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Nucleotides play a central role in life-form metabolism, by interacting with proteins and mediating the function of proteins. It is
estimated that nucleotides constitute about 15% of the biologically relevant ligands included in PDB. Prediction of binding sites
of nucleotides is useful in understanding the function of proteins and can facilitate the in silico design of drugs. In this study, we
propose a nucleotide-binding site predictor, namely, NSiteMatch. The NSiteMatch algorithm integrates three different strategies:
geometrical analysis, energy calculation, and template comparison. Unlike a traditional template-based predictor, which identifies
global similarity between target structure and template, NSiteMatch concerns the local similarity between a surface patch of the
target protein and the binding sites of template. To this end, NSiteMatch identifies more templates than traditional template-based
predictors. The NSiteMatch predictor is compared with three representative methods, Findsite, Q-SiteFinder, and MetaPocket. An
extensive evaluation demonstrates that NSiteMatch achieves higher success rates than Findsite, Q-SiteFinder, and MetaPocket, in
prediction of binding sites of ATP, ADP, and AMP.

1. Introduction

Nucleotides are a group of small chemicals that serve as
the monomer unit for forming DNA and RNA. They are
also the source of chemical energy which is indispensable
for majority of the cellular activities. Therefore, nucleotides
play a central role in life-form metabolism, by interacting
with proteins and mediating the function of proteins. It is
estimated that nucleotides constitute about 15% of the biolog-
ically relevant ligands included in PDB (Dessailly et al., 2008;
Shin and Cho, 2005). In the past, substantial efforts were
expended in the identification and characterization of the
nucleotide-binding sites. Most of these approaches analyzed
the known nucleotide-binding protein sequences and struc-
tures to identify conservedmotifs. For instance, theWalker A
sequence motif was found in a variety of nucleotide-binding
proteins that include the alpha and beta subunits of ATP
synthase, myosin, transducin, helicases, kinases, and RecA
[1]. Moodie and colleagues proposed a fuzzy recognition
template for the characterization of the adenylate-protein
interactions [2]. However, the abovementioned studies char-
acterize the sequence and structural motifs for a relatively

narrow range of the nucleotide-protein interactions and none
of these studies concerns prediction of nucleotide-binding
sites. Although there are no methods that specifically focus
on the prediction of the nucleotide-binding sites, over a dozen
methods were proposed for the structure-based prediction of
binding sites for small organic compounds. These methods
were systematically surveyed in [3]. These methods include
the geometry-based SURFNET [4], PocketFinder [5], PASS
[6], LIGSITEcsc [7], PocketPicker [8], ConCavity [9], Fpocket
[10], the energy-based Q-SiteFinder [11], the threading-based
Findsite (Skolnick and Brylinski, 2008), and the consensus-
based MetaPocket [12]. In this study, we aim at developing a
predictor that takes protein structure as input and outputs a
number of predicted nucleotide-binding sites. The proposed
predictor, referred to as NSiteMatch, integrates the geomet-
rical analysis, energy calculation, and template comparison
into a single algorithm.The interaction between proteins and
nucleotides only involves a few residues of the binding site.
Therefore, it is likely that proteins folding into distinct overall
structures employ similar binding site. NSiteMatch aims at
identifying similarity between local surface patches; that is, it
calculates a similarity score between a binding site (template)
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Figure 1: Superimposing of the complexed ATP (a), ADP (b), and AMP (c) structures. In (a), the Adenine structures of all ATPs are
superimposed while the phosphorus atoms of the 𝛾-phosphate (colored orange) are scattered in the space. In (b), the Adenine structures
of all ADPs are superimposed while the phosphorus atoms of the 𝛽-phosphate (colored orange) are clustered in a small range of the space. In
(c), the Adenine structures of all AMPs are superimposed while the phosphorus atoms k2of the 𝛼-phosphate (colored orange) are clustered
in a small range of the space. It should be noted that the bond between phosphorus atoms is introduced by molecular visualization software
and is not a real bond.

and a surface patch of the target protein. The similarity score
considers both the arrangement of the binding residues and
the shape of the pocket, in which the ligands are located.
Subsequently, an energy function is employed to assess the
interaction between a surface patch and the predicted ligand.
Thereby, NSiteMatch concentrates the merits of geometry-,
energy-, and threading-based algorithms and potentially
achieves higher success rates than pervious methods.

2. Methods

The input of NSiteMatch method is a protein structure with
coordinates of all nonhydrogen atoms while the outputs are
the coordinates which represent the centers of the predicted
binding sites. For instance, if NSiteMatch identifies three
binding sites for a given protein structure, the output would
be the centers of the three binding pockets: (𝑥1, 𝑦1, 𝑧1),
(𝑥2, 𝑦2, 𝑧2), and (𝑥3, 𝑦3, 𝑧3). The dataset preparation, the
NSiteMatch algorithm, and the evaluation protocols are given
as follows.

2.1. Dataset Preparation. The benchmark dataset is designed
to cover a wide range of nucleotide-binding proteins. The
nucleotides that are considered in this study contain at least
one of the five nucleobases, a 5-carbon sugar, and 1 to
3 phosphates. We extracted all complexes from PDB that
include these nucleotides [13]. Next, the maximal pairwise
sequence identity of the resulting protein chains for each
of the nucleotides was reduced to 40% with CD-hit (Li
and Godzik, 2006). We include the nucleotides that bind
to at least 50 chains where these chains belong to at least
20 different superfamilies based on the SCOP classification
[14]. The availability of at least 50 chains provides us with
a sufficient number of annotated binding sites to build and
evaluate a well-performing predictor.While the availability of
at least 20 superfamilies assures that these nucleotides bind to
a wide range of proteins that are diverse in their structure and
sequence, the latter is based on the 40% sequence similarity
filtration. This also allows us to investigate the prediction

of the distant functional relationships, that is, binding of
the same nucleotides to structurally different proteins. We
extracted a total of 227, 321, and 140 chains that bind to
ATP, ADP, and AMP, respectively. The other nucleotide
types were excluded due to the small sample size. Since
the NSiteMatch and Findsite predictors utilize a template
library which could contain structures that are (too) similar
to the predicted protein, we created a reduced version of
the dataset that contains protein chains annotated using
the SCOP labels for each of the three nucleotides. In other
words, we excluded the chains that were not included in the
SCOP database. Using these annotations we could control the
similarity/homology levels between the template library and
the predicted protein. This allows us to assess the predictive
quality of the NSiteMatch and Findsite when using templates
that are dissimilar, at a given homology level, to the predicted
protein. As a result, we extracted a total of 114, 158, and 66
chains that are annotatedwith SCOP labels for ATP, ADP, and
AMP, respectively.

We have analyzed the orientation of the complexed
ligands; see Figure 1. For ATP (Figure 1(a)), the Adenine
structures are superimposed while the phosphorus atoms of
the 𝛾-phosphate (colored orange) are displayed to represent
the orientation of the ligand. Figure 1 shows that the phos-
phorus atoms of the 𝛾-phosphate are scattered in the space.
For ADP, the Adenine structures are also superimposed;
see Figure 1(b). The phosphorus atoms of the 𝛽-phosphate
(colored orange) are clustered in a small range of the space.
Similarly, we have superimposed the Adenine structures of
all AMPs (Figure 1(c)). The phosphorus atoms of the 𝛼-
phosphate (colored orange) are clustered in a small range
of the space. Clearly, the geometries of all three ligands
are confined to a certain range. We have also performed a
simple statistics on the number of contacts between different
functional groups of ligand and binding site. For ATP, the 𝛾-,
𝛽-, and 𝛼-phosphates and the Adenine on average form 6,
6, 4.8, and 14.3 contacts with binding sites, respectively. For
ADP, the 𝛽- and 𝛼-phosphates and the Adenine on average
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form 5.7, 4.9, and 15.1 contacts with binding sites, respectively.
For AMP, the 𝛼-phosphate and the Adenine on average form
5.4 and 15.3 contacts with binding sites. Clearly, for ATP-
binding, both the phosphates and Adenine play an important
role. However, for ADP- and AMP-binding, the Adenine is
more involved in the interaction when compared with the
phosphates.

2.2. Preparation of the Template Library of NSiteMatch. The
template library of NSiteMatch consists of the structures of
the nucleotide-binding sites. For a given protein-nucleotide
complex, a nonhydrogen atom of the protein is considered
as an interacting atom if it is within 3.9 Å of a nonhydrogen
atom of the nucleotide [15]. A binding site is defined as a
collection of the interacting atoms that bind to the same
nucleotide molecule. The 3D-coordinates, the atom types,
and the residue types of the interacting atoms of each binding
site were stored in the template library.

2.3. The NSiteMatch Algorithm. The novelty of our approach
is twofold. First, the NSiteMatch combines the geometrical,
energy-based, and threading approaches. Second, drawing
from the observation that use of templates with the sufficient
structure similarity leads to high quality predictions, we use
a template database to perform the predictions. However,
unlike the only existing threading-based Findsite that relies
on the overall similarity of the entire protein fold, we use
local similarity of the structure in the binding region to
find the most suitable templates. This allows us to identify a
larger number of potentially useful templates and to predict
distant functional relationships, that is, NSiteMatch utilizes
the templates that share similarity in the binding region but
which may share low homology with the predicted protein.

The NSiteMatch method includes two major phases. The
first phase (Steps 1–8) performs fitting of templates into
the structure of the predicted protein based on a common
substructure defined by the interacting atoms (Steps 1–8);
this is repeated for each template and each potential position
of the center of the ligand. The second phase (Steps 9 and
10) processes the predictions, which are filtered using a
docking energy function based on AMBER force field, and
next they are clustered and ranked. The method outputs the
ranked list of the predicted centers of the ligands and the
corresponding ranked list of the binding residues for each
center. The above overview demonstrates that our method
combines the geometrical approach, which is implemented
in the procedures to define and score the templates, energy-
based approach, by utilizing energy function to filter initial
predictions, and threading, by using the template database.

The overall flow of the NSiteMatch algorithm is given in
Figure 2. Given the predicted protein structure and a template
library with the nucleotide-binding sites, the NSiteMatch
algorithm is implemented with the following 10 steps.

Step 1 (set the 3-dimensional grid space for the predicted
protein). We use grid with a step size of 2 Å and a given grid
point is retained if it is within 10 Å to a nonhydrogen atom of
the protein. A grid point is marked as protein and removed
from the grid space if it is within 1.6 Å to a nonhydrogen atom

of the protein; otherwise, the grid point is kept and annotated
as solvent.

Step 2 (select a binding site from the template library). The
binding site contains both the coordinates of the interacting
atoms of the protein and the coordinates of the nucleotide
atoms. We calculate the geometrical center of the nucleotide
and the distances between the center and all interacting atoms
of the protein. We use these distances to set values of two
parameters. Among these distances, the maximal distance 𝑅
represents the radius to cover all interacting atoms while the
minimal distance 𝑟 represents the distance between the center
and the protein surface.The two parameters 𝑅 and 𝑟 are used
in the subsequent steps.

Step 3 (scan the grid space to assess which grid points fit
the geometrical center of the binding site). In step 3A, we
first choose a grid point from the grid space. Next, we assess
whether the chosen grid point fits the geometrical center of
the binding site, which is performed in step 3B. In step 3B,
we first calculate the distances between this grid point and
all atoms of the protein. Among these distances, the minimal
distance is denoted as 𝑟1. Our first premise is that if a grid
point fits the geometrical center of a nucleotide, the distance
between the grid point and the protein surface should be
similar to the distance 𝑟 between the center of the nucleotide
and the protein surface. Therefore, a given grid point is
retained only if |𝑟 − 𝑟1| ≤ 2 Å. The 2 Å margin is used to
accommodate the step size of the grid space. Our second
premise is that if a grid point fits the center of a nucleotide,
the spatial arrangements of interacting atoms (atoms that
participate in the protein-ligand interaction) around this
point should be similar to the arrangements of atoms around
the center of the nucleotide. We use triangles, of which two
vertexes are the interacting atoms of the protein and the
third vertex is the grid point (the third vertex is the center
of the nucleotide in the template), to represent this spatial
arrangements. For a given grid point, the grid-associated
surface patch is defined as a collection of protein atoms that
arewithin𝑅1 = 𝑅+2 Å to the grid point. By this definition, the
radius𝑅1 of the grid-associated surface patch is slightly larger
but still similar to the radius𝑅of the binding site.We compare
the triangles formed by the atoms of the template binding site
and the triangles formed by the atoms of the grid-associated
surface patches. The triangles are formed by two atoms of
the grid-associated surface patch (or template binding site)
and the grid point (or the center of the nucleotide). Among
the vertexes, the grid point or the center of the nucleotide
is invariant while the other two vertexes are chosen from a
large number of combinations of the corresponding atoms.
Therefore, we generate two sets of triangles for the binding
site and the grid-associated surface patch.We say that a given
triangle of the grid-associated surface patch matches a given
triangle of the template binding site if the corresponding
vertexes have the same atom type and residue type and the
difference between the side length of the corresponding edges
is less than or equal to 2 Å. A grid point and the associated
surface patch are retained if at least 25% of the triangles
in the template site match with the triangles of the surface
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Figure 2: The overall flow of the NSiteMatch algorithm, which includes 10 steps. The details of the algorithm are given in Methods.

patch, and the surface patch matches at least 50 triangles of
the template binding site. In step 3C, we go back to step 3A
and choose another grid point until all grid points are used.
Finally, in step 3D, the retained grid points are passed to
Step 4.

Step 4 (cluster the retained grid points). Two retained grid
points are assigned to the same cluster if they are neighboring
grid points, that is, the distance between the two points is 2 Å.
The clusters are sorted by the number of grid points and the
top three clusters are selected; if the total number of clusters
is smaller than 3, then all clusters are selected. We use two
points to represent each cluster: the geometrical center of
the grid points and the point with the maximal number of
triangles that match the template binding site. We refer to
these representative grid points as seeds and the associated
surface patches as seed-associated surface patches.

Step 5 (search for themaximal common substructure between
the binding site and the seed-associated surface patches).
The seed-associated surface patch is defined as the collection
of protein atoms that are within 𝑅1 = 𝑅 + 2 Å to the
seed (grid point); see step 5A. We search for the maximal
common substructure between the template binding site and
the seed-associated surface patches. We denote the atoms at
the template binding site as 𝑎1, 𝑎2, . . . , 𝑎𝑛 and the atoms at the
seed-associated surface patch as 𝑏1, 𝑏2, . . . , 𝑏𝑚. An atom from
the template site matches an atom from the surface patch if
the two atoms have the same atom type and residue type. For
every pair of the matched atoms, we create a corresponding
vertex 𝑔(𝑎𝑖, 𝑏𝑗) on a new graph 𝐺, where 𝑎𝑖 is the atom
from the binding site and 𝑏𝑗 is the atom from the selected
surface patch and 𝑎𝑖 matches 𝑏𝑗. Two vertices 𝑔𝑘(𝑎𝑖, 𝑏𝑗) and
𝑔𝑙(𝑎𝑠, 𝑏𝑡) in graph 𝐺 are connected if two conditions are
satisfied. First, |𝐷(𝑎𝑖, 𝑎𝑠) − 𝐷(𝑏𝑗, 𝑏𝑡)| ≤ 2 Å, where 𝐷(𝑎𝑖, 𝑎𝑠)
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is the distance between 𝑎𝑖 and 𝑎𝑠 and 𝐷(𝑏𝑗, 𝑏𝑡) is distance
between 𝑏𝑗 and 𝑏𝑡. Second, 𝑎𝑖 ̸= 𝑎𝑠 and 𝑏𝑗 ̸= 𝑏𝑡. Searching
for the maximal common substructure between the template
binding site and a given surface patch is equivalent to
searching for the complete subgraph in 𝐺. We used the
backtracking algorithm to search for the complete subgraph
[16]. The identified common substructure (atoms connected
with green solid lines) between the template binding site and
the seed-associated surface is shown in step 5B.

Step 6 (superimpose the template binding site into the
seed-associated surface patches). In Step 5 we identified a
common substructure between the template binding site and
a given seed-associated surface patch. By using the coordi-
nates of the two substructures, we calculated the RMSD value
between the two substructures and the translation vector (𝑉)
and the rotation matrix (𝑀) to achieve this RMSD value.
Based on 𝑉 and𝑀, we superimpose the nucleotide structure
at the template binding site into the corresponding surface
patch.

Step 7. Select the next available seed and repeat Steps 5 and 6
until all seeds are used.

Step 8. Select the next available binding site in the template
library and repeat Steps 2–6 until all templates in the library are
used; see step 8A. Once all templates are used, step 8B passes
the predictions (the locations of the binding nucleotides) to
Step 9.

Step 9 (filter the predictions by using a docking energy func-
tion). Our algorithm superimposes a number of nucleotide
structures on the surface of the predicted protein. The
putative coordinates of the nucleotides are calculated by using
the translation vector and the rotation matrix obtained in
Step 6. The conformation of the superimposed nucleotide
is copied from the original binding site. Hence, both the
coordinates of the protein and the putative coordinates of
the superimposed nucleotides are known. Therefore, we can
assess the predictions based on docking energy functions.We
use the AMBER force field for energy calculation [17]. Since
protein and the nucleotides are not covalently linked, we
only considered van derWaals and electrostatic energies.The
predicted nucleotide structures with an energy that suggests
weak interaction between this nucleotide and the protein are
discarded.

Step 10 (generate the predicted binding sites and binding
residues). The NSiteMatch method predicts both binding
sites and binding residues. For each of the superimposed
nucleotide structures, we calculate its geometrical center and
the residues that interact with this structure. The binding
sites and binding residues are generated separately. For
the generation of the binding sites, the geometrical centers
are clustered based on the distances between them. Two
geometrical centers are assigned to the same cluster if the
distance between them is less than 4 Å. The clusters are
ranked by the number of centers of each cluster. We use the
geometrical center of all centers of one cluster to represent
this cluster. The geometrical centers of the top 𝑛 clusters

are outputted as the predicted binding sites; by default 𝑛 =
5. For each residue in the predicted protein, we count the
number of nucleotide structures that the residue interacts
with. The residues are sorted and scored by these counts in
the descending order.The scores are used to annotate a given
residue as binding or nonbinding based on a cutoff threshold.
We selected 2 thresholds that result in predictions that match
the highest precision or recall, respectively, achieved by
the other methods, including Findsite, MetaPocket, and Q-
SiteFinder.

2.4. Evaluation Measures and Setup. The NSiteMatch, Find-
site, MetaPocket, and Q-SiteFinder generate both the coordi-
nates of the binding sites and the list of the binding residues.
Therefore, their predictions are evaluated at two levels as
follows.

2.4.1. Evaluation of the Predicted Coordinates of the Binding
Sites. It is done by using 𝐷𝐶𝐶, which is the minimal distance
from the center of the predicted binding site to the center
of the ligand. The 𝐷𝐶𝐶 index was used in the evaluation
of binding site predictors in a few recent studies (Skolnick
and Brylinski, 2008). For a given predicted protein with 𝑛
native nucleotide-binding sites we take the top 𝑛 predictions
for each of the four considered methods. A given binding
site is assumed to be correctly predicted if the minimal 𝐷𝐶𝐶
between this site and any of the 𝑛 predictions from a given
method is below a threshold 𝐷. We calculate a success rate
over the entire dataset for a given value of𝐷, which is defined
as the number of correctly predicted binding sites divided by
the total number of sites.

2.4.2. Evaluation on the Predicted Binding Residues. A given
residue is defined as the binding residue if a nonhydrogen
atom of that residue is within 3.9 Å to a nonhydrogen atom
of the nucleotide. The same 3.9 Å threshold was used in
the investigation of protein-DNA and protein-small ligand
interactions [15]. For a given predicted protein we extract the
binding residues for the top 𝑛 predictions generated by each
of the four methods and we compare them with the native
binding residues using the following three measures:

Precision (PREC) = TP
(TP + FP)

Recall (REC) = TP
(TP + FN)

MCC

=
[(TP ∗ TN) – (FP ∗ FN)]

sqrt [(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)]
,

(1)

where TP (true positives) and TN (true negatives) are
the counts of correctly predicted binding and nonbinding
residues, respectively, FP (false positives) are the nonbinding
residues that were predicted as the binding residues, and FN
(false negatives) are the binding residues that were predicted
as the nonbinding residues.

The NSiteMatch method is compared with the Findsite,
MetaPocket, and Q-SiteFinder on three benchmark datasets
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that concern ADP-protein, ATP-protein, and AMP-protein
interactions, respectively. The NSiteMatch and Findsite are
template-based methods and therefore the predictive quality
of these two methods depends on the similarity between
the predicted protein and the template library. We use four
filters to assess the ability of these two methods to predict
binding sites on proteins that are dissimilar to the template
library. For a predicted protein, we use only the template
structures that share at most 40% sequence similarity and
that are in a different protein family, superfamily, and fold to
the predicted protein, respectively; the latter three filters are
based on the SCOP annotations [14]. Proteins that lack the
SCOP labels were not used to perform the evaluation for the
homology-based filters, but they were used to assess with the
40% identity filter.We note that the first, sequence similarity-
based filter may use templates from the same family. A study
that analyzed SCOP annotations demonstrated that pairs of
proteins that share > 25% sequence similarity are assigned to
the same protein family in 99% of the cases [18]. Similarly,
the CATH database [19], which is another protein homology
classification system, automatically assigns two proteins that
share > 35% sequence similarity to the same family. The
evaluation of the NSiteMatch and Findsite is based on the
jackknife test, where each protein in the dataset is selected
once as the test/predicted protein and the remaining chains
are used as the template library.

The predictions for the template-free MetaPocket and
Q-SiteFinder were performed using the corresponding web
servers. This means that it is possible that some of the
predicted proteinswere used to build these predictivemodels.
This should not lead to a significant advantage since both
of these methods use prediction models that do not utilize
templates and which were computed using a large dataset of
diverse proteins-ligand complexes.

2.5. Statistical Analysis. The statistical analysis follows the
procedures for the comparative analysis of existing binding
site predictors. For a protein with 𝑛 binding sites we take the
top 𝑛 predictions for every considered prediction method.
For each of the 𝑛 binding sites, the minimum distance
is calculated between this site and the top 𝑛 predictions.
Consequently, for a dataset with 𝑚 binding sites, a set of
minimal distances {𝑑𝑖; 𝑖 = 1, 2, . . . , 𝑚} are generated for
each method. We assume that the predictions from different
methods that are farther than 10 Å away from the native
site are equally wrong, that is, they are too far away to
be meaningful, and thus we round them down to 10 Å.
The significance of the differences between a given pair of
predictors is measured by evaluating the corresponding, for
the same 𝑚, minimal distance values. Since the distances
for the considered predictors are not normally distributed,
we use the nonparametric Wilcoxon signed-rank test. We
assume that the differences are significant if 𝑝 < 0.05.

3. Results and Discussion

3.1. Evaluation of the Predicted Binding Sites. The success
rates of NSiteMatch, Findsite, MetaPocket, and Q-SiteFinder
quantified using 𝐷𝐶𝐶, which measures the distance from the

center of the predicted site to the center of the ligand in its
native location, are shown in Figure 3. For each nucleotide
type, the success rates are calculated using the four filters: the
40% sequence similarity and the family-, superfamily-, and
fold-based homology.

For the 40% sequence similarity filter, the NSiteM-
atch and Findsite achieve higher success rates than the
Q-SiteFinder and MetaPocket for the three types of the
nucleotides; see Figures 3(a), 3(e), and 3(i). For the cutoff
𝐷 = 4 Å, which was suggested by Skolnick and col-
leagues (Skolnick and Brylinski, 2008), the success rates
of NSiteMatch, Findsite, MetaPocket, and Q-SiteFinder are
64%, 61%, 22%, and 23% for the ADP; 58%, 54%, 28%, and
25% for the ATP; and 43%, 38%, 23%, and 31% for the
AMP, respectively. When considering the cutoff distances 𝐷
between 1 Å and 5 Å, NSiteMatch achieves 7-8%, 16–43%, and
21–45% higher success rates than the Findsite, Q-SiteFinder,
and MetaPocket, respectively.

At the family level, the NSiteMatch again outperforms the
remaining methods; see Figures 3(b), 3(f), and 3(j). For the
cutoff 𝐷 = 4 Å, the success rates of NSiteMatch are 55%,
53%, and 41% for the ADP, ATP, and AMP, respectively. To
compare, the corresponding success rates for the Findsite, Q-
SiteFinder, and MetaPocket are 38%, 25%, and 23% for the
ADP; 39%, 22%, and 29% for the ATP; and 19%, 32%, and
25% for the AMP. Although Findsite obtains higher success
rates than the Q-SiteFinder andMetaPocket for the ADP and
ATP, its success rates for the AMP are lower than the rates
of the other two methods. This is likely because the template
library for the AMP is smaller than the libraries for the ADP
and ATP. When we exclude the proteins for which the SCOP
label is not assigned and thus which cannot be used for the
prediction when the homology filter is applied, the template
libraries contain 158, 114, and 66 structures for the ADP, ATP,
and AMP, respectively.The number of the available templates
is even smaller oncewe also exclude the structures that belong
to the same family as the predicted protein. Consequently,
the lower success rates of Findsite and NSiteMatch for the
AMP, when compared with the ATP and ADP, are due to the
fact that fewer templates can be used. Moreover, the rates of
the Q-SiteFinder andMetaPocket are relatively similar across
the three nucleotides since these methods do not utilize
templates. The Q-SiteFinder and MetaPocket methods also
should not be sensitive to the filter.

The results at the superfamily and fold levels are simi-
lar; see Figures 3(c), 3(d), 3(g), 3(h), 3(k), and 3(l). Although
the NSiteMatch still achieves higher success rates than the
remaining methods, the corresponding improvements are
smaller. When considering the cutoff distances 𝐷 between
1 Å and 5 Å, the NSiteMatch achieves 14–20%, 1–12%, and 7-
8% better success rates than the Findsite, Q-SiteFinder, and
MetaPocket, respectively. We observe that, at the superfamily
and fold filter levels, the success rates of the Q-SiteFinder and
MetaPocket are higher than the success rates of Findsite.

We also calculate the success rates of the NSiteMatch,
Findsite,MetaPocket, andQ-SiteFinder quantified using𝐷𝐶𝐶
by taking the top 5 predictions for every predicted protein;
see Figure 4. Although the success rates of the four methods
are improved due to the inclusion of additional predictions,
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Figure 3: Continued.
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Figure 3:The success rates (y-axis) of the NSiteMatch and the three competing methods (Findsite, MetaPocket, and Q-SiteFinder) measured
using𝐷𝐶𝐶 (the minimal distance from the center of the predicted site to the center of the ligand) on the benchmark datasets. A given binding
site is regarded as correctly predicted if theminimal distance between this site and the top 𝑛 predictions is below the cutoff distanceD (x-axis),
where 𝑛 is the number of binding sites of the protein that includes the evaluated binding site. All methods are evaluated at 4 filter levels, the
40% sequence similarity level ((a), (e), and (i)), family level ((b), (f), and (j)), superfamily level ((c), (g), and (k)), and fold level ((d), (h), and
(l)). (a), (b), (c), and (d) show results for the ADP. (e), (f), (g), and (h) show results for the ATP and (i), (j), (k), and (l) show results for the
AMP.The 40% sequence similarity level indicates that all chains in the template library that were used for the prediction share less than 40%
sequence similarity to the test protein. The family, superfamily, and fold levels indicate that all chains in the template library that were used
for the prediction are classified as belonging to a different family, superfamily, and fold (annotated using the SCOP database), respectively,
when compared with the annotation of the test protein.

the relative ranking does not change when compared with
the evaluations based on the 𝑛 predictions. For instance, at
the 40% sequence similarity level, the NSiteMatch achieves
success rates that are higher than the rates of the other three
methods, and Findsite is the runner-up. At the superfam-
ily and fold filter levels, the NSiteMatch outperforms the
MetaPocket and Q-SiteFinder, which in turn outperforms
Findsite.

Among the four predictors, the NSiteMatch and Findsite
are template-based and therefore they depend on the avail-
ability of suitable templates. As expected, Figure 5 reveals
that the predictive quality of these two methods declines
with the decrease of the structure similarity to the templates,
that is, when more distant homologs are used. For instance,
when considering the cutoff 𝐷 = 4 Å, the success rates
of the NSiteMatch are 64%, 55%, 31%, and 31% for the

ADP at the 40% sequence similarity, family, superfamily,
and fold filter levels, respectively (Figure 5(a)). Similarly, for
the ATP and AMP, the success rates of the NSiteMatch are
58% and 43%, 53% and 41%, 40% and 37%, and 41% and
36% for the four filters, respectively (Figures 5(b) and 5(c)).
Similar declining trends are observed for the Findsite; see
Figures 5(d), 5(e), and 5(f). Although the results indicate that
the availability of similar templates has a relatively strong
impact on the predictive quality of these two predictors,
we note that the NSiteMatch maintains higher success rates
when making predictions with the help of more distant
homolog. This advantage is due to the use of local similarity
and consequently, as shown in Figure 3, our method also
outperforms the two template-free methods, MetaPocket
and Q-SiteFinder, at the superfamily and fold levels even
for the hard (characterized by the small template library)
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Figure 4: Continued.
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Figure 4:The success rates (y-axis) of the NSiteMatch and the three competing methods (Findsite, MetaPocket, and Q-SiteFinder) measured
using𝐷𝐶𝐶 (the minimal distance from the center of the predicted site to the center of the ligand) on the benchmark datasets. A given binding
site is regarded as correctly predicted if theminimal distance between this site and the top 5 predictions is below the cutoff distanceD (x-axis).
All methods are evaluated at 4 filter levels, the 40% sequence similarity level ((a), (e), and (i)), family level ((b), (f), and (j)), superfamily level
((c), (g), and (k)), and fold level ((d), (h), and (l)). (a), (b), (c), and (d) show results for the ADP. (e), (f), (g), and (h) show results for the ATP
and (i), (j), (k), and (l) show results for the AMP. The 40% sequence similarity level indicates that all chains in the template library that were
used for the prediction share less than 40% sequence similarity to the test protein. The family, superfamily, and fold levels indicate that all
chains in the template library that were used for the prediction are classified as belonging to a different family, superfamily, and fold (based
on the SCOP database), respectively, when compared with the annotation of the test protein.

AMP ligand. To compare, these two approaches outperform
Findsite when the templates are filtered at the superfamily
and fold levels for each of the three ligands.

We investigate significance of differences in the predic-
tion qualitymeasured with𝐷𝐶𝐶 betweenNSiteMatch and the
other predictors; see Table 1. We compare the𝐷𝐶𝐶 values that
are calculated by taking top 𝑛 predictions for each protein
where 𝑛 is the number of the nucleotide-binding sites for a
given protein. At 40% sequence similarity and family levels,
the NSiteMatch is significantly better than the other three
methods. Similarly, ourmethod significantly outperforms the
competing solutions by using the superfamily and fold filters
for the ADP and ATP ligands, and the improvements are not
significant only when compared with the MetaPocket and Q-
SiteFinder for the AMP.

3.2. Evaluation of the Predicted Binding Residues. Besides the
coordinates of the predicted binding site, the NSiteMatch,
Findsite, MetaPocket, and Q-SiteFinder also predict the

binding residues. For the NSiteMatch, each residue in the
predicted protein structure is assigned with a numerical
score which indicates the number of ligands that this residue
interacts with (details concerning the annotation of the
binding residues for the NSiteMatch are given in Methods).
A given residue is regarded as a binding residue if its score
is above a certain threshold. The selection of this threshold
controls the trade-off between precision (fraction of the
correctly predicted binding residues among all predicted
binding residues) and recall (fraction of the correctly pre-
dicted binding residues among all native binding residues).
Since the precision and recall values achieved by the Findsite,
MetaPocket, and Q-SiteFinder vary substantially, we selected
two thresholds that allow for a direct comparison. Similarly
as in Zhang et al., 2008, we set the threshold such that the
precision/recall of the NSiteMatch is equal to the highest
precision/recall achieved by the other methods for a given
ligand and a given filter. The predictions are evaluated based
on the recall (also called sensitivity), precision, and MCC;
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Figure 5: The relation between the predictive quality of the NSiteMatch and Findsite and the similarity between the predicted protein and
template library. The success rates (y-axis) are measured using 𝐷𝐶𝐶 (the minimal distance from the center of the predicted site to the center
of the ligand) on the benchmark datasets. A given binding site is regarded as correctly predicted if the minimal distance between this site and
the top 𝑛 predictions is below the cutoff distance D (x-axis), where 𝑛 is the number of binding sites of the protein that includes the evaluated
binding site. (a), (c), and (e) evaluate results of the NSiteMatch for the ADP, ATP, and AMP, respectively; (b), (d), and (f) summarize the
corresponding results for the Findsite.
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Table 1: Statistical significance of the differences in distances measured using 𝐷𝐶𝐶 between the predicted and the actual location of the
binding site measured using Wilcoxon signed-rank test. The “+” indicates that NSiteMatch is significantly better than a method in a given
column with 𝑝 < 0.05 and “=” denotes the fact that NSiteMatch and a method in a given column are not significantly different.

Ligand type SCOP level MetaPocket Findsite Q-SiteFinder

ADP

40% + + +
Family + + +

Superfamily + + +
Fold + + +

ATP

40% + + +
Family + + +

Superfamily + + +
Fold + + +

AMP

40% + + +
Family + + +

Superfamily = + =
Fold = + =

see Table 2. The MCC quantifies correlation between predic-
tions and the native annotations and thus higherMCC values
correspond to more accurate predictions.

For the 40% sequence similarity filter, the NSiteMatch
achieves higher precision, recall, and MCC values than the
Findsite, Q-SiteFinder, and MetaPocket for all three types of
the nucleotides. The NSiteMatch generates predictions with
a substantially higher precision when its recall is the same as
the highest recall produced by the other predictors. Similarly,
our method has higher recall when its precision matches the
highest precision produced by the other methods. Findsite
obtains the second best MCC values for the three types of
the nucleotides. We observe that predictions of MetaPocket
are characterized by the precision that is higher than the
recall, whileQ-SiteFinder has the recall values higher than the
precision. This indicates that MetaPocket and Q-SiteFinder
under- and overpredict the binding residues, respectively.

At the family level, NSiteMatch also provides the highest
precision, recall, and MCC values when compared with
the other methods for the three nucleotides. However, as
expected, the predictive quality of NSiteMatch and Findsite
declines when compared to the 40% sequence similarity
filter. Based on the MCC value, Findsite outperforms the
Q-SiteFinder and MetaPocket for the ADP and ATP but
is inferior to Q-SiteFinder for the AMP. The results at the
superfamily and fold level filters are similar to each other.
The NSiteMatch maintains the highest precision, recall, and
MCC values for the ADP and ATP. However, for AMP, the
predictions of theNSiteMatch have quality that is comparable
toQ-SiteFinder andhigher than theMetaPocket andFindsite.

The results concerning prediction of binding residues
are consistent with our statistical analysis based on the 𝐷𝐶𝐶
values. We note that NSiteMatch and Findsite achieve lower
predictive quality for AMP, when compared with ADP and
ATP. This is likely because ADP and ATP contain more
phosphates than AMP, while the phosphates form strong
interaction with binding site through long range electrostatic
interactions. In the case of AMP, the Adenine nucleoside
plays a more important role for interacting with binding site.

However, the hydrogen bonding from the hydroxyls of the
ribose ring and from theAdenine heterocycle ismuchweaker
when compared with the electrostatic interaction.The results
suggest that prediction of the binding site of Adenine is more
difficult than prediction of binding sites of phosphates.

Similarly as for the prediction of the binding sites, we
assessed the impact of the similarity between the predicted
protein and the corresponding template library on the pre-
dictive qualities of the NSiteMatch and Findsite for the
prediction of binding residues. The MCC values achieved by
NSiteMatch for the ADP, ATP, and AMP are 0.6, 0.56, and
0.51, respectively, at the 40% sequence similarity level; 0.52,
0.47, and 0.39, respectively, at the family level; 0.44, 0.41, and
0.35, respectively, at the superfamily level; and 0.43, 0.41, and
0.34, respectively, at the fold level. As expected, the results
indicate that NSiteMatch generates better predictions when
the predicted protein has a higher structural similarity to
the template library. A similar relation is observed for the
Findsite; see Table 2. However, based on the MCC values, the
Findsite is outperformed by the template-free Q-SiteFinder
for the prediction of binding residues of the three nucleotides
for the superfamily and fold filters. Importantly, we observe
that our method outperforms Findsite for each filter and
each ligand type, and it also improves over the Q-SiteFinder
and MetaPocket, except for the AMP with the superfamily
and fold level filters where it provides predictive quality that
is comparable to the Q-SiteFinder. This demonstrates that
our local similarity-based approach provides one of the best
solutions for the structure-based prediction of nucleotide-
binding residues, even when predicting for structures from
novel/uncharacterized folds and superfamilies.

3.3. Case Studies. We present two case studies. The first
compares the utility of the NSiteMatch and the existing
binding site predictors, and the second demonstrates the
ability of the NSiteMatch to identify similar binding sites
across protein folds.

We use the chain A of the MJ1225 protein (PDB code:
3KH5) [20] for the first case study.This structure was released
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Table 2: Comparison of the predictive qualities of the NSiteMatch, MetaPocket, Findsite, and Q-SiteFinder for the prediction of binding
residues for ADP, ATP, and AMP. The PRE, REC, and MCC stand for precision, recall, and Matthews Correlation Coefficient, respectively.
TheNSiteMatch generates a real value for each residue (propensity to bind), which is thresholded tomake binary (binding versus nonbinding
residue) predictions. The rows annotated as the “NSiteMatchp” are based on the thresholds that generate precision values which match the
highest precision obtained by theMetaPocket, Findsite, andQ-SiteFinder for a given ligand type; similarly, the “NSiteMatchr” rows correspond
to thresholds for which the highest value of recall is matched. The matching recall and precision values are shown in italics and the highest
MCC values are given in bold font.

Ligand Method 40% Family Superfamily Fold
type PRE REC MCC PRE REC MCC PRE REC MCC PRE REC MCC

ADP

NSiteMatchp 0.48 0.79 0.6 0.43 0.68 0.52 0.43 0.49 0.44 0.43 0.48 0.43
NSiteMatchr 0.76 0.53 0.62 0.53 0.57 0.53 0.37 0.57 0.43 0.37 0.57 0.43
MetaPocket 0.41 0.13 0.21 0.43 0.13 0.22 0.43 0.13 0.22 0.43 0.13 0.22
Findsite 0.48 0.67 0.55 0.41 0.45 0.42 0.31 0.32 0.3 0.31 0.3 0.3

Q-SiteFinder 0.29 0.53 0.36 0.31 0.57 0.39 0.31 0.57 0.39 0.31 0.57 0.39

ATP

NSiteMatchp 0.49 0.68 0.56 0.46 0.54 0.47 0.46 0.41 0.41 0.46 0.41 0.41
NSiteMatchr 0.61 0.52 0.54 0.47 0.51 0.47 0.4 0.51 0.42 0.4 0.51 0.42
MetaPocket 0.47 0.16 0.26 0.46 0.14 0.23 0.46 0.14 0.23 0.46 0.14 0.23
Findsite 0.49 0.52 0.5 0.38 0.43 0.39 0.29 0.34 0.31 0.29 0.34 0.31

Q-SiteFinder 0.31 0.52 0.36 0.29 0.51 0.35 0.29 0.51 0.35 0.29 0.51 0.35

AMP

NSiteMatchp 0.47 0.62 0.51 0.47 0.36 0.39 0.47 0.3 0.35 0.47 0.28 0.34
NSiteMatchr 0.47 0.62 0.51 0.33 0.6 0.41 0.29 0.6 0.38 0.29 0.6 0.38
MetaPocket 0.47 0.16 0.26 0.47 0.15 0.25 0.47 0.15 0.25 0.47 0.15 0.25
Findsite 0.44 0.49 0.44 0.31 0.34 0.31 0.29 0.33 0.3 0.29 0.32 0.29

Q-SiteFinder 0.29 0.62 0.39 0.29 0.6 0.38 0.29 0.6 0.38 0.29 0.6 0.38

Table 3: The templates identified by NSiteMatch for the probable cell division inhibitor mind protein. Three templates, namely,
phosphoenolpyruvate carboxykinase, UDP-N-Acetylmuramoylalanine-D-Glutamate Ligase, and thermosome alpha subunit, have different
topologies but similar binding segments and binding sites to the predicted protein.

Polymer name PDB code:(chain) Binding segment SCOP label
Cell division inhibitor mind protein 1ION:A G T — G K T T c.37.1.10
Phosphoenolpyruvate carboxykinase 1K3C:A G T — G K T T c.91.1.1
UDP-N-Acetylmuramoylalanine-D-Glutamate ligase 2JFG:A G S N G K S T c.72.2.1
Thermosome alpha subunit 1Q3S:A G D — G T T T a.129.1.2

after our benchmark dataset was created and this sequence
shares less than 25% similarity to any sequence in our bench-
mark dataset. We used the web servers of the MetaPocket
and Q-SiteFinder and the standalone implementation of the
Findsite and our NSiteMatch to generate the predictions.
The template library of Findsite and NSiteMatch includes
all structures from the benchmark dataset. Since the MJ1225
protein includes 3 ADP-binding sites and 1 AMP-binding
site, the top 4 predictions generated by each predictor were
assessed. For the cutoff distance 𝐷 = 4 Å, the NSiteMatch
and Findsite correctly predict 4 and 3 of the binding sites,
respectively, while the Q-SiteFinder and MetaPocket find 2
and 1 of the binding sites, respectively; see Figure 6(a). The
lower quality of theQ-SiteFinder andMetaPocket predictions
can be explained by the fact that these methods predict
sites for a generic class of small ligands, while Findsite
and NSiteMatch use a library that is specific to the three
nucleotides. In spite of using the same template library, we
show that NSiteMatch is more accurate than Findsite, which
is due to the use of the local similarity.

We use chain A of the probable cell division inhibitor
mind protein (PDB code: 1ION) [21] to demonstrate that
NSiteMatch is capable of identifying similar binding sites
across protein folds. This would imply that the function of a
given protein could be inferred from other proteins that have
different topologies. This structure includes 1 ADP-binding
site and thus we assess the top prediction from each method.
The distances between the predicted and the native center of
the ligand are 0.6 Å, 1.3 Å, 3.0 Å, and 22.8 Å for the NSiteM-
atch, Findsite, MetaPocket, and Q-SiteFinder, respectively;
see Figure 6(b). The ADP-binding site is implemented by the
“GTGKTT” sequence segment and this protein is assigned to
the “P-loop containing nucleoside triphosphate hydrolases”
superfamily based on the SCOP annotation.The NSiteMatch
uses potentially multiple templates to find a single binding
site. We analyze the templates that the NSiteMatch finds as
similar to the 1ION protein in the predicted binding region
and which were used to predict this site. Three of these
templates belong to superfamilies that are different to the
superfamily of the predicted protein; see Table 3. The first
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Figure 6: Binding sites predicted by the NSiteMatch, Findsite, MetaPocket, and Q-SiteFinder for chain A of theMJ1225 protein (a) and chain
A of the cell division inhibitor mind protein (b). The predictions by NSiteMatch, Findsite, MetaPocket, and Q-SiteFinder are denoted with
green, red, purple, and blue spheres, respectively. The ligands are in the stick format and are colored in black. The MJ1225 contains 3 ADP-
binding sites and 1 AMP-binding site and the top 4 predictions from each method are shown. The cell division inhibitor mind protein has 1
ADP-binding site and the top prediction for each method is shown.

template is chain A of phosphoenolpyruvate carboxykinase
(PDB code: 1K3C) [22], which is assigned to the “PEP
carboxykinase-like” superfamily in SCOP. The other two
templates are chain A of UDP-N-Acetylmuramoylalanine-
D-Glutamate ligase (PDB code: 2JFG) [23] and chain A of
Thermosome alpha subunit (PDB code: 1Q3S) [24], which
belong to the “MurD-like peptide ligases” and “catalytic
domain and GroEL equatorial domain-like” superfamilies,
respectively. We superimpose these three templates into the
predicted 1ION protein using Fr-TM-align [25]; see Figures
7(a), 7(b), and 7(c). The figures reveal that the templates are
dissimilar in their overall topology when compared with the
1ION protein. The alignment of the binding segments for the
three templates and the predicted protein, which is given in
Table 3, reveals that they share key binding residues, that
is, the Gly, Lys, and Thr residues. The NSiteMatch works by
finding local similarity in the binding region between the
predicted and the template proteins, and we superimposed
these regions; see Figures 7(d), 7(e), and 7(f) where the
residues are displayed in ball and stick format and the
ADP is shown in the stick format. The binding site of the
phosphoenolpyruvate carboxykinase is very similar to the
binding site of the predicted protein (Figure 7(d)); we found
30 atoms which overlap between these two superimposed
sites. The overlap between the binding site of the UDP-
N-Acetylmuramoylalanine-D-Glutamate ligase and the pre-
dicted protein includes 16 atoms (Figure 7(e)) which mainly
involve theGly114, Lys115, andThr117 residues on the template
and the Gly15, Lys16, and Thr18 residues on the predicted
chain. The binding site of the thermosome alpha subunit is
less similar to the predicted protein when compared with
the other two templates (Figure 7(f)); 11 atoms overlap and
they correspond to Gly96, Thr98, and Thr99 residues on
the template and Gly15, Thr17, and Thr18 residues on the
predicted sequence. We observe that the ADP binds to

the predicted protein mainly through the beta-phosphate.
Similarly, the ADP binds to the first two templates also
mainly through the beta-phosphate, while it interacts with
the third template mainly through the 𝛼-phosphate group,
which explains the lower similarity. However, even when
the interaction group changes, the NSiteMatch was still able
to capture a similar spatial arrangement of residues at the
binding site. This example demonstrates that our method
can perform annotation of binding sites based on templates
with distant homology. In contrast to the NSiteMatch, the
templates used by Findsite to predict the 1ION protein belong
to the same “P-loop containing nucleoside triphosphate
hydrolases” superfamily; that is, Findsite was not able to
capture the distant functional relationship between proteins
from different superfamilies.

4. Conclusions

Motivated by the importance and the substantial interest
in protein-nucleotide interactions and the lack of accurate
computational predictors, we designed a novel and accurate
structure-based nucleotide-binding site predictor for the
three most commonly occurring nucleotides. However, it
should be noted that the proposedNSiteMatch achieves lower
predictive quality for AMP when compared with ADP and
ATP. The difference between the three nucleotides is the
number of phosphates. It suggests that NSiteMatch is more
focused on prediction of binding sites for phosphates than
Adenine and NSiteMatch should be expended to encompass
the interaction pattern of the Adenine nucleoside. Empirical
testing shows that the proposed NSiteMatch method signifi-
cantly outperforms generic, template-free binding site predic-
tors, except for the AMP nucleotide, for which NSiteMatch
generates results that are comparable to the Q-SiteFinder
and MetaPocket at the superfamily and fold filter levels. We
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Figure 7: Comparison of the structures of templates identified by the NSiteMatch as similar to the chain A of the probable cell division
inhibitor mind protein (PDB code: 1ION), which are classified as belonging to different superfamily as the 1ION protein. The 1ION structure
is shown in red, while the three templates, phosphoenolpyruvate carboxykinase, UDP-N-Acetylmuramoylalanine-D-Glutamate ligase, and
thermosome alpha subunit, are in green, blue, and grey, respectively. (a), (b), and (c) superimpose each of the templates to the 1ION structure
by using Fr-TM-align. (d), (e), and (f) are the common substructures between the 1ION structure and a given template, which were identified
by the NSiteMatch. The residues are displayed in the ball and stick format and the ADP is shown in the stick format.

also show that the template-based NSiteMatch and Findsite
generate better predictions for proteins that share higher
similarity with their template library. However, NSiteMatch
significantly outperforms Findsite when the predicted pro-
tein shares low structural similarity to the template library.
Contrary to the Findsite which relies on identification of
templates that have similar topology to the topology of the
predicted protein, our method recognizes templates that
share local similarity in the binding area and which are not
necessarily similar in their overall topology. This allows us
to identify similar binding sites across potentially very dif-
ferent protein structures. Our method can accurately, when
compared to the current state of the art, find distant func-
tional relationships between proteins from different families,
superfamilies, and folds. Although the NSiteMatch targets
predictions for a few specific nucleotides, our methodology
constitutes a generic platform that could be extended to
predict interactions with other small ligands.
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[20] I. Gómez-Garćıa, I. Oyenarte, and L. A. Mart́ınez-Cruz, “The
crystal structure of protein MJ1225 from methanocaldococcus
jannaschii shows strong conservation of key structural features
seen in the eukaryal 𝛾-AMPK,” Journal ofMolecular Biology, vol.
399, no. 1, pp. 53–70, 2010.

[21] N. Sakai,M.Yao,H. Itou et al., “The three-dimensional structure
of septum site-determining protein MinD from Pyrococcus
horikoshii OT3 in complex with Mg-ADP,” Structure, vol. 9, no.
9, pp. 817–826, 2001.

[22] A. M. Sudom, L. Prasad, H. Goldie, and L. T. J. Delbaere, “The
phosphoryl-transfer mechanism of Escherichia coli phospho-
enolpyruvate carboxykinase from the use of AlF3,” Journal of
Molecular Biology, vol. 314, no. 1, pp. 83–92, 2001.

[23] M. Kotnik, J. Humljan, C. Contreras-Martel et al., “Structural
and functional characterization of enantiomeric glutamic acid
derivatives as potential transition state analogue inhibitors of
MurD ligase,” Journal of Molecular Biology, vol. 370, no. 1, pp.
107–115, 2007.

[24] Y. Shomura, T. Yoshida, R. Iizuka, T. Maruyama, M. Yohda, and
K. Miki, “Crystal structures of the group II Chaperonin from
thermococcus strain KS-1: steric hindrance by the substituted
amino acid, and inter-subunit rearrangement between two
crystal forms,” Journal of Molecular Biology, vol. 335, no. 5, pp.
1265–1278, 2004.

[25] S. B. Pandit and J. Skolnick, “Fr-TM-align: a new protein
structural alignment method based on fragment alignments
and the TM-score,” BMC Bioinformatics, vol. 9, no. 1, article 531,
2008.


