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Antibody to Target Regulatory T Cells
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Biotest AG, Dreieich, Germany

Regulatory T cells (Tregs) represent a subpopulation of CD4+ T cells, which are essential 
for the maintenance of immunological tolerance. The absence or dysfunction of Tregs 
can lead to autoimmunity and allergies. The restoration of functional Tregs and/or Treg 
cell numbers represents a novel and attractive approach for the treatment of autoimmune 
diseases, e.g., rheumatoid arthritis (RA). The CD4 cell surface receptor is a target for 
modulation of T cell function. Monoclonal antibodies (mAbs) against CD4 have previously 
been tested for the treatment of autoimmune diseases, including RA. Furthermore, in 
model systems, anti-CD4 antibodies are able to induce tolerance and mediate immuno-
modulatory effects through a variety of mechanisms. Despite the availability of innovative 
and effective therapies for RA, many patients still have persistently active disease or 
experience adverse events that can limit use. A growing body of evidence suggests that 
Treg modulation could offer a new therapeutic strategy in RA and other autoimmune 
disorders. Here, we describe tregalizumab (BT-061), which is a novel, non-depleting 
IgG1 mAb that binds to a unique epitope of CD4. Tregalizumab represents the first 
humanized anti-CD4 mAb that selectively induces Treg activation.
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inTRODUCTiOn

Regulatory T cells (Tregs) are an essential part of the immune system ensuring the maintenance of 
immunological tolerance and the prevention of autoimmunity (1). They are characterized by the 
expression of high levels of CD25 (IL2Ra), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), 
and glucocorticoid-induced tumor necrosis factor (TNF) receptor family α-related protein (GITR). 
Treg function and homeostasis relies on a stable expression of transcription factor Forkhead Box 
P3 (FoxP3) (2). Naturally occurring Tregs (nTregs) account for 5–10% of CD4+ T lymphocytes in 
the peripheral blood of healthy subjects (3). In the periphery, Tregs can convert from Foxp3− T 
effector cells and are described as induced Tregs (iTregs). Several subpopulations of iTregs have been 
identified based on phenotypic and functional properties (4).

Functional imbalances of Tregs may contribute to the pathogenesis of rheumatoid arthritis (RA) 
and other autoimmune diseases (3). This has been described in rodents and is well documented in 
patients with RA (5, 6). Several studies indicate that Treg numbers are increased in the synovial fluid 
of RA patients, which is likely to be part of the response to inflammation. In RA, the increases of 
Treg numbers in synovial fluid were similar across diagnoses and disease durations (7). Subsequent 
studies have typically reported decreased or little change in the proportion of Tregs in the peripheral 
blood of RA patients compared with healthy controls (8).

Regulatory T cells from the synovial fluid of RA patients express an activated phenotype com-
pared with those in peripheral blood from patients or healthy controls (9). FoxP3 mRNA, CTLA-4, 
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OX-40, and GITR levels were also higher in the synovial fluid (9). 
Coculturing CD4+CD25− cells with irradiated antigen-presenting 
cells (APCs) and anti-CD3 monoclonal antibodies (mAbs) dem-
onstrated that Tregs from synovial fluid of RA patients were more 
suppressive than Tregs from peripheral blood (10). Subsequent 
analyses of Tregs derived from peripheral blood and synovial fluid 
from RA (9, 11) and juvenile idiopathic arthritis (JIA) patients (12) 
have indicated that Tregs retain their suppressive activity. Indeed, 
Treg function was markedly attenuated, which was reflected by an 
impaired ability to suppress T effector cell proliferation in patients 
with active RA compared with healthy controls (13).

The inflammatory milieu in RA synovium may render T cells 
more resistant to modulation by Tregs (14–16). TNF-α has been 
shown to abrogate the ability of Tregs to suppress T cell prolifera-
tion, although interleukin-6 (IL-6) had no effect (17). However, 
the effect of TNF-α on Tregs in mice and humans remains an area 
of discussion and controversy (18, 19).

THeRAPieS TO inCReASe TReG 
nUMBeRS AnD FUnCTiOn

The immunomodulatory influence of increased numbers of 
Tregs on immune responses in disease model systems has been 
extensively studied and represents an exciting immunothera-
peutic strategy (20). Moreover, adoptive transfer of autologous 
or donor-derived Tregs as a cellular immunotherapy has been 
successfully studied in initial clinical trials in graft versus host 
disease (GVHD) (21, 22), underlining the therapeutic potential 
of Tregs. Other therapeutic strategies aimed at manipulating the 
existing Tregs (23, 24). A report on a high-throughput system 
identified several FDA-approved drugs that increase the number 
of Tregs with suppressive function (25).

In autoimmune disease, therapies with some approved biolog-
ics, including TNF-α inhibitors, have been shown to increase Treg 
numbers or function (26). For example, treatment with infliximab 
improved the ability of Tregs to inhibit cytokine production 
and increased the number of Tregs (27). Likewise, the human 
anti-TNF-α antibody adalimumab increased the percentage of 
FoxP3+ cells with restored regulatory function (28). By contrast, 
etanercept, a soluble TNF receptor, does not influence Treg cell 
number and function. It has been shown that TNFR2 expression is 
required for nTreg-mediated suppression and that TNF-α, in addi-
tion to stimulating Teff, is able to activate Tregs through TNFR2, 
which is preferentially expressed by Tregs. Furthermore, TNF-α is 
required as a critical factor in the activation of Tregs in tissue sites 
of inflammation (29). Anti-TNF-α therapy in human autoimmune 
diseases may therefore differentially affect the function of nTregs. 
Anti-TNF-α therapy is clinically effective in the management of 
autoimmune diseases (30); however, the mechanisms by which 
anti-TNF-α therapy exerts a clinical effect are currently not fully 
understood (29). The IL-6 inhibitor tocilizumab has been shown 
to be effective for the treatment of RA (31). Inhibition of IL-6 by 
tocilizumab can increase the number of Tregs, thereby restoring the 
Th17:Treg cell ratio in responding patients. Some approved biolog-
ics for the treatment of autoimmune disease therefore influence 
Treg numbers and function, contributing to their effectiveness.

BiOLOGiCS TARGeTinG THe T CeLL 
ReSPOnSe

Current biologic RA therapies mainly target cytokines, includ-
ing TNF-α (32), IL-1 (33, 34), and IL-6 (35). Recently, based on 
the apparent imbalance between Th17 and Treg activity (36), 
targeting IL-17 has been identified as another potential treatment 
intervention (32, 37), and anti IL-17 mAbs have been studied in 
RA but are not yet clinically available (38, 39).

Abatacept is a fusion protein of the CTLA-4 receptor and Fc 
domain of IgG1, which abrogates T cell costimulation, and thereby 
modulates T cell responses and interactions between T and B cells. 
It was approved in 2006 for the treatment of established (40–43) 
and early RA (44) and provides clinical “proof-of-concept” that 
targeting T cells is a rational treatment approach. The T cell recep-
tor (TCR) interacts with CD3 to process signals resulting from 
an interaction with an antigen (38). Therefore, anti-CD3 therapy 
may be beneficial as an immunosuppressive agent. In mouse 
models of arthritis, anti-CD3 mAbs also reduce disease activity 
by induction of Tregs, leading to increased CD4+ and CD8+ 
Treg cells (45), and a transient downregulation of the TCR (46). 
Furthermore, anti-CD3 mAb therapy has induced remission in 
type I diabetes mellitus in non-obese diabetic (NOD) mice (47).

The clinical use of anti-CD3 mAbs has been limited by the 
induction of inflammatory cytokines and mitogenicity. Recent 
products have been developed to negate Fc receptor (FcR) func-
tions, including complement-dependent cytotoxicity (CDC) 
and antibody-dependent cell-mediated cytotoxicity (ADCC). 
Teplizumab, an IgG1 anti-CD3 mAb with reduced FcR binding 
(48), has been assessed in type 1 diabetes and psoriatic arthri-
tis. Treatment with teplizumab resulted in reduced C-peptide 
responses and a reduction in HbA1C levels in patients (49), but a 
further trial was halted due to an increased risk of adverse events, 
including lymphopenia. The Phase III PROTÉGÉ trial of tepli-
zumab in type 1 diabetes failed to meet the primary end point, 
although there was evidence of benefit in certain subgroups (50). 
A dose-finding study using otelixizumab, a humanized CD3 mAb 
in type 1 diabetes, demonstrated reduced insulin requirements 
(51). However, a Phase III trial in type 1 diabetes (48) reported 
no significant benefit. Otelixizumab was also assessed in RA but 
development appears to be discontinued (52, 53).

These data indicate that anti-CD3 mAb treatment might be a 
feasible therapeutic approach; however, limited understanding of 
the potential mode of action of these mAbs in humans hinders 
interpretation of the studies to date (54).

The TCR coreceptor CD4 seems to be an attractive target for 
the modulation of T cell function. CD4 is widely expressed on T 
cells; therefore, anti-CD4 therapy might affect multiple subtypes, 
including potentially beneficial Tregs (55, 56). Current anti-CD4 
mAbs act by coating the target CD4 molecule, making it inacces-
sible for ligands, downmodulating CD4, or depleting CD4+ target 
cells via induction of CDC or ADCC.

In mouse models of inflammatory arthritis, the anti-CD4 
mAb YTS177 prevented or delayed onset of inflammatory disease 
(57), while in a rat kidney transplant model, the non-depleting 
mouse anti-rat CD4 mAb RIB5/2-induced long-term survival 
of the transplants. RIB5/2-induced tolerance was stable despite 
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FiGURe 1 | Tregalizumab is able to activate the suppressive capacity of regulatory T cells. (A) Tregs were isolated and pre-incubated with plate-bound 
tregalizumab, OKT-3 mAb, or medium and transferred to a mixed lymphocyte reaction using allogeneic, CD3-depleted, irradiated PBMCs to activate the proliferation 
of Teffs. (B) The proliferation of allogenic stimulated Teffs with tregalizumab pretreated Tregs is shown compared with the proliferation without Tregs. (C) 
Tregalizumab engages the TCR signaling pathway. Incubation of Tregs with tregalizumab evokes signaling events in Tregs that mimic a signal through the T cell 
receptor complex without the need for direct CD3 or TCR stimulation. T cell receptor complex signaling represents a crucial event in the activation of Tregs since 
blockade of the corresponding signaling pathway resulted in the loss of suppressive activity of Tregs. Tregalizumab delivers a comparable signal as usually conferred 
by TCR binding in Tregs, resulting in activation/phosphorylation of the T cell receptor downstream signaling molecule ZAP-70 (ζ-chain-associated protein). This 
event leads to signals that finally trigger internalization of the tregalizumab–CD4 complex. As a consequence, CD4 expression levels on CD4+ T cells are 
downmodulated by tregalizumab in the physiological setting. This downmodulation causes a transient decrease of CD4 molecules on the cell surface, which is 
followed by a recovery of expression levels over time (67, 69).
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persistence of alloreactive T cells, suggesting a role of active 
tolerance-maintaining mechanisms. RIB 5/2-mediated tolerance 
can be adoptively transferred by Tregs isolated from the graft 
(58). The chimeric anti-CD4 mAb, priliximab (cM-T412) was not 
effective in RA patients, despite depleting peripheral CD4+ T cells 
at higher doses (59). However, a humanized non-depleting anti-
CD4 mAb (OKTcdr4a) decreased CRP and resulted in transient 
clinical improvements in RA (60).

Keliximab, a primatized anti-CD4 mAb, demonstrated activity 
in RA patients in two randomized controlled trials and clinical 
responses correlated with CD4 T cell coating by keliximab (61). 
This suggests that non-depleting anti-CD4 mAbs could have 
therapeutic utility in RA. Clenoliximab, an IgG4 derivative of 
keliximab, modified to further reduce Fc-binding activity, dem-
onstrated a reduced ability to downmodulate the CD4 receptor 
in  vitro, but retained activity in  vivo through dose-dependent 
CD4 “stripping” from the cell surface (62, 63). In a Phase II trial, 
clenoliximab induced American College of Rheumatology (ACR) 
criteria responses without CD4 depletion; however, this was not 
confirmed with long-term dosing (64). Another anti-CD4 mAb 
(4162W94) considered to be non-depleting resulted in sustained 
downmodulation of CD4 lymphocytes in an open-label pilot 
study (65). Although a placebo-controlled, repeat-cycle, follow-
up trial demonstrated significant clinical activity in RA, unaccep-
table CD4 lymphopenia, and skin rashes lead to discontinuation 
of therapy (66).

Anti-CD4 antibodies with different pharmacodynamic (PD) 
properties have been investigated and shown to modulate T cell 
function in model systems and in clinical trials. However, treat-
ment in clinical trials with the anti-CD4 mAbs investigated to 
date did not result in long-lasting clinical benefits.

TReGALiZUMAB

Tregalizumab represents a novel, humanized, anti-human CD4 
IgG1 mAb, which binds to a unique epitope of CD4 in the IgG-
like C2 type 1 domain (also known as D2) on the opposite side 
of the binding region for other known ligands, including other 
anti-CD4 mAbs, gp120, and MHC class II. This allows concurrent 
binding of a class II MHC molecule or a gp120 HIV-1 envelope 
protein (67). Tregalizumab is derived from a murine predecessor 
B-F5 by complementarity-determining region (CDR) grafting 
and subcloning.

Several effector functions of tregalizumab have been analyzed 
in vitro. Tregalizumab is unable to mediate induction of CDC, 
ADCC, or apoptosis in target cells (68). However, in contrast to 
other CD4 antibodies, the precursor antibody B-F5 and tregali-
zumab were both found to selectively activate Tregs (67, 69).

Regulatory T cells remain in an inactivated state and do not 
exhibit suppressive properties unless activated by appropriate 
signals via their TCR (70). In vitro incubation of Tregs with anti-
CD3 antibodies is considered as an optimal stimulus to induce 
their suppressive activity, although anti-CD3 antibodies have no 
selectivity for Tregs and activate conventional T cells as well as 
Tregs.

Using in vitro assays, it could be demonstrated that, in contrast 
to the other CD4 antibodies analyzed, tregalizumab can provide 
an activation signal selectively to Tregs (67, 69). Tregalizumab-
treated Tregs strongly suppressed proliferation of CD4 and CD8 
effector T cells following allogeneic or antigen-specific activation 
in mixed lymphocyte reactions (Figures 1A,B).

Cyclic AMP (cAMP) has been shown to be elevated in acti-
vated Tregs, which is then transmitted via gap junctions directly 
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into responder T cells. The suppressive activity of nTregs can be 
abolished by cAMP antagonists as well as by gap junction inhibi-
tors, which block the cell contact-dependent transfer of cAMP to 
responder T cells (71). In vitro, tregalizumab is able to activate 
Tregs as demonstrated by increased intracellular cAMP and Ca2+ 
levels, and by increased secretion of transforming growth factor 
beta (TGF-β) (67).

Tregalizumab recognizes the human CD4 molecule not only 
on Tregs but also on conventional T cells. Despite this, binding 
does not impair the proliferative capacity of these cells per  se. 
In contrast to other anti-CD4 antibodies, tregalizumab does 
not inhibit the proliferation elicited by anti-CD3/anti-CD28 
stimulation. Importantly, tregalizumab does not lead to the 
activation and proliferation of conventional T cells and does not 
induce the secretion of proinflammatory cytokines, in contrast to 
anti-CD3 mAbs. Indeed, tregalizumab reduced proliferation and 
cytokine secretion when isolated peripheral blood mononuclear 
cells (PBMCs) were stimulated with tetanus toxoid in a dose-
dependent manner (68).

Incubation of Tregs with tregalizumab evokes signaling events 
in Tregs that mimic a signal through the TCR complex, with-
out the need for direct CD3 or TCR stimulation (67, 69). TCR 
complex signaling represents a crucial event in the activation of 
Tregs since blockade of the corresponding signaling pathway, for 
example, via PP1, a specific src family kinase inhibitor, resulted 
in the loss of suppressive activity of Tregs (Figure 1C). Therefore, 
tregalizumab binding to CD4 triggers the induction of the 
signaling cascade in Tregs with the activation/phosphorylation 
of the TCR downstream signaling molecule ZAP-70 (ζ-chain-
associated protein). In vitro studies have shown that several 
signaling molecules of the TCR pathway are engaged and become 
phosphorylated (67). When comparing commercially available 
anti-CD4 antibodies to tregalizumab, significant differences in 
signaling strength were observed. Although the phosphorylation 
signal on Lck was weakest with tregalizumab, it also mediated 
phosphorylation of LAT, SLP-76, PLC-γ, and MEK. However, 
tregalizumab did not induce phosphorylation of Itk, ERK, PKC, 
MAPK, or NF-κB, unlike anti-CD3 treatment or the other anti-
CD4 antibodies tested (67). Therefore, only tregalizumab was 
able to induce suppressive properties of Tregs. Interestingly, to 
date, no signaling molecule has been found that was specifically 
activated in Tregs in comparison to CD4+ T effector cells, and 
both Tregs and T effector cells responded to tregalizumab with 
similar phosphorylation events.

Other antibodies targeting cell surface receptors trigger the 
internalization of the antibody–receptor complex, resulting 
in decreased receptor surface expression over time (72). The 
decrease of CD4 surface receptor expression mediated by tregali-
zumab is detectable in vitro after cross-linking using a secondary 
antibody. Neither isotype control antibodies nor the Fab fragment 
of tregalizumab were able to mediate CD4 downmodulation. In 
vitro, the maximal CD4 decrease was detected within a few hours 
and the magnitude of CD4 downmodulation seemed to be dose 
dependent, followed by a recovery over time. Interestingly, CD4 
downmodulation occurs in both Treg and effector T cells with-
out any observed differences in kinetics. CD4 downmodulation 
depends on tregalizumab-induced CD4 receptor signaling, which 

is triggered by the binding of tregalizumab to surface CD4. This 
specific signaling pathway is directly linked to the internalization 
event. PBMCs treated with tregalizumab in combination with 
the Lck-specific inhibitor PP1 led to a strong inhibition of CD4 
receptor downmodulation. This indicates that the internalization 
of CD4 by tregalizumab depends on functional CD4 signaling 
and establishes a direct link between the activation of Tregs with 
CD4 downmodulation.

Downmodulation of CD4 expression levels has been reported 
in patients treated with tregalizumab (73), and this effect is of 
relevance as a marker for monitoring the activity of tregalizumab 
in vivo. Therefore, we hypothesized that the downmodulation of 
CD4 on the T cell surface could serve as a marker of tregalizumab 
PDs in vivo. This strategy was applied to establish a dose–response 
model of the CD4 modulation (73).

TReGALiZUMAB CLiniCAL DeveLOPMenT

The clinical development program of tregalizumab encompassed 
eight clinical studies: two in healthy subjects, two in psoriasis 
patients, and four in RA patients. Initial clinical data from Phase 
IIa dose-finding trials of tregalizumab in psoriasis (74) and RA 
(75) showed promising clinical effects. In a study of 55 patients 
with psoriasis who had failed to respond to systemic treatment, 
a single subcutaneous (SC) dose of tregalizumab (between 25 
and 100  mg) induced psoriasis area and severity index (PASI) 
50 responses in 19 patients, including 2 with PASI 75 as best 
observed responses. There was no evidence of increased cytokine 
levels or depletion of CD4+ T cells, and no increased risk of 
infections (74). Similarly, in a dose-finding study in patients with 
active RA who were disease-modifying antirheumatic drugs 
(DMARD) incomplete responders, tregalizumab monotherapy 
rapidly improved tender and swollen joint counts (75). At week 7, 
after 6 weeks of treatment, a maximum response of ACR 20/50/70 
in the 50 mg SC dosing arm was achieved in 67, 33, and 17% of 
patients, respectively, compared to 14, 7, and 0% in the placebo 
arm. In some patients, improvements persisted beyond the dos-
ing period.

A large Phase IIb study with 321 patients with RA (TREAT 
2b, T cell REgulating Arthritis Trial 2b) was initiated. TREAT 2b 
was a double-blind, randomized, placebo-controlled, Phase IIb 
trial with four treatment groups to evaluate the efficacy and safety 
of tregalizumab in methotrexate-inadequate responders. In the 
active dosing groups, tregalizumab was administered at SC doses 
of 25, 100, and 200 mg once weekly over 24 weeks in combination 
with methotrexate. Patients in the control arm received metho-
trexate only. In patients who responded to treatment, therapy 
was extended for a further 6 months (76). At week 12, none of 
the three dosing arms of tregalizumab showed a statistically sig-
nificant improvement in ACR20 score (primary endpoint) when 
compared to placebo. Tregalizumab was generally well tolerated 
with usually mild-to-moderate adverse events balanced between 
placebo and treatment arms. Neither tuberculosis, opportunistic 
infections, major adverse cardiovascular events nor malignan-
cies were reported during the study. No difference in infections 
between tregalizumab and placebo was observed. The results 
of tregalizumab in RA reported in the TREAT2b trial do not 
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FiGURe 2 | (A) PK/PD model was established to predict time course of CD4 downmodulation (% of baseline) after weekly dosing. (B) Mean CD4 
downmodulation on CD4 T cells per dose group. CD4 modulation (±SEM) was measured by FACS analysis at weeks 0, 2, 4, 6, 8, 12, 16, and 24 just prior to the 
next dosing (77).
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currently justify further clinical development in this indication 
due to lack of a responder population demonstrating sufficient 
efficacy. Nevertheless, the PD effects, including modulation of 
CD4 receptor expression that were observed in tregalizumab-
treated patients, were as expected and consistent with predic-
tions of established pharmacokinetic (PK)/PD modeling (73) 
(Figures 2A,B).

In summary, anti-CD4 antibodies demonstrate different 
PD properties and several mechanisms have been investigated 
in clinical trials to influence T cell-driven diseases. In these 
studies, treatment with anti-CD4 mAbs did not result in sig-
nificant clinical benefit. Tregalizumab represents a mAb with 
a novel and unique mode of action and signs of efficacy have 
been observed in Phase II trials in psoriasis and RA. However, 
statistically significant efficacy could not be confirmed in the 
larger trial in patients with RA. Antibody activity was dem-
onstrated in all trials by measuring CD4 modulation as a PD 
marker and a PK/PD model system was also established to 
predict the dose–response of CD4 modulation. In parallel, the 
safety profile observed in earlier studies has been confirmed in 
the larger trial. More mechanistic and clinical data are needed 
to better understand applicability of this novel therapeutic 
approach; however, the unique mechanism of tregalizumab 
remains attractive and should be explored in further diseases 

in which insufficient Treg activity is postulated as a pathophysi-
ological mechanism.
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