 66.50; H, 6.51; N, 4.06. 1H NMR
(400 MHz, CDCl3): δ 8.66 (d, 4H, CHpyr), 8.40 (t, 4JH-H = 4.0 Hz, 2H, CHphenyl), 8.25
(d, 4H, CHpyr), 8.09 (s, 4H, CHpyr), 8.02 (t, 4JH-H = 4.0 Hz, 2H, CHphenyl), 7.79 (dd,
3JH-H = 8.0 Hz, 3JH-H = 8.0 Hz, 1H, CHpyridine), 7.75–7.70 (m, 4H, CHpyridine+CHphenyl), 5.27
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(t, 3JH-H = 8 Hz, 8H, NCH2CH2CH2CH3), 2.22–2.10 (m, 8H, NCH2CH2CH2CH3), 1.79–1.66
(m, 8H, NCH2CH2CH2CH3), 1.62 (s, 36H, C(CH3)3), 1.44 (s, 18H, C(CH3)3 phenyl), 1.05 (t,
3JH-H = 8 Hz, 12H, NCH2CH2CH2CH3) (Figure S1). 13C{1H} NMR (100 MHz, CDCl3):
δ 193.06 (Au-Ccarbene), 156.83 (Cq phenyl), 151.28 (Cq phenyl), 149.28 (Cq pyr), 138.88 (Cq pyr),
137.48 (CH pyridine), 132.00 (Cq pyr), 130.71 (CH phenyl), 128.48 (CHpyr), 128.04 (CH phenyl),
127.97 (Cq pyr), 127.45 (Cq pyridine), 125.41 (Cq pyr), 123.01 (CHpyr), 122.99 (CH phenyl), 121.75
(Cq acetylide), 120.92 (Cq acetylide), 118.59 (CH pyridine), 116.82 (CHpyr), 106.23 (Cq phenyl), 52.36
(NCH2CH2CH2CH3), 35.62 (C(CH3)3), 35.06 (C(CH3)3 phenyl), 32.81 (NCH2CH2CH2CH3),
32.00 (C(CH3)3), 31,51 (C(CH3)3 phenyl), 20.42 (NCH2CH2CH2CH3), 14.16 (NCH2CH2CH2CH3)
(Figure S2).

4.3.2. Synthesis of 3@2

NaOH (40.00 mg, 1.002 mmol) and 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine (A,
28.01 mg, 0.072 mmol) were placed together in a round-bottom flask and dissolved in
methanol (20 mL). This mixture was heated at reflux for 1 h. Then, complex 1 (100.00 mg,
0.143 mmol) and 3 (40.13 mg, 0.072 mmol) were added as solid and the resulting sus-
pension was heated at reflux for 4 h. The mixture was evaporated to dryness and the
solid residue was extracted with dichloromethane, and the solution was filtered through
a short pad of Celite. Complex 3@2 was isolated as a white solid. Yield: 128.20 mg
(78%). IR (ATR):
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0.143 mmol) and 3 (40.13 mg, 0.072 mmol) were added as solid and the resulting sus-
pension was heated at reflux for 4 h. The mixture was evaporated to dryness and the 
solid residue was extracted with dichloromethane, and the solution was filtered through 
a short pad of Celite. Complex 3@2 was isolated as a white solid. Yield: 128.20 mg (78%). 
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167.06 (Cq Au(III)), 165.03 (Cq Au(III)), 156.80 (Cq phenyl), 151.27 (Cq phenyl), 149.23 (Cq), 149.09 (Cq), 
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acetylide), 120.89 (Cq acetylide), 119.07 (Cq acetylideAu(III)), 118.59 (CH pyridine), 118.57 (Cq acetylideAu(III)), 
116.82 (CHpyr), 116.70 (CHAu(III)), 113.82 (CHAu(III)), 106.21 (Cq phenyl), 55.46 (OCH3), 52.33 
(NCH2CH2CH2CH3), 35.61 (C(CH3)3), 35.05 (C(CH3)3 phenyl), 32.80 (NCH2CH2CH2CH3), 
32.00 (C(CH3)3), 31.50 (C(CH3)3 phenyl), 20.42 (NCH2CH2CH2CH3), 14.17 (NCH2CH2CH2CH3) 
(Figure S4). 

(C≡C): 2145.42 and 2105.89 cm−1. HRMS ESI-TOF-MS (positive
mode): 2274.9 [3@2+H]+ (Figure S28). Anal. Calcd. for C121H129N6OAu3: C, 63.90;
H, 5.72; N, 3.70. Found: C, 63.86; H, 5.74; N, 3.70. 1H NMR (400 MHz, CDCl3): δ 8.65
(s, 4H, CHpyr), 8.39 (s, 2H, CHphenyl), 8.23 (d, 4H, CHpyr), 8.07 (s, 4H, CHpyr), 8.04 (d,
3JH-H = 8.0 Hz, 2H, CHAu(III)), 8.02 (s, 2H, CHphenyl), 7.80 (dd, 3JH-H = 8.0 Hz, 3JH-H = 8.0 Hz,
1H, CHpyridine), 7.76–7.69 (m, 5H, CHpyridine+CHphenyl+CHAu(III)), 7.36 (dd, 3JH-H = 15 Hz,
3JH-H = 9.0 Hz, 4H, CHAu(III)), 7.40 (t, 3JH-H = 15 Hz, 3JH-H = 9.0 Hz, 4H, CHAu(III)), 7.24
(t, 3JH-H = 8.0 Hz, 3JH-H = 6.0 Hz, 2H, CHAu(III)), 6.87 (d, 3JH-H = 9 Hz, 2H, CHAu(III)),
5.25 (t, 3JH-H = 8 Hz, 8H, NCH2CH2CH2CH3), 3.84 (s, 3H, OCH3Au(III)), 2.25–2.08 (m, 8H,
NCH2CH2CH2CH3), 1.79–1.66 (m, 8H, NCH2CH2CH2CH3), 1.62 (s, 36H, C(CH3)3), 1.44 (s,
18H, C(CH3)3 phenyl), 1.04 (t, 3JH-H = 8 Hz, 12H, NCH2CH2CH2CH3) (Figure S3). 13C{1H}
NMR (100 MHz, CDCl3): δ 195.95 (Au-Ccarbene), 167.06 (Cq Au(III)), 165.03 (Cq Au(III)), 156.80
(Cq phenyl), 151.27 (Cq phenyl), 149.23 (Cq), 149.09 (Cq), 142.12 (Cq), 138.86 (Cq), 137.50 (CH
pyridine), 136.80 (CHAu(III)), 133.28 (CHAu(III)), 132.13 (CH phenyl), 131.95 (CHAu(III)), 130.72
(CH phenyl), 128.45 (CHpyr), 128.00 (CHAu(III)), 129.75 (Cq), 126.81 (CHAu(III)), 125.38 (Cq),
125.16 (CHAu(III)), 122.98 (CHpyr), 122.89 (CH phenyl), 121.71 (Cq acetylide), 120.89 (Cq acetylide),
119.07 (Cq acetylideAu(III)), 118.59 (CH pyridine), 118.57 (Cq acetylideAu(III)), 116.82 (CHpyr), 116.70
(CHAu(III)), 113.82 (CHAu(III)), 106.21 (Cq phenyl), 55.46 (OCH3), 52.33 (NCH2CH2CH2CH3),
35.61 (C(CH3)3), 35.05 (C(CH3)3 phenyl), 32.80 (NCH2CH2CH2CH3), 32.00 (C(CH3)3), 31.50
(C(CH3)3 phenyl), 20.42 (NCH2CH2CH2CH3), 14.17 (NCH2CH2CH2CH3) (Figure S4).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27123699/s1, Figure S1: 1H NMR spectrum of 2 in
CDCl3; Figure S2: 13C NMR spectrum of 2 in CDCl3; Figure S3: 1H NMR spectrum of 3@2 in
CDCl3; Figure S4: 13C NMR spectrum of 3@2 in CDCl3; Figure S5: UV-Visible Absorption spectra
of complexes 2 and 3@2 in CH2Cl2 at 10−5 M; Figure S6: Emission spectra of complexes 2 and
3@2 in CH2Cl2 at 10−5 M; Figure S7: Selected region and spectra of the titration of complex 2 with
pyrene; Figure S8: Non-linear least-squares fitting of the chemical shift changes of H during titration
experiments of 2 with pyrene. The figure on the left represents the speciation profiles; Figure S9:
Selected region and spectra of the titration of complex 2 with 1-pyrenyl-methanol; Figure S10: Non-
linear least-squares fitting of the chemical shift changes of H during titration experiments of 2 with
1-pyrenyl-methanol. The figure on the left represents the speciation profiles; Figure S11: Selected
region and spectra of the titration of complex 2 with triphenylene; Figure S12: Non-linear least-
squares fitting of the chemical shift changes of H during titration experiments of 2 with triphenylene.
The figure on the left represents the speciation profiles; Figure S13: Selected region and spectra of
the titration of complex 2 with perylene; Figure S14: Non-linear least-squares fitting of the chemical
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shift changes of H during titration experiments of 2 with perylene. The figure on the left represents
the speciation profiles; Figure S15: Selected region and spectra of the titration of complex 2 with
3-perylenyl-methanol; Figure S16: Non-linear least-squares fitting of the chemical shift changes of
H during titration experiments of 2 with 3-perylenyl-methanol. The figure on the left represents
the speciation profiles; Figure S17: Selected region and spectra of the titration of complex 2 with
coronene; Figure S18: Non-linear least-squares fitting of the chemical shift changes of H during
titration experiments of 2 with coronene. The figure on the left represents the speciation profiles;
Figure S19: Selected region and spectra of the titration of complex 2 with NTCDI; Figure S20: Non-
linear least-squares fitting of the chemical shift changes of H during titration experiments of 2 with
NTCDI. The figure on the left represents the speciation profiles; Figure S21: Selected region and
spectra of the titration of complex 2 with [Pt(CˆNˆC)(CO)]; Figure S22: Non-linear least-squares fitting
of the chemical shift changes of H during titration experiments of 2 with [Pt(CˆNˆC)(CO)]. The figure
on the left represents the speciation profiles; Figure S23: Selected region and spectra of the titration of
complex 2 with [Au(CˆNˆC)(C≡CC6H4-OCH3-p)]; Figure S24: Non-linear least-squares fitting of the
chemical shift changes of H during titration experiments of 2 with [Au(CˆNˆC)(C≡CC6H4-OCH3-p)].
The figure on the left represents the speciation profiles; Figure S25: Selected region and spectra of
the titration of complex 2 with TNFLU; Figure S26: Non-linear least-squares fitting of the chemical
shift changes of H during titration experiments of 2 with TNFLU. The figure on the left represents the
speciation profiles; Figure S27: Selected region of the HRMS ESI-TOF-MS (positive mode) spectrum of
2; Figure S28: Selected region of the HRMS ESI-TOF-MS (positive mode) spectrum of 3@2; Figure S29:
DOSY NMR spectrum of 2; S30: DOSY NMR spectrum of 3@2; Figure S31: IR spectrum of 2;
Figure S32: IR spectrum of 3@2; Table S1: Data values from the titration study of 2 with pyrene;
Table S2: Data values from the titration study of 2 with 1-pyrenyl-methanol; Table S3: Data values
from the titration study of 2 with triphenylene; Table S4: Data values from the titration study of 2
with perylene; Table S5: Data values from the titration study of 2 with 3-perylenyl-methanol; Table S6:
Data values from the titration study of 2 with coronene; Table S7: Data values from the titration study
of 2 with NTCDI; Table S8: Data values from the titration study of 2 with Pt(CˆNˆC)(CO); Table S9:
Data values from the titration study of 2 with [Au(CˆNˆC)(C≡CC6H4-OCH3-p)]; Table S10: Data
values from the titration study of 2 with TNFLU.
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