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Abstract: Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide
lengths. They have been shown to have great potential in eutherians/human disease diagnosis
and treatments and are now gaining more importance for the improvement of diseases in livestock.
To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous
advancement in deep sequencing technologies and various bioinformatics tools has enabled the
elucidation of their roles in bovine health. Among farm animals’ diseases, mastitis, a common
inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last
few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the
roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature,
we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus
in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential
applications of emerging genome editing technologies, as well as integrated omics platforms for
ncRNA studies and implications for mastitis are presented.

Keywords: miRNAs; circRNAs; lncRNAs; next generation of sequencing; mastitis

1. Introduction

Non-coding RNAs include several groups of untranslated RNA molecules such as
microRNA (miRNA), small interfering RNA (siRNA), small nucleolar RNA (snoRNA),
PIWI-interacting RNA (piRNA), circular RNAs (circRNAs), and long non-coding RNA
(lncRNA). They regulate gene expression and are involved in many biological processes.
According to the ENCODE (ENCyclopedia of DNA elements) project results [1], a major
portion of the genome is transcribed into noncoding regulatory elements or ncRNAs. The re-
cently released miRbase v22 and NONCODE database (2017) contains about 1100 miRNAs
and 22,386 identified lncRNA transcripts in the bovine genome. Interestingly, the ncRNAs
have been shown to play an important role in multiple biological processes such as cell
growth and development, differentiation, and metabolism, and have been used for various
biological studies (Figure 1). The roles of ncRNAs in livestock species [2–6] and human
diseases [7–9] have been comprehensively reviewed.

In dairy cows, the health of mammary glands (MG) is important for milk production
and the health of the calves. However, the MG could be infected by various pathogens
and inflammation (mastitis). Mastitis has a great impact on dairy production and has
been intensively studied using omics approaches such as genomics [10–12], transcrip-
tomics [13–15], and proteomics [16,17]. Growing evidence has shown that ncRNAs might
play important roles in mastitis biology. A previous review on the roles of miRNAs in
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the mammary gland [2] had outlined important computational studies on miRNA in MG
health and diseases. Moreover, Ibeagha-Awemu et al. [18] highlighted the roles of miRNAs
and lncRNAs as important epigenetic markers for improving animal productivity and
health. Later, Do et al. [4] covered recent studies on miRNAs and lncRNAs and discussed
their diverse roles in ruminant studies. These reviews, however, lack information on the
emerging aspects of ncRNA studies in mastitis. Therefore, given the importance of mastitis,
in this review, we first discussed the biology of mastitis and its economic importance. We
then provided updated state-of-the-art reports on the roles of various ncRNAs in mastitis
and discussed the potential application of this knowledge for the genomic selection of
dairy cattle against mastitis and how these important molecules could be harnessed for the
development of important diagnostic and therapeutic molecular targets for mastitis.
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2. Mastitis Biology
2.1. Concepts of Mastitis

Bovine mastitis is an inflammation of the udder in lactating cows and is caused by a
variety of pathogens, primarily bacteria [22]. This syndrome affects dairy animals’ health,
and the quantity of milk produced, thus, causing a huge negative economic impact on the
dairy industry [23,24]. The different aspects of mastitis biology and the subsequent effect
on dairy production are shown in Figure 2.

2.2. Clinical Signs of Mastitis

Generally, there are two major forms of mastitis: clinical mastitis (CM) and subclinical
mastitis (SCM), and several reports have shown that SCM is more prevalent than CM [13].
The CM is often characterized by a swollen and hardened udder, clotted milk, and some-
times blood in the milk, with the animal experiencing pain, fever, and loss of appetite.
However, cows infected with SCM normally show no visible signs. Subsequently, milk
obtained from cows with SCM is usually included in bulk milk, but that of CM is not [14].
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2.3. Effects of Mastitis

Mastitis is considered an enemy of dairy farmers because of the loss in milk production,
discarded milk in CM, increased labor, decreased dairy products due to low milk quality,
premature culling, and increased medications and veterinarian services [25,26]. The costs
for these factors might vary among countries and regions [27]. The estimated cost of mastitis
is about EUR 80–180/cow/year in Western European production schemes [28], and in total,
it causes an around USD 2 billion loss to the US dairy industry and an about USD 35 billion
loss to the world dairy sector annually [29]. Generally, mastitis is known to cause changes
in the physicochemical properties of milk as it could decrease the casein and lactose content
of milk while increasing its whey (low-quality) protein content, consequently affecting
the quality, flavor, and yield of dairy products such as cheese and lowering the amount of
calcium in milk [23,30,31]. Additionally, this disease causes increased vascular permeability
in the inflamed udder that, in turn, decreases the concentration of K+ and increases Na+
and Cl- in milk [32]. This increased vascular permeability also allows the passage of
immunoglobulins, transferrin, serum albumin, and other serum proteins or metabolic
features (associated with whey proteins) into milk. In general, mastitis-infected milk has
the risk of bacterial contamination and antibiotic residues, thus, is unsuitable for human
consumption. The effect of this is more prominent in developing countries where most
milk produced by smallholder farmers is consumed unpasteurized, leading to a high rate
of diarrheal disease among the population [33,34]. Even in the developed world where
milk is usually pasteurized before consumption, some consumers still prefer unpasteurized
products and are always at risk of developing foodborne diseases [35,36]. Apart from the
effect of mastitis on milk quality, composition, and human health, it also greatly affects
dairy processing and every stage of the production chain as reviewed by Garcia et al. [37].
This includes discarding contaminated trucks of milk and even attracts possible penalties
for milk producers who are not meticulous with the processing stages.
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2.4. Causative Agents of Mastitis

Bovine mastitis is caused by more than 100 pathogens including viruses, bacteria,
fungi, and mycoplasma. The most frequent causative agents of mastitis are bacterial species
such as Streptococcus, Staphylococci, and some Gram-negative bacterial species (Table 1).
Based on causative agents, mastitis can be classified into two categories i.e., contagious
mastitis and environmental mastitis.

The contagious mastitis is caused by Staphylococcus aureus, Streptococcus agalactiae, and
Mycoplasma species. The contagious bacteria could spread from one teat to another, or
from one cow to another cow of the same herd during milking. The chances of contagious
mastitis can be reduced following appropriate hygienic measures [38]. Environmental
mastitis accounts for about 1–10% of cases and is caused by common environmental germs
such as different species of Streptococci (uberis, dysgalactiae, and bovis) and Coliforms
(Escherichia coli, Enterococci, Klebsiella pneumonia, and Trueperella pyogenes) [38,39]. The most
common source of these pathogens is fecal-contaminated bedding from where they gain
entry into the teat canal of milking animals. The teat muscles act as a physical barrier by
preventing the entry of pathogens into the canal. After milking, the teat canal remains open
for a short time, which provides a chance for pathogens to gain entry into the teat canal of
the animal while sitting on the contaminated ground after milking [38].

The impact of mastitis varies from mild to moderate infection depending upon the
causative agent. Staphylococcus aureus, for example, has been reported as a cause of moder-
ate but chronic infection. In this case, the infected animal must be removed from the herd
because of the risk of spreading the bacteria in the herd [40]. On the other hand, Coliform
species, i.e., E. coli, mostly cause severe acute inflammation in the udder [41]. Some strains
of E. coli have been reported to cause more persistent conditions that may last for a longer
time in some animals [42]. The prevalence of mastitis in several countries is shown in
Table 1.

Table 1. Prevalence of cow-level and pathogen-wise mastitis in cattle.

Country

Cow Level Prevalence (%) of
Mastitis Pathogen-Wise Prevalence (%) of Mastitis

References
CM 1 SCM 2 Overall

Prevalence
Staphylococcus

sp. 3
Streptococcus

sp. 4 E. coli Klebsiella
sp. Other 5

Argentina – 54 – 72.4 8.8 – – 5.2 [43]
Australia – – 55 15 7.0 4 – – [44]

Bangladesh – 51.0 51.0 45.7 14.8 9.9 – 30.9 [45]
Canada – – 36.2 20.6 – 2 – 2.9 [46]
China – – – 39.0 11.0 – – 18.2 [47]
Kenya 6.8 73.1 80.0 58.5 22.2 – – 5.8 [48]

Pakistan 20 53 – 34.0 9.0 19.4 8 – [49]
Romania – – – 43.2 22.4 13.8 – 20.5 [50]
Slovakia – – 82.3 48.4 20.0 14.8 – – [51]

Zimbabwe 4.8 16.3 21.1 43.9 1.6 25.2 15.5 – [52]

1 Clinical mastitis, 2 Subclinical mastitis, 3 Staphylococcus species recorded in the studies included Staphylococcus
(CNS), S. epidermidis, and S. Aureus, 4 Streptococcus sp. recorded in the studies included Str.uberis, Str. dysgalactiae,
and Str. agalactiae, 5 Other pathogens recorded in the studies in smaller percentages included Proteus sp.,
Acinetobacter sp., Bacillus sp., Corynebacterium sp., Providentia sp., Aerococcus viridans, Pseudomonas, and fungus.

2.5. Host Immune Responses to Mastitis

The defense mechanism in mammary glands depends on the complex coordination
of nonspecific and specific protective elements, including the anatomical features of the
mammary gland as well as cell-mediated and antibody-mediated immune components [53].
The smooth muscle sphincter, at the entrance of the teat canal, acts as a first physical
barrier to prevent the entry of pathogens into the mammary gland. The stratified squamous
epithelium of the teat canal act as a source of antimicrobial agents, such as keratin, that
assist to combat the invading bacteria [54,55]. After the entry of the pathogen into the
mammary gland, the mammary epithelium cells (MECs) are the first cells that encounter
these pathogens. The MECs play a vital role in instigating the innate immune response by
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secreting inflammatory mediators, such as IL-8 which is a potent chemoattractant of neu-
trophils [56,57]. However, in certain conditions such as stress, drying-off, prepartum, loss
of the keratin plug of the teat canal (that traps the invading pathogens), and post-milking,
dilation of the sphincter muscles of the teat canal increases the invasion of pathogens and
subsequent colonization that leads to intra-mammary infection (IMI) [32,54,58].

Innate immunity acts as a first line of defense in response to pathogens that penetrate
the physical barriers of the teat canal [38]. It helps in pathogen recognition (PR) and pro-
inflammatory responses to eliminate harmful pathogens. The innate immune response
includes a wide variety of components, including different leukocytes, different compo-
nents of humoral immune responses (i.e., complement system, pro- and anti-inflammatory
cytokines, lactoferrin, and lysozymes), reactive oxygen species (ROS), acute-phase protein
(APP), and variety of peptides and proteins. Most of these components are produced in
other tissues of the body and are transported to the mammary gland [59,60].

Antimicrobial proteins and peptides (AMPs) are components of innate immune system
that are expressed in early stages of bacterial infections and cause bacterial cell lysis [61].
The AMPs are secreted by epithelial cells at mucosal surfaces and in the skin. They also
play an important role in intraphagosomal killing by neutrophils [62]. Different AMPs
are identified including Cathelicidins, Defensin, Calcium-binding proteins, and lactofer-
rin that are expressed in epithelial cells of mammary gland and/or neutrophils [63–65].
Cathelicidins are one of the most important AMPs that play significant roles in innate
and adaptive immunity. The Cathelicidins help in killing pathogenic microbes, perform
immunomodulatory functions, and promote wound healing [66].

Neutrophils play a vital role in the second line of defense in the early stages of
mammary gland infection. The neutrophils help in the phagocytosis of pathogens and the
destruction of foreign materials. After performing their task, they undergo apoptosis and
are removed by macrophages [67]. The number of neutrophils in milk SCC depends on the
causative agent and the health status of the udder [68]. The inflammation of the mammary
gland results in an increase in neutrophils and extracellular fluid that negatively affect the
composition of milk [22]. Macrophages are another type of important immune cell that also
contribute to eliminating pathogens by phagocytosis and their destruction by proteases
and reactive oxygen species [69]. Natural killer (NK) cells, a subpopulation of lymphocytes,
may play an important role in innate immune responses. These cells are cytotoxic in nature
and are independent of the major histocompatibility complex (MHC). Cytokine-stimulated
NK cells also have the ability to eliminate bacteria by secreting bactericidal proteins [29].

In the case of chronic infection, the innate immune response is not enough to eliminate
the invading pathogens alone; thus, the humoral mechanism comes into action. In the
humoral response, the T-helper cells release different cytokines in response to antigen
recognition with MHC II. These cytokines stimulate B-lymphocytes that in turn produce a
specific type of antibodies against the invading pathogens [58,70]. Of note, these immune-
related molecules are coded for by specific genes which could be directly or indirectly
regulated by various ncRNAs [15,71–74].

3. MiRNAs and Their Roles in Mastitis Biology
3.1. MiRNA Biosynthesis and Roles

Among the classes of short ncRNAs, the microRNAs have evolved to be one of the
most abundant types. They are of varying lengths (about 22–23 nucleotides) and regulate
the activity of about 60% of all protein-coding genes in mammals. They also control a
variety of cellular processes by transcriptional or post-transcriptional repression of their
target gene expression [75]. Generally, mature miRNAs are known to be produced in the cell
through a cascade of biochemical events that are initiated in the cell nucleus and end in the
cytoplasm [76–78]. These events occur in several key steps which can be briefly described
as follows: First, the DiGeorge Syndrome Critical Region Gene 8 (DGCR8)/Drosha complex
processes primary miRNA transcripts (pri-miRNAs) in the nucleus into precursor miRNAs
(pre-miRNAs) which are subsequently processed into imperfectly paired miRNA duplexes
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by the dicer, in the cell cytoplasm. Finally, a single-stranded “guide” miRNA (from either
strand of the matured miRNA) is preferentially incorporated onto the Argonaute (AGO)
protein to form the RNA-induced silencing complex (RISC) [70]. Research has shown that
most miRNA genes can be found in the introns of protein-coding genes and share the
promoter with the host gene [79]. The miRNAs often have several transcriptional start
sites. They regulate gene expression through induction of mRNA degradation, inhibition of
either translation initiation or elongation processes, degradation of co-translational proteins,
and premature termination of translation [75]. Additionally, they also can form miRNA–
mRNA pairs which aid in informative biological mechanisms such as gene regulation.
Since the research that led to the discovery of the first miRNA, lin-4, was published in
1993 [80], and with the advancement in deep sequencing technologies and developments
of various bioinformatics tools for efficient processing of generated sequence data, several
thousands of miRNAs have been discovered in humans, mice, farm animal species, and
plants, and have been subsequently deposited in the miRNA database. This has indeed
aided further understanding of the mechanism of miRNA regulation across species and
cells. More importantly is that miRNAs are now being considered as potential biomarkers
of several human diseases such as autoimmune diseases [81], metabolic disorders [82], and
cardiovascular diseases [83]. The miRNA has also been shown to be a potential diagnostic
marker and efficient therapeutic target in the diagnosis and treatment of various cancer
types [84–88], majorly due to their crucial regulatory roles in many biological processes
leading to these diseases.

3.2. Occurrence of miRNAs in MG Tissues

Abundant miRNAs have been identified in the bovine milk and tissues, supporting the
identification of miRNAs in each tissue or disease condition as well as helping the develop-
ment of a better non-invasive method of collecting tissue samples. Since Gu et al. [89] first
identified 59 distinct bovine miRNAs in the bovine MG by cloning and sequencing extracted
small RNAs from the MG tissue, the numbers of miRNAs identified in bovine tissues have
increased sharply, thanks to the whole transcriptome shotgun sequencing (WTSS) methods.
Moreover, there are about 38,589 miRNAs and as many as 93 clusters already reported for
cattle in the latest version of miRBase (release 22, www.mirbase.org/ accessed on 25 August
2022 [90]). In the first miRNA study for bovine milk, Chen et al. [91] identified a total of
230 and 213 known miRNAs in the milk of 7 days postpartum and 90 days postpartum
cows, respectively. Two years later, Izumi et al. [92] reported 100 and 53 known miRNAs
in colostrum and mature milk using microarray, respectively. Ever since then, there have
been various research reports on the expression of miRNAs in different milk fractions and
across varying physiological conditions, highlighting their potential function in important
biological processes such as milk production. For example, Li et al. [93] analyzed miRNAs
in milk fat, whey, cells, and MG tissues and found 210, 200, 249, and 321 known and 33,
31, 36, and 176 novel miRNAs, respectively. Do et al. [94] also reported 475 known and
238 novel miRNAs among which 15 were significantly expressed across different lactation
stages to regulate basic metabolic processes and cellular and immunological functions. For
the bovine MG tissues, Li et al. [95] described 884 unique miRNA sequences (283 known,
505 novel, and 96 conserved miRNAs) (about 1100 miRNAs), while Le Guillou et al. [96]
identified 167 novel miRNAs. Moreover, Luoreng et al. [97] identified 1838 miRNAs includ-
ing 580 known miRNAs and 1258 predicted novel miRNAs in an experimental challenge
of bovine MG with mastitis pathogens (E. coli or S. aureus). Li et al. [98,99] also reported
483 known bovine miRNAs and 139 novel miRNA hairpins in an experiment related to
the heat stress response of bovine MG. Recently, Sun et al. [99] explored the expression
profiles of miRNAs in 11 different tissues and indicated that the miR-1298, miR-2284b,
and miR-376d are tissue-specific miRNAs for MG. Notably, many factors could influence
miRNA expression profiles such as the sample collection procedures, breeds, as well as
tools used for sequencing (RNAseq versus microarray), annotation, identification of novel
miRNAs, etc. For instance, more than 1000 tools have been used to study, identify, or

www.mirbase.org/
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predict the targets of microRNAs (http://www.mirtoolsgallery.org/miRToolsGallery/,
accessed on 25 August 2022). The choice of tools certainly affects the expression profiles of
miRNAs. Recently, a new database called RumimiR (http://rumimir.sigenae.org/ accessed
on 25 August 2022 [100]) was created for ruminant species and contains about 6808 unique
microRNAs of bovine which should further improve bovine miRNA research.

3.3. Roles of miRNAs in Mammary Gland Infection and Mastitis

The healthy milk-producing MG that ensures the production of high-quality milk is
essential to the dairy industry. Hence, a lot of resources are mostly invested in ensuring
a mastitis-free dairy herd. As mentioned earlier, mastitis can be divided into clinical and
subclinical types [101] and is caused by different pathogens [93] that can be diagnosed via
somatic cell counting (SCC) and bacteriological culturing of milk samples. One general
observation is that most studies of miRNA function in mastitis infection often focus on a
particular pathogen challenge, except for a few studies that are performed by comparing
the miRNA expression profile of positive and negative results from diagnostic methods.
Regardless, there has been significant progress in identifying various dysregulated miRNAs
in mastitis and understanding their contribution to the development and progression of the
disease. Table 2 shows various differentially expressed miRNAs in mastitis while Table 3
lists the specific gene target of miRNAs for different mastitis pathogens and their function.

Table 2. Dysregulated miRNAs during mastitis infections.

Pathogens Phenotypes/Tissues Upregulated miRNAs Downregulated miRNAs References

California mastitis test
positive (CMT+) Milk miR29b-2, miR146A, miR148s,

miR155, and miR184.
miR24-2, miR181s1, and

miR223 [102]

California mastitis test
positive (CMT+) Milk

miR-221, miR-146a, miR-10a,
miR-142-3p, miR-223, miR-21-3p,
miR-6529a, miR-338, miR-2284aa,
miR-15a, miR-146b, miR-142-5p,

miR-30f, miR-1246, miR-147,
miR-2285b, miR-2285p, miR-222,
miR-2284w, miR-132, miR-130b,

miR-301a, miR-505

miR-23b-3p, miR-874 [103]

California mastitis test
positive (CMT+) Milk miR-21, miR-122, miR-125b,

miR-205, miR-222, and miR-383 miR-26b and miR-29b [104]

Mycoplasma bovis Milk let-7a-5p, miR-100, miR-103,
miR-107, miR-10a

miR-125a, miR-126-3p,
miR-126-5p, miR-127,

miR-1271
[105]

Mycoplasma bovis Milk
miR-21, miR-146a, miR-155,

miR-222, miR-383, miR-200a,
miR-205, miR-122, and miR-182

[106]

Staphylococcus aureus Milk

miR-1, miR-122, miR-1246,
miR-146b, miR-142-5p, miR-146a,

miR-154b, miR-184, miR-185,
miR-196b, miR-205, miR-2340,
miR-2889, miR-2904, miR-378,

miR-378c, miR-451, and miR-378.

miR-218, miR-2320-3p,
miR-369-3p, miR-582,

miR-6525
[107]

http://www.mirtoolsgallery.org/miRToolsGallery/
http://rumimir.sigenae.org/
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Table 2. Cont.

Pathogens Phenotypes/Tissues Upregulated miRNAs Downregulated miRNAs References

Staphylococcus aureus Milk

miR-1343-5p, miR-2407, miR-296,
miR-2360, miR-2374,

miR-2328-3p, miR-2412,
miR-2904, miR-494, miR-2392,

miR-2898

miR-2373, miR-423-3p,
miR-126, miR-19b,

miR-148a, miR-21, miR-31,
miR-143, miR-26a, miR-145,

miR-2881, miR-26b,
miR-200b, miR-99a,

miR-30a-5p

[108]

Staphylococcus aureus Milk

miR-103, miR-142-3p,
miR-142-5p, miR-146a, miR-146b,

miR-147, miR-221, miR-223,
miR-2284w, miR-2285b, miR-23a

let-7b, miR-1468,
miR-423-5p [109]

Streptococcus uberis
Coagulase Negative

Staphylococcus

Milk
Milk

miR-1224, miR-2385-5p,
miR-2433
miR-2344

miR-17-3p, miR-320a,
miR-320b

miR-1343-3p, miR-345-5p
[110]

Escherichia coli Blood miR-15a and miR-16a - [111]

Escherichia coli MAC-T 1

miR-365-3p, miR-184 and
miR-24-3p (6 hpi 2)

miR-21-3p, miR-148a, miR-92a
(12 hpi)

miR-423-5p and miR-21-3p
(24 hpi), miR-486 (48 hpi)

miR-193a-3p, miR-30c and
miR-30b-5p (6 hpi)
miR-423-5p (12 hpi)
let-7a-5p, miR-184,

miR-un5
miR-193a-3p (48 hpi)

[112]

Streptococcus uberis BMEC 3 miR-223, mir-29e and mir-708
(2 hpi)

miR-181a, miR-16a,
miR-31, [113]

Streptococcus uberis BMEC

let-7b, and miR-98 (4 hpi)
miR-let-7c and miR-708 (4 hpi in

normalized data)
let-7b, miR-200c, miR-210,

miR-24-2, miR-128-2, let-7d,
miR-128-1, let-7e, miR-185,

miR-652, miR-494, miR-2342
(6 hpi)

miR-29b-2, miR-193a, and
miR-130a (4 hpi)

miR-29b-2, miR-29c,
miR-29e, and miR-100,

miR-130a (6 hpi)
miR-15a, miR-17,

miR-26a-2, miR-29a,
miR-29b-1, and miR-193a

(in normalized data)

[114]

Streptococcus aureus MAC-T

miR-2339 (6 hpi), miR-21-3p,
miR-92a (12 hpi), miR-23a,

miR-21-3p (24 hpi), miR-365-3p
(48 hpi)

miR-423-5p and miR-499
(12 hpi)

miR-193a-3p, miR-99b,
miR-un5 (24 hpi)

miR-193a-3p, miR-30c, and
miR-30b-5p (48 hpi)

[112]

S. agalactiae BMEC

miR-223, miR-2284k, miR-2484,
miR-451, miR-383, miR-486,

miR-2332, miR-122, miR-16a,
miR-326

miR-26a, miR-33a, miR-335,
miR-3660, miR-146a,

miR-206, miR-628,
miR-450b, miR-380-p,

miR-1388-3p, miR-30e-5p,
miR-23b-3p, miR-378b,

miR-145, miR-136,
miR-135a, miR-126-5p,

miR-24, miR-4286,
miR-450a, miR-3431,
miR-2478, miR-23a,

miR-487b, miR-331-5p

[115]
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Table 2. Cont.

Pathogens Phenotypes/Tissues Upregulated miRNAs Downregulated miRNAs References

Staphylococcus aureus Blood miR-486, miR-451, miR-191,
miR-342, and miR-30e-5p miR-339b and miR-25 [116]

Staphylococcus aureus Blood
miR-1301, miR-30b-5p,

miR-193b, miR-320a, miR-19a,
and miR-19b

miR-2284r, miR-144,
miR-143, miR-205, and

miR-24
[117]

Escherichia coli Blood

miR-200a, miR-205, miR-345-5p,
miR-671 (1 hpi)

miR-545-3p, miR-190a, let-7a-3p,
miR-345-5p, miR-592, miR-324,

miR-411b, miR-153, miR-331-3p,
miR-144, miR-2299-5p, miR-671,

miR-32, miR-30b-5p, miR-29c,
miR-1246, miR-142-3p,
miR-29d-5p, miR-326,

miR-27a-5p, miR-19a (3 hpi)
miR-200a, miR-205, miR-182

(5 hpi)
miR-200a, miR-205, miR-183,

miR-214, miR-182, miR-199a-5p,
miR-196a, miR-455-5p, miR-96,

miR-143, miR-10b, miR-122,
let-7a-3p, miR-126-5p, miR-144,

miR-126-3p, miR-2285h,
miR-345-5p, miR-3613a,

miR-200c (7 hpi)

miR-122 (1 hpi)
miR-122, miR-2450a,

miR-193a-5p, miR-145,
miR-200b, miR-2346 (3 hpi)

miR-133a, miR-193b,
miR-331-3p (5 hpi)

miR-133a, miR-2332,
miR-1388-3p, miR-342,

miR-1291 (7 hpi)

[118]

Streptococcus agalactiae
(ST12 and ST103 strain) Blood

miR-221, miR-628, miR-146b,
miR-2285m, miR-2284i, p-miR-3

(both strains)
miR-425-5p, miR-425-3p,

miR-30b-5p
miR-223, miR-155, miR-500,

miR-374b, miR-122 miR-2438
(ST12 strain)

miR-708, miR-9-5p, miR-222,
miR-7858 (ST103 strain)

miR-2427, miR-1306,
miR-1249, miR-2898,

miR-2478 (both strains)
miR-2388-5p, miR-365-3p,

miR-92b, miR-2431-3p,
miR-197, miR-125a,

miR-128, miR-328, miR-484,
miR-1343-3p, miR-340,

miR-30f, miR-30d,
miR-125b, miR-505,

miR-2284ab, miR-423-3p,
miR-361, miR-92a,
miR-1468 miR-669,
miR-30c, miR-10a

miR-2284w (ST12 strain)
miR-2892, miR-1246

(ST103 strain)

[119]

1 Mammary alveolar cells; 2 hours post-infection; 3 bovine mammary epithelial cells; hpi: hour post infection.

Table 3. MicroRNAs with functionally validated target genes in mastitis infection using bovine
mammary gland cells.

Pathogens Phenotypes
/Tissues miRNAs Target

Genes Main Consequences References

Escherichia coli
Mammary tissues

and blood
neutrophils

miR-15a and
miR-16a CD163

Decreases CD163 ability to induce
the secretion of

anti-inflammatory cytokines
[111]
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Table 3. Cont.

Pathogens Phenotypes
/Tissues miRNAs Target

Genes Main Consequences References

Staphylococcus
aureus

Mammary gland
tissue miR-15a IRAK2

Might reduce the negative
regulatory function of IRAK2 and

increase the apoptosis of mast cells
[120]

Staphylococcus
aureus Mac-T cells miR-145 FSCN1.

Translationally repress FSCN1
function; inhibit the proliferation of
Mac-T cells, significantly reduce the
secretion of IL-12 and TNF-α, and

increase the secretion of IFN-γ

[121]

BMEC miR-145 IRS1

Post-transcriptionally regulate IRS1
expression and decrease the

proliferation of mammary epithelial
cell through the MAPK

signaling pathway

[122]

Staphylococcus
aureus Milk miR-223 CBLB

Reduce LTA-stimulated
inflammation in Mac-T cells by

targeting CBLB and the
PI3K/AKT/NF-κB

downstream pathway

[123]

Streptococcus
agalactiae BMEC miR-122 EPO

Regulates the JAK-STAT signaling
pathway by downregulating EPO

in the mammary gland
[124]

miR-375
knockdown

disease condition
BMEC miR-375 NR4A1/

PTPN5

NR4A1 is an important mediator in
early inflammation that upregulates
IκBα expression but inhibits NF-κB

activation; PTPN5 negatively
regulates the activity and

localization of MAPK
family members

[125]

3.3.1. Escherichia coli

E. coli remains one of the pathogens with the ability to cause severe systemic clinical
mastitis symptoms. However, compared to the S. uberis, less attention has been paid to
its resulting mastitis condition and that of S. agalactiae [67]. In brief, the severity of E. coli
mastitis is mainly determined by host factors rather than by E. coli pathogenicity since host
defense status is a key factor determining the outcome of the disease [67]. To understand
the role of dysregulated miRNAs in this condition, Jin et al. [112] identified a total of
17 miRNAs that were DE between bovine mammary epithelial cells challenged with and
without E. coli. Of these, five miRNAs (miR-184, miR-24-3p, miR-148, miR-486, and let-7a-
5p) were specifically DE in E. coli infected cells. Interestingly, Ju et al. [111] also recently
provided an insight into the relationship between bovine mastitis and the expression of
miR-15a and miR-16a. Accordingly, miR-15a and miR-16a, which are mostly expressed
and localized in the ductal and acinar cells of mammary gland tissues of the cows, were
significantly upregulated in the mammary tissues and blood neutrophils of E. coli-infected
cows, as compared to the healthy cows and contribute to the severity of the disease. The
study further suggested that miR-15a/16a clusters may have a stronger regulatory effect on
the target CD163 gene than each of them separately in mastitis cows. Additionally, Luoreng
et al. [97] indicated that miR-200a, miR-205, miR-122, and miR-182 might be involved in
immunity in the late stage of dairy cow mastitis caused by E. coli. All these studies confirm
the significant role of miRNAs in the E. coli-related mastitis development.
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3.3.2. Mycoplasma bovis

A few studies have been devoted to understanding the roles of miRNAs on the M.
bovis-caused mastitis. In an attempt to understand the immune response mechanism to
mastitis infection, Özdemir [105] identified 24 known and 13 novel microRNAs that were
differently expressed in M.a bovis positive tissues and demonstrated that let-7a-5p, let-7b,
let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-1, miR-100, miR-101, miR-103, miR-106a, miR-
106b, miR-107, and miR-10a might be involved in inflammation signaling pathways in
mastitis cases caused by M. bovis. In another experiment, the author [126] also reported that
the expression levels of miR-21, miR-146a, miR-155, miR-222, miR-383, miR-200a, miR-205,
miR-122, and miR-182 were significantly upregulated in M. bovis-positive milk and that
inflammation-related miRNA expression levels in the two different dairy cows’ (Holstein
and Doğu Anadolu Kırmızısı) milk studied were altered in the presence of mastitis. The
study suggested that the identified miRNAs could be used as biomarkers of bovine mastitis
caused by M. bovis.

3.3.3. Staphylococcus aureus

Perhaps the roles of miRNAs in mastitis caused by S. aureus are most studied com-
pared to other mastitis related pathogens. Among the first studies, Jin et al. [112] performed
an expression profiling of miRNAs in BMEC challenged with and without heat-inactivated
S. aureus at 0, 6, 12, 24, and 48 hr and identified several known miRNAs (miR-2339, miR-
21-3p, miR-423-5p, miR-499, miR-92a, miR-193a-3p, miR-23a, miR-99b, miR-21-3p, miR-
193a-3p, miR-365-3p, miR-30c, and miR-30b-5p) that were significantly DE by the S. aureus
challenge. Interestingly, a slower initial response of miRNAs to S. aureus bacteria (most DE
miRNA reported after 12 hr infection) was also observed, indicating a slow progression
of mastitis caused by S. aureus. Furthermore, Li et al. [127] identified many miRNAs (77)
that were substantially DE between the S. aureus-infected and non-infected MG. Notably,
miR-223, miR-1246, and miR-142-5p were significantly upregulated and miR-1, miR-23a,
miR-31, miR-23b-3p, miR-26a, and miR-145 were significantly downregulated. Using target
gene enrichments, the authors indicated that these DE miRNAs might be related to the
regulation of the endocytosis pathway and olfactory transduction pathways involved in
cancer. Chenet al. [128] validated the function of 25 miRNAs and genes associated with
NF-kB signaling pathway between healthy and mastitis cows and proposed that the NF-kB
pathway is activated in mastitis individuals because of a decreased inhibition of miRNAs.
The study suggested that miR-16 and miR-223 may be used as new markers for the dairy
mastitis prognosis based on the change in the expression level between the two groups.
Ma et al. [129] identified 37 DE miRNAs (22 known and 15 novels) in the exosomes of milk
that were naturally infected with S. aureus, as compared to the control group. Of those,
miR-378 and miR-185 were significantly upregulated. These two miRNAs targeted the
VAT1L, DYRK1B, MLLT3, HP1BP3, NPR2, and PGM1 genes which have been reported to
be associated with various human diseases. Similarly, Cai et al. [109] also detected 18 DE
miRNAs (12 upregulated and 6 downregulated) in the exosome of milk from S. aureus-
infected cows as compared to that of healthy ones and predicted that the target genes of
these miRNAs were significantly enriched in various biological processes, cellular compo-
nents, and molecular functions related to an immune system process, response to stimulus,
and growth. Four of these DE-expressed miRNAs (1 upregulated and 3 downregulated)
were novel miRNAs. These DE miRNAs, especially miR-223 and miR-142-5p, could be
considered potential candidates for early detection of mastitis.

The damage caused to the MG cells and tissue can be further aggravated by the per-
sistence of pathogen infections through the late stages of mastitis, resulting in the loss
of structural integrity of the alveoli, tissue necrosis, and reduction in milk quality [130].
Ju et al. [108] recently revealed the miRNome of bovine MG tissues at the late stage of natu-
ral infection with S. aureus. The study detected 29 DE miRNAs that regulate immune-related
target gene expression affecting various cell and tissue responses to mastitis. The authors
also reported a significant downregulation of miR-26a, which enhanced the expression of
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its target FGA gene that is involved in host defense, inflammation, and tissue damage [108].
They noted that the miRNA variations observed in the MG of the mastitis-infected cows
can be linked to some processes such as maintenance of immune and defense responses,
cell proliferation and apoptosis, and tissue injury and healing during the late stage of infec-
tion [108]. On the other hand, a recent experiment that examined the differential miRNA
expression in the peripheral blood of dairy cows in response to mastitis infection by S.
aureus revealed that the quantity of differentially expressed miRNA in the blood increased
with the extension of S. aureus infection time, implying that the response of blood miRNA
to inflammation mainly occurs at the late stage of mastitis [117]. This information may be
particularly useful when developing targeted therapy for the treatment of the disease.

3.3.4. Streptococcus agalactiae

To better understand the pathogenicity and defense mechanisms that are activated
during mastitis disease, Lewandowska-Sabat et al. [119] conducted an miRNA expression
profiling of macrophages derived from bovine blood monocytes that were infected in vitro
with two strains of S. agalactiae (ST103 and ST12). The authors reported 17 and 44 DE
miRNAs in the macrophages infected with ST103 and ST12, respectively, in comparison to
the control cultures. Accordingly, two bacterial strains significantly regulated miRNAs that
were found to be involved in the alternative activation of macrophages. Moreover, the DE
miRNA in the macrophages infected with both bacteria strains and their predicted target
genes were significantly enriched in different immune-related pathways. The study further
examined different key immune genes such as the transcript level of tumor necrosis factor-
alpha (TNFα), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-1
beta (IL-1β), and transforming growth factor-beta 1 (TGFβ1) during the early phase of
infection. Their results showed that all the six key immune genes, except TGFβ1 which was
downregulated by ST12, were significantly upregulated by both strains of S. agalactiae. Two
(miR-155 and miR-125b) of the three DE miRNAs that were unique to the ST12 infection
are involved in the regulation of TNF production during mycobacterial infection and the
ST12-induced miRNAs were associated with a stronger inflammatory response than the
ST103 [119]. The authors finally suggested that the DE miRNAs could be used to develop a
marker assay for the early diagnosis of subclinical infections such as bovine streptococcal
mastitis. Moreover, Pu et al. [115] identified 35 DE miRNAs in bovine MG tissues with the
S. agalactiae-type mastitis. Their result further showed that miR-223 and miR-26a were the
most upregulated and downregulated miRNAs, among the DE miRNAs, respectively. The
DE miRNAs might regulate several immune responses and signal transduction pathways
such as the RIG-I-like receptor signaling pathway, cytosolic DNA sensing pathway, and
Notch signal pathway [115].

3.3.5. Streptococcus uberis

S. uberis is among the most prevalent mastitis-causing pathogens throughout Europe
and North America [131]. Therefore, several studies have attempted to investigate the
role of miRNAs related to this pathogen using in vivo experiments challenging bacterial
pathogens in mammary tissues of cows [112–114]. Naeem et al. [113] performed this experi-
ment in 14 selected miRNAs (miR-10a, -15b, -16a, -17, -21, -31, -145, -146a, -146b, -155, -181a,
-205, -221, and -223) in bovine mammary epithelial cell (BMEC) function in tissue challenged
with S. uberis. The authors observed a significant downregulation of miR-181a, 16, and 31,
and upregulation of miR-223 in infected versus healthy tissues. Furthermore, downstream
enrichment of target genes indicated potential roles of miR-181a on intra-mammary infec-
tions via its regulatory function on FcgammaR-mediated phagocytosis, toll-like receptor
signaling, and antigen processing and presentation pathway [113]. Lawless et al. [114]
profiled the expression of miRNAs in primary bovine mammary epithelial cells (BMECs) at
1, 2, 4, and 6 h post-infection with S. uberis and reported 21 miRNAs including 20 known
miRNAs that were significantly differentially expressed (DE). The target genes of miRNAs,
which were downregulated in S. uberis-infected BMECs, were also enriched for pathways
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related to innate immunity [114]. Ngo et al. [110] studied circulating miRNAs in the milk of
mastitis cows with a ‘natural level of exposure’ and in response to various causative agents
‘on farm’. The authors identified 26 miRNAs as generic indicators of clinical mastitis, and
of those, seven miRNAs (miR-27b, miR-152, miR-194, miR-200b, miR-222, miR-379, and
miR-18397) were suggested as early mastitis indicators. Moreover, 27 miRNAs that are
unique to S. uberis-positive mastitis were identified and miR-320a/b were emphasized to
have important roles given their link to modulation of trained immune activity [110].

3.3.6. CMT Tests and Other Mastitis Pathogens

Another interesting study for mastitis disease was undertaken by Lai et al. [104], who
tested the sensitivity and specificity of several selected miRNAs for California mastitis
test positive (CMT+) milk. The authors reported that miR-21, miR-146a, miR-155, miR-
222, and miR-383 were significantly upregulated in CMT+ milk. Additionally, these five
miRNAs showed high (more than 80%) sensitivity and specificity for CMT+ milk. They
also tested the potential of using miR-92a, miR-375, and let-7g as housekeeping genes for
mastitis disease and suggested that miR-92a might be a good candidate housekeeping
gene for studies of miRNA function in mastitis diseases. Li et al. [132] reported that the
relative expression of miR-144-5p and miR-130b-5p in mastitis-infected mammary tissues
was significantly downregulated and upregulated by 3.34-fold, respectively, compared to
healthy tissues, using stem-loop quantitative real-time polymerase chain reaction (RT-PCR).
Similarly, using customized miRNAQTLsnp software, Jiang et al. [133] identified 5252
miRNA-related SNPs that could influence susceptibility to mastitis. They demonstrated
that these SNPs are one of the plausible mechanisms underlying mastitis by modulating
the interaction of miRNAs and immune-related genes such as the Spi-1 proto-oncogene
(SPI1), which is a vital regulator of the innate and adaptive immune systems; and that
the SNPs, including the confirmed rs109462250 SNP of miR-2899 (in the study), may have
implications for the mastitis resistance breeding program in cattle. Further studies have
shown the potential of using miRNAs as an effective diagnostic tool in the detection of
bovine mastitis. For example, Srikok et al. [102] analyzed 8 candidate miRNAs from
bovine milk and revealed 3 DE miRNAs (miR29b-2, miR146a, and miR155) that could
serve as candidate miRNAs for determining infected/non-infected milk statuses of cows.
Particularly, miR29b-2 seems to have promising qualities as a bovine mastitis biomarker,
especially in cases where the mastitis status of a milk sample cannot be determined based
on only CMT results. Another genome-wide bovine milk transcriptome analysis conducted
by Lai et al. [103] identified 25 DE miRNAs (23 upregulated and 2 downregulated miRNAs)
in CMT+ milk, as compared to normal milk. The authors identified 3 highly expressed
novel miRNAs that were associated with bovine mastitis and relatively highly expressed
in milk. One of the unique miRNAs (designated as ‘chr26_14097′ in the study) had been
previously reported in different bovine specimens including milk-isolated monocytes from
S. uberis-infected cows, Mycobacterium bovis-induced alveolar macrophages, and whole
blood, and has been suggested to have immune regulatory functions. The study concluded
that the DE miRNAs could be involved in the progression of human cancers, infections, and
immune-related diseases [103]. Another example study showing the importance of miRNA
in mastitis is a recent study by Tzelos et al. [134] which tested the possibility of using
four inflammation-associated miRNAs (miR-26a, miR-142-5p, miR-146a, and miR-223) as
diagnostic biomarkers of bovine mastitis. Interestingly, these miRNAs are also significantly
dysregulated in many pathogen-induced mastitis studies reported in this current review.
In their study, they found that the four miRNAs have a significant correlation with the
mRNA levels of HP, TNF, CXCL8, and IL1B genes which are known inflammatory markers
in milk cells. With a high accuracy of 100% sensitivity and more than 81% specificity,
they concluded that the miR-223 and miR-142-5p levels could identify early inflammatory
changes in individual quarter milk samples (CMT1) in the study. A pictorial representation
of some confirmed miRNA-mRNA network in mastitis, together with their downstream
target pathway, is shown in Figure 3.
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Figure 3. Schematic representation of confirmed miRNA–mRNA (gene) interaction in mastitis-
induced tissues/cell. Infection by pathogens activates cascades of events that cause dysregulation of
signification pathways, leading to inflammation of the udder. Each gene represented here is regulated
by the respective miRNAs, subsequently dysregulating any of the represented signaling pathways
(see Table 3).

4. LncRNAs in Mastitis Disease

LncRNAs are a diverse collection of ncRNAs with emerging regulatory roles in many
biological processes in every branch of life [135–138]. LncRNA transcripts are >200 nu-
cleotides in length and constitute the largest portion of the mammalian ncRNA tran-
scriptome [135]. LncRNAs more closely resemble mRNAs than other classes of ncRNAs,
especially in their biogenesis pathways and form. Most lncRNAs are transcribed by the ac-
tivities of RNA polymerase II, have a 5′ terminal methylguanosine cap, and are often spliced
and polyadenylated [136]. Some non-polyadenylated lncRNAs may arise through alterna-
tive pathways that are probably expressed from RNA polymerase III promoters [139,140]
or arise during splicing and small nucleolar RNA production [141]. Furthermore, some
lncRNAs are regulated in different ways at different stages of their biogenesis, maturation,
and decay [138].

In cattle, approximately 23,000 lncRNAs transcripts have been reported (www.noncode.
org/, accessed on 25 August 2022 [142]). The numbers of lncRNAs vary among tis-
sues [127,143–147] and methods used to identify them from RNA sequencing data [148].

www.noncode.org/
www.noncode.org/
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Among the first studies of lncRNAs in bovine MG, Koufariotis et al. [145] characterized the
lncRNA repertoire across 18 bovine tissues including the MG and reported 9778 transcripts
expressed in MG. Later, Tong et al. [149] identified 184 lncRNAs (intergenic) in the bovine
MG including 36 lncRNAs co-located with 172 milk-related quantitative trait loci (QTL)
and 1 lncRNA co-located within a mastitis QTL region. LncRNAs are also important for
MG health as several lncRNAs (H19, XIST, or TUB) have been reported to relate to mastitis
diseases [150–152]. In an in vivo study, Wang et al. [152] reported that the lncRNA-TUB
plays a crucial role in the morphological shape, proliferation, migration, and β-casein
secretion of mammary epithelial cells, and could also mediate E. coli-induced inflammatory
factor secretion and S. aureus adhesion to epithelial cells. Similar to TUB, lncRNA H19 and
XIST also play important roles in immune-related processes. The lncRNA H19 has been
shown to modulate TGF-β1-induced epithelial to mesenchymal transition in BMEC through
the PI3K/AKT signaling pathway [151], while the lncRNA XIST mediates the BMEC in-
flammatory response via the NF-κB/NLRP3 inflammasome pathway. Recently conducted
studies have revealed that lncRNAs play a significant role in M. bovis infections [153–155].
Wang et al. [3] and Wang et al. [155] showed that lncRNAs interact with the coding genes
in both a cis and a trans way to carry out their regulatory functions. With an ever-growing
number of WTSS studies, there also arose a need for prioritizing the SNPs from varied
datasets. The challenge in identifying and inferring the causal mutations related to clinical
mastitis was emphasized in [156]. Meanwhile, by hypothetically studying if the lncRNA
expression profile is specifically changed in M. bovis-infected bovine mammary tissues,
Özdemir et al. [157] determined the LncRNA–mRNA co-expression network playing an
important role against M. bovis.

5. Circular RNAs and Other ncRNAs in Mastitis

Circular RNAs represent a large class of ncRNAs that have recently emerged as
regulators of gene expression [158,159]. They were discovered several decades ago when
Hsu et al. [160] investigated the splicing machinery processor for making precursor mRNA
into mature viral mRNAs. As sequence data continually increase, the emerging functions
of circRNAs are being determined and have been reported in RNA transcription, splicing,
turnover, and translation [159]. Many scholars had pointed out that circRNAs may play an
important role in many diseases, especially cancer [161,162] and can escape exonucleic acid
degrading enzymes as a result of their lack of a free 5′ or 3′ end, making them more stable
than miRNAs or other linear counterparts [158]. Consequently, circRNAs are considered
useful biomarker candidates for disease diagnosis and therapy monitoring [158]. However,
little research has been undertaken to characterize the circRNAs in ruminant species. The
roles of circRNAs in lactation were also reported in cattle and goats [129]. Recently, Wang
et al. [163] identified 2059 circRNAs from bovine colostrum and mature milk exosomes. By
enrichment analysis, the authors noted that these circRNA host genes were involved in
the cytoplasm, endoplasmic reticulum, transport, and transcription factor. Moreover, the
study also showed that the circRNA profile of colostrum or mature milk exosomes differed
greatly, which could be important for the milk recipients [163]. In another recent study,
Wang et al. [164] reported differentially expressed circRNAs in lipopolysaccharide-induced
mastitis using bovine mammary epithelial cells (bMECs) and found two novel circRNAs
(named novel_circ_0004830 and novel_circ_0003097 in the study) which may endogenously
regulate bovine mastitis by binding to inflammation-related microRNAs such as the bta-
miR-145 that has been reported to regulate S. aureus-induced mastitis in MAC-T cells by
regulating the FSCN1 gene expression level [121]. Unfortunately, not many studies have
been undertaken on the role of circRNAs in mastitis infection to date and more research is
needed in this area.

PiRNAs are 24–30 nt in length and are transcribed from genome regions consisting
of transposable elements and other repetitive elements [165]. They are also involved in
RNA silencing and regulate gene expression [165–167]. In humans, they are also viewed
as promising biomarkers for several diseases such as cancers [168] while in bovines, sev-



Pathogens 2022, 11, 1009 16 of 24

eral piRNAs might also contribute to early embryo development [169,170]. Recently,
Testroet et al. [171] profiled ncRNAs in exosomes from raw milk and identified 88 piR-
NAs whose functions remain unknown. The roles of piRNAs in mastitis infection are
still unknown.

6. Perspectives of ncRNAs Studies in MG Health and Mastitis

Accumulated research has shown that ncRNAs play important roles in many processes
related to MG health and mastitis. However, there is an existing gap in understanding
the complete mechanisms of ncRNA regulation of mastitis developments. Constructions
of the lncRNA–miRNA–mRNA network has the potential to highlight specific molecular
functions and mechanisms and might be important for further exploration of ncRNAs in
the disease (Figure 4a).
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Previously, we also emphasized the importance of integrated omics approaches (ge-
nomics, transcriptomics, epigenomics, and proteomics) and wet-lab-based methods to
identify and explore the potential roles of ncRNAs in mastitis disease [4]. The Functional
Annotation of Farm Animal Genomes (FAANG) is involved in producing genome-wide
data sets on RNA expression, DNA methylation, and chromatin modification, as well
as chromatin accessibility and interactions and is helping to standardize the process of
identifying ncRNAs and efficiently integrating the data. With no doubt, the FAANG is
bringing hope of greatly improved genome sequences for domestic species.

Additionally, genome engineering is expected to significantly improve livestock pro-
duction by precision genome editing [172–174], favoring markers associated with improved
productivity, reproduction, and health status. In fact, genome editing technologies have
been successfully used to edit the dairy cattle genome in a bid to ensure the production of
specific milk types, such as the hypoallergenic milk (with less β-lactoglobulin protein) that
causes fewer allergic problems, in dairy cows [175,176]. These tools have also been used
to improve MG health by generating mastitis-resistant cattle [177,178]. Editing miRNA
sequences has also helped to improve the milk components as evidenced in a transgenic
calf that was engineered to express miRNA-4 and miR-6, which consequently showed an
absence of β-lactoglobulin in its hormonally induced milk and a concurrent increase in
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casein proteins in the milk [179]. Although these technologies have great potential for
future animal breeding, difficulties in large-scale application and integration in breeding
schemes need to be overcome [180].

Furthermore, the development of a panel for early detection of bovine mastitis using
ncRNAs is very crucial for tackling this infectious disease. However, the lack of specificity,
especially among miRNAs that can respond to diverse infections, poses a challenge to
this development. Therefore, there is a need to ensure that potential biomarkers have a
high level of sensitivity and specificity or, alternatively, complimented with other disease-
specific ncRNAs or miRNA to ensure diagnostic accuracy. Figure 4b shows the different
stages involved in the development of ncRNAs as biomarkers that could aid the detection
and treatment of mastitis disease. However, robust research would also be needed to
confirm the pathological role of potential ncRNA biomarkers across breeds, in different
environmental conditions, and at different times post-infection, as ncRNAs, especially
miRNAs, have been shown to be differentially expressed in different mastitis conditions.

In addition, the development of high throughput phenotyping and sequencing, and the
generation of big data provide great opportunities for dairy farms to cope with infectious
diseases [181]; therefore, more comprehensive studies of ncRNAs on mastitis are expected
to be performed based on larger and deeper phenotypes. For example, the International
Dairy Data Exchange (iDDEN), a non-profit organization, has just been recently established
to ensure efficient sharing of dairy cattle data among 13 different nations across the globe,
and with structures like this in place, more data could be utilized for precise diagnosis
of mastitis in dairy cows or development of better machine learning algorithms that can
efficiently integrate generated phenotype and omics data for the improved detection meth-
ods for mastitis disease. Additionally, this data would be very useful in training different
machine learning algorithms for early detection of mastitis syndrome, especially subclinical
mastitis, even at a population or herd level, therefore reducing the use of antibiotics and
the consequent risk associated with the emergence of antibiotic-resistant bacteria. Finally,
the importance of high-performance computing and the machine learning approaches for
pinpointing the roles of ncRNAs in each stage of mastitis disease development cannot
be ignored.

In conclusion, in this review, we discussed the biology of mastitis, its prevalence
across the globe, and its effect on dairy production. We examined the roles of ncRNAs
in bovine mastitis based on relevant literature and noted ncRNAs (miRNA to be precise)
that have been reported to play significant roles in the incidence of mastitis disease, even
at different times post-infection. However, most of this information has not been well
harnessed, especially in the development of a sustainable solution for the treatment or
prevention of mastitis disease in dairy cows. We found that only a few studies have been
undertaken regarding the roles of lncRNA, circRNA, and PiRNAs in bovine mastitis, and
more work is needed in this area as these ncRNAs are potential biomarkers for different
human diseases. We suggested that validated miRNAs could be used to develop a set of
panels for the early detection, prognosis, and treatment of bovine mastitis. Although the
practical application of the therapeutic approach to bovine mastitis might be quite costly
for dairy cattle production, for now, we foresee a future possibility of developing efficient
and cost-effective therapeutic drugs for the treatment of the disease.
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