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ABSTRACT

Predicting the functional or pathogenic regulatory
variants in the human non-coding genome facili-
tates the interpretation of disease causation. While
numerous prediction methods are available, their
performance is inconsistent or restricted to spe-
cific tasks, which raises the demand of develop-
ing comprehensive integration for those methods.
Here, we compile whole genome base-wise aggre-
gations, regBase, that incorporate largest prediction
scores. Building on different assumptions of causal-
ity, we train three composite models to score func-
tional, pathogenic and cancer driver non-coding reg-
ulatory variants respectively. We demonstrate the
superior and stable performance of our models us-
ing independent benchmarks and show great suc-
cess to fine-map causal regulatory variants on spe-
cific locus or at base-wise resolution. We believe
that regBase database together with three compos-
ite models will be useful in different areas of hu-
man genetic studies, such as annotation-based ca-
sual variant fine-mapping, pathogenic variant dis-
covery as well as cancer driver mutation identifica-

tion. regBase is freely available at https://github.com/
mulinlab/regBase.

INTRODUCTION

Accurate prediction and prioritization of non-coding reg-
ulatory variants are crucial issues in the human genetic
studies. Genome-wide association studies (GWASs) have
produced numerous single-nucleotide variants (SNVs) that
are associated with hundreds of medical traits and dis-
eases, and the majority of the associations are suggested to
be mediated by non-coding regulatory codes (1–3). Whole
genome sequencing technologies are frequently incorpo-
rated into the relevance investigation of non-coding vari-
ants in Mendelian disease (4,5), and existing evidence also
suggests that non-coding regulatory variants can modulate
disease risk by affecting pathogenic coding variant pene-
trance (6). Given the high volume of disease-causal can-
didate variants in the regulatory region as well as the ex-
pensive downstream functional validations, computation-
ally predicting non-coding regulatory variants has become
important and long-standing scientific issue.

In the last few years, a large number of computational
methods had been proposed to annotate and predict func-
tional non-coding variants. Building on different predic-
tive assumptions, abundant annotation datasets as well as
complementary statistical models, these algorithms have
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achieved great successes to prioritize functional, pathogenic
and cancer-relevant non-coding regulatory variants (7–10).
However, the state-of-the-art benchmarks showed poor
concordance among the prediction scores of several exist-
ing methods (11–13). To comprehensively evaluate the reg-
ulatory potential or pathogenesis of certain SNV outside
the protein-coding region, researchers now have to collect
and compare scores from different resources, even need to
download huge pre-computed files or manually calculate
prediction scores. The overwhelming growth of new predic-
tion tools further complicates such retrieval processes. In
addition, the incomplete understanding and the functional
complexity of regulatory DNA impede the development of
single but versatile model that is able to accurately predict
causal regulatory variants affecting different biological pro-
cesses. For example, recent commonly adopted algorithms
that integrate evolutionary constraint, epigenomics and se-
quence features, such as CADD (14,15), GWAVA (16), Fun-
Seq2 (17) and fitCons (18), usually achieved limited pre-
dictive power for expression-modulating variants from in
vivo saturation mutagenesis of an enhancer (19), or allele
imbalanced variants influence critical molecular traits in
the transcriptional regulation, like chromatin accessibility
(20). Furthermore, compared with the functional regula-
tory variants prioritization, it is more challenging to pre-
dict pathogenic regulatory variants that underlie the devel-
opment of Mendelian disorders or cancers (5,21). The insuf-
ficient accumulation of known pathogenic regulatory vari-
ants largely inhibits the characterization of their key dis-
criminative features that is different from disease-free regu-
latory mutations.

In this work, we comprehensively integrate non-coding
variant prediction scores from 23 tools for base-wise an-
notation of human genome, called regBase. As such, reg-
Base provides first-time convenience to prioritize functional
regulatory SNVs and to assist the fine mapping of causal
regulatory SNVs without queries from numerus resources.
Inspired by the evident significance of ensemble predic-
tion for pathogenic/deleterious nonsynonymous substitu-
tion, we systematically construct three composite models to
score functional, pathogenic and cancer driver non-coding
regulatory SNVs. We illustrate the discriminatory abilities
and applicable scenarios of the proposed models by inde-
pendent datasets and case studies. regBase and associated
models are freely available for download at https://github.
com/mulinlab/regBase.

MATERIALS AND METHODS

Collecting, processing and integrating functional scores for
non-coding regulatory variants

We downloaded base-wise precomputed scores for almost
all possible substitutions of single nucleotide variant (SNV)
in the human reference genome from 13 existing tools, in-
cluding CADD (14,15), CDTS (22), CScape (23), DANN
(24), Eigen (25), FATHMM-MKL (26), FATHMM-XF
(27), FIRE (28), fitCons (18), FunSeq2 (17), GenoCanyon
(29), LINSIGHT (30) and ReMM (31). We called this
aggregated resource as regBase. For tool score recorded
by interval-level value, such as CDTS, fitCons and LIN-
SIGHT, we transformed continuous position into base-wise

position and assigned the same score. Since some tools only
support functional annotations for 1000 Genomes Project
variants (32) or are inefficient to compute variant scores,
we collected or generated functional scores of additional 10
tools for only biallelic variants from 1000 Genomes Project
phase 3, including Basset (33), CATO (20), DanQ (34),
DeepSEA (35), deltaSVM (36), FunSeq (37), GWAS3D
(37), GWAVA TSS (16), RSVP (38) and SuRFR (39) (see
Supplementary Tables S1 and S2 for details). We extracted
1000 Genomes Project biallelic variants from 13 base-wise
precomputed scores and merged together with above 10
scores to generate a database that contains 23 tools for all
biallelic variants, called regBase Common. Missing score
values were replaced with ‘.’ and genomic position of all
variants were based on GRCh37/hg19. We also ranked all
scores in each set and normalized them by PHRED-scaled
score (-10*log10(rank/total)). The integrated database is tab
delimited and indexed by Tabix (40).

Correlation analysis

Three benchmark datasets were incorporated to evaluate
the prediction consistency of existing tools including (i)
the Human Gene Mutation Database (HGMD) functional
regulatory variants used by GWAVA (41); (ii) the ClinVar
(201812 release) regulatory variants (42) with ‘CLNSIG
= Pathogenic or CLNSIG = Benign’ and only obtaining
non-coding attributes by VEP (43) (not including splicing-
altered consequences); (iii) expression-modulating variants
identified by massively parallel reporter assay (MPRA) with
more than 1.5 log2 fold expression level change between
alleles (44). Pearson correlation test and hierarchical clus-
tering were used to evaluate the relationships of integrated
tools upon these non-coding regulatory variant datasets, in
which variants with missing value for any tools will be ex-
cluded (Supplementary Table S3).

Construction of training dataset

We designed three training datasets to predict different cat-
egories of functional non-coding regulatory variants as fol-
lows:

regBase REG and regBase REG Common dataset: as-
suming to functional regulatory variants regardless of func-
tional direction and pathogenicity. We used our previously
compiled functional regulatory variants dataset in PRVCS
(11), which integrates four different resources including (i)
the HGMD public dataset used by GWAVA; (ii) the ClinVar
pathogenic variants in the non-coding region compiled by
GWAVA; (iii) validated regulatory variants from the Ore-
gAnno database (45); (iv) fine-mapped disease-causal reg-
ulatory SNPs for 39 immune and non-immune diseases
(46). Since some existing tools can only calculate predic-
tion scores for known germline variants in the human pop-
ulation, to incorporate as many scores as possible and
avoid missing values for very rare/de novo/somatic variants,
we only kept variants which appear in the 1000 Genomes
project. Negative controls were sampled from allele fre-
quency matched non-coding variants in the independent
linkage disequilibrium (LD) with positive variants from
1000 Genomes Project.

https://github.com/mulinlab/regBase
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regBase PAT dataset: assuming to pathogenic regu-
latory variants. We incorporated ClinVar (201812 re-
lease) pathogenic regulatory mutations with ‘CLNSIG =
Pathogenic’ and only kept the mutations in the non-coding
region by VEP annotations (not including splicing-altered
consequences). We also included regulatory Mendelian mu-
tations in the non-coding region from Genomiser (31) and
merged with ClinVar data. For negative dataset, we ran-
domly drew benign mutations with ‘CLNSIG = Benign’
from ClinVar, and used the same strategy to retain non-
coding mutations.

regBase CAN dataset: assuming to cancer recurrent reg-
ulatory somatic mutations. For positive set, we downloaded
COSMIC v84 non-coding mutations and selected ones hav-
ing recurrence rate ≥ 10. For negative set, we sampled pri-
vate non-coding somatic mutations with recurrence = 1 and
PhyloP = 0 (47) (see Supplementary Table S4 for variant
statistics).

Gradient Tree Boosting model and evaluation

We made use of Gradient Tree Boosting (GTB) algorithm
in our predictive model. In general, GTB is a special form
of Gradient Boosting Machine, which makes prediction by
combining the results of multiple weak learners, typically
decision tree. We used XGBoost classifier as the implemen-
tation of GTB algorithm. XGBoost is a scalable end-to-
end tree boosting system and has achieved the state-of-art
performance in plenty of tasks (48). Its sparsity-aware split
finding makes it suitable for the task as missing value was
commonly appeared in our datasets. We performed grid
search based on 10-fold cross-validation on training set in
order to tune the hyper-parameters. While tuning training
datasets with the unbalanced positive and negative sam-
ples, we adjusted the weight of positive samples according
to the ratio of two classes. Receiver operating characteristic
(ROC) curve and area under the receiver operating charac-
teristics curve (AUC) were used to evaluate the performance
of model during grid search. We also compared XGBoost
algorithm with other machine learning algorithms includ-
ing SVM, AdaBoost and RandomForest. Feature contribu-
tion was measured by permutation importance and SHap-
ley Additive exPlanation (SHAP) approaches (49). Pear-
son correlation test and hierarchical clustering were used
to evaluate the correlation between our proposed scores un-
der four models with different training datasets and existing
prediction scores.

Construction of independent testing datasets

We assembled eight independent testing datasets that were
not used to train almost all of existing tools and our
combined models, including (i) Brown eQTL dataset: 11
tissue/cell type-specific eQTLs fine-mapping data that was
profiled by Brown and colleagues (50). To further ac-
quire more significant eQTL SNPs, we applied log10BF
cutoff values of 10% FDR for each tissue/cell type; (ii)
GTEx eQTL dataset: GTEx V6 44 tissues-specific eQTLs
within CAVIAR (51) 95% fine-mapped credible set from
UCSC (52); (iii) GWAS 5E-8 dataset: GWAS disease-
associated regulatory variants with P-value < 5E–8 from

GWAS Catalog v1.0.1 (53); (iv) GWAS 1E-5 dataset:
GWAS disease-associated regulatory variants with P-value
< 1E–5 from GWAS Catalog v1.0.1 (53); (v) Somatic eQTL
dataset: recurrent somatic mutations from COSMIC V84
with recurrence ≥ 2 within significant flanking intervals
per somatic eGene (54); (vi) Rare Patho SNV dataset: high
confidence pathogenic regulatory variants curated by two
recent publications. These variants were recorded to cause
Mendelian diseases with different levels of evidence (22,55);
(vii) ASD denovo SNV dataset: experimentally validated
transcriptional-regulation-disruption de novo mutations as-
sociated with autism spectrum disorder (ASD) (56); 8)
MPRA eQTL dataset: significant expression modulating
variants (log2FC > 1.5) by MPRA in lymphoblastoid
cell lines (44). We also generated corresponding controls
for above datasets using different sampling strategies. For
Brown eQTL and GTEx eQTL dataset, we randomly sam-
pled allele frequency matched non-coding variants in the
10 kb transcription start site (TSS) regions of randomly se-
lected genes. For GWAS 5E–8 and GWAS 1E–5 dataset,
we sampled allele frequency matched non-coding variants
in the independent LD with positive variants from 1000
Genomes Project. For Somatic eQTL dataset, we sampled
private non-coding somatic mutations from COSMIC V84
with recurrence = 1 and PhyloP = 0. For Rare Patho SNV
dataset we used non-coding benign variants from Clin-
Var (CLNSIG = Benign, 201812 release–201907 release).
For ASD denovo SNV dataset, we sampled nearest non-
coding non-pathogenic de novo mutations in the siblings
of ASD patients. For MPRA eQTL dataset, we used
nonexpression-modulating variants (log2FC < 0.005) by
MPRA in lymphoblastoid cell lines. Importantly, we ex-
cluded all positive and negative samples that have been in-
corporated in our training datasets. For Rare Patho SNV
and ASD denovo SNV, we also removed samples which
had been recorded in the HGMD database (see Supplemen-
tary Table S5 for statistics of these testing datasets).

MPRA model and evaluation

Additional regBase MPRA and regBase MPRA Common
model were trained on MPRA eQTL dataset and evalu-
ated by 10-fold cross-validation. We also collected MPRA
positive variants from three publications (56–58) and con-
structed an independent MPRA intergrated SNV testing
dataset. Negative dataset was sampled from allele frequency
matched non-coding variants in the 10 kb TSS regions of
randomly selected genes.

Benchmark schemes

We compared our composite models with integrated tools
and two existing ensemble methods (PRVCS (11) and IW-
Scoring (12)) using above six independent testing datasets.
Positive predictive values (PPV), negative predictive values
(NPV), false positive rate (FPR), false negative rate (FNR),
sensitivity, specificity, accuracy, precision, recall, F1 score
and Matthews correlation coefficient (MCC) were calcu-
lated according to Maximal Youden’s index during the mea-
surement of ROC and AUC. We also calculated the correla-
tion between true labels and prediction scores for each eval-
uation using Pearson correlation test.
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Causal variants prioritization for 5p15.33 TERT region

We collected significant trait/disease associated SNPs from
GWAS catalog (P-value < 5E–8) and GWAS fine-mapping
results from literatures at the 5p15.33 TERT region (Human
GRCh37, chr5:1.22–1.37mb). We used LocusZoom (59) to
visualize these disease-associated and fine-mapped SNPs on
1000 Genomes EUR population. To investigate the perfor-
mance of regBase composite methods for causal variant pri-
oritization, we extracted and normalized the raw scores of
all tools in the 5p15.33 TERT region to generate regional
PHRED-scaled scores. We further evaluated the sum or dis-
tribution of PHRED scores for all collected fine-mapped
SNPs across different tools. Since some tools contain equal
scores at this region and this will reduce the discrimination
of true causal variants, we removed tools that obtain >25%
equal scores in the evaluation.

Base-wise evaluation for saturation mutagenesis of ALDOB
enhancer

We used in vivo saturation mutagenesis data for ALDOB
enhancer to perform base-wise evaluation among our pro-
posed models and existing methods (60). Tools with high
missing rate and low uniqueness for 259 bp ALDOB en-
hancer were identified and excluded in following compar-
ison. Pearson correlation coefficient was used to investigate
the concordance between prediction scores and true fold
changes of experiment.

Discrimination of variant-level pathogenic alleles

We downloaded non-coding pathogenic alleles and
matched non-pathogenic human derived alleles from three
simulated datasets (13). Briefly, non-coding SNVs with
pathogenic alleles never observed in diverse non-human
placental mammals were selected, and matched non-
pathogenic human derived alleles at the same position
were drawn with varied frequencies, which yielded 55 453
(57 mammals and 5–15% derived allele frequency), 47 799
(5–95% derived allele frequency) and 79 506 positions (11
primates) respectively. To ensure a valid evaluation, we
discarded prediction tools that frequently predict the same
score between simulated pathogenic and non-pathogenic
alleles. We calculated Z-score for each allele and prioritized
the distance of paired Z-score for each variant position.

RESULTS

Generally, this work consists of four major parts, including
(i) integration of whole genome base-wise prediction scores;
(ii) construction of composite prediction models; (iii) model
evaluation using independent testing datasets; (iv) applica-
tion of established models for causal regulatory variants
identification. The study workflow was shown in Figure 1A.

Base-wise aggregation of non-coding regulatory variant pre-
diction scores

We processed and compiled an integrative resource for pre-
diction scores from 23 different tools on functional annota-
tion of non-coding variants, including Basset (33), CADD

(14,15), CATO (20), CDTS (22), CScape (23), DANN (24),
DanQ (34), DeepSEA (35), deltaSVM (36), Eigen (25),
FATHMM-MKL (26), FATHMM-XF (27), FIRE (28), fit-
Cons (18), FunSeq (37), FunSeq2 (17), GenoCanyon (29),
GWAS3D (37), GWAVA (16), LINSIGHT (30), ReMM
(31), RSVP (38) and SuRFR (39) (Supplementary Table
S1). Since some tools only support annotations for 1000
Genomes Project variants (32), or take long runtime to
compute functional scores, we first built a database, called
regBase Common, which contains functional scores from
23 tools for 38 248 779 in the 1000 Genomes Project phase 3.
Among these integrated datasets, 13 tools provide precom-
puted scores for almost all possible substitutions of SNV
in the human reference genome. Therefore, we also con-
structed a complete base-wise aggregation of non-coding
variant functional scores for 8 575 894 770 substitutions of
SNV (same with CADD pre-calculated alleles which con-
sists of all possible substitutions in the human reference
genome GRCh37), called regBase (Supplementary Table
S2). We summarized the missing values in our integrated
resources, and found that most of tools had less than 2%
missing values across the whole genome. However, CATO
(65.88%), SuRFR (33.91%) and CDTS (9.64%) exhibited
relatively high or moderate missing rates in the regBase
Common, and CDTS (13.02%) showed moderate missing
rate in the regBase (Supplementary Tables S6 and S7). To
facilitate the efficient retrieve and comparison of functional
scores of different alleles across tools, we indexed the whole
dataset and used a PHRED-scaled method to normalize
the raw score of each tool. The regBase and regBase Com-
mon can be downloaded from https://github.com/mulinlab/
regBase.

Correlation analysis of existing algorithms

Existing non-coding variants prediction algorithms dealt
with different predictive objectives and assumptions, which
could lead to inconsistent prediction on various appli-
cation scenarios. To comprehensively evaluate the pre-
dictive concordance among our collected scores, we pre-
pared three benchmark datasets that incorporate differ-
ent pathogenicity/regulatory causality assumptions of non-
coding regulatory variants (Supplementary Table S3): (i)
functional regulatory variants from the public Human
Gene Mutation Database (HGMD) (41) used by GWAVA;
(ii) pathogenic and benign regulatory variants from the
ClinVar database (42); (iii) experimentally validated expres-
sion quantitative trait loci (eQTL) variants from a massively
parallel reporter assay (MPRA) (44). Pearson correlation
analysis of regBase Common integrated functional scores
showed both shared and distinct patterns on these bench-
mark datasets (Figure 1B). Algorithms trained on similar
positive/negative data and features had relatively high pair-
wise correlations, like DeepSEA and DanQ (Pearson cor-
relation coefficients, R > 0.7), or CADD and DANN (R
> 0.6), or FunSeq and FunSeq2 (R > 0.5). However, the
majority of tools exhibited weak pairwise correlations (R
< 0.4) in these regulatory variant datasets, which could
be explained by the different training data and features,
as well as the various learning models used. Among these
tested non-coding regulatory variant datasets, we found the

https://github.com/mulinlab/regBase
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Figure 1. Study workflow and correlation analysis of prediction score among 23 regBase Common integrated tools. (A) A flowchart showing the workflow
of our regBase study. (B) Pearson correlation of 23 regBase Common integrated functional scores on three known functional/pathogenic regulatory variant
datasets. Positive correlations are displayed in blue and negative correlations in red color. Color intensity and the size of the square are proportional to the
correlation coefficients. Non-significant P-value (>0.05) is marked with a cross. (C) Hierarchical clustering of regBase Common integrated tools on three
known functional/pathogenic regulatory variant datasets. HGMD, the Human Gene Mutation Database functional regulatory variants dataset; ClinVar,
the ClinVar pathogenic and benign regulatory variants dataset; MPRA, the expression-modulating variants dataset identified by massively parallel reporter
assay.

overall pairwise correlation for MPRA dataset was gener-
ally higher than those from other two datasets, implying
that current tools may obtain better concordance in eQTL-
associated regulatory variant prediction. Since some tested
variants were not incorporated or obtained missing val-
ues in the regBase Common database, we also performed
correlation analysis on 13 complete scores in the regBase
database and found similar correlation patterns (Supple-
mentary Figure S1).

To visualize underlying relationships among these tools,
we clustered the functional scores according to three above
regulatory/pathogenic variant datasets. We found these
tools could be generally partitioned into two major subsets,
in which each member at the first subset barely associated
with other tools within or outside this subset, while mem-
bers at the second subset were usually correlated with each
other (Figure 1C). This result indicates that some tools may
capture the unique and important features that is able to dis-
tinguish regulatory variants from neutral ones. For exam-
ple, deltaSVM and CATO learn classification models based
on SNV disrupting DNase I hypersensitive site (DHS), and
RSVP identifies many informative predictors from gene ex-
pression annotations. Interestingly, besides the tools that
use exactly same training data or features, we found several

tool pairs consistently clustered together in all three results,
such as deltaSVM and CATO both utilize variants at DHS
as training data. FATHMM-XF co-occured with CScape
in the clustering, probably due to their use of similar nega-
tive samples and functional annotation features. (Figure 1C
and Supplementary Figure S1). To summarize together, our
results indicate that the existing non-coding variant func-
tional scoring tools will produce inconsistent predictions
across pathogenic/regulatory and neutral variants, and may
capture various attributes of functional regulatory codes,
suggesting the necessity and importance of systematic in-
tegration.

Composite predictions of functional, pathogenic and cancer
driver non-coding regulatory variant

Few ensemble prediction models for non-coding regulatory
variants were proposed previously. These models only in-
tegrated limited number of tools and achieved mediocre
performance on pathogenic regulatory variant prediction,
especially for predicting somatic regulatory mutation as-
sociated with the development of cancer. Given the func-
tional complexity and insufficient accumulation of causal
regulatory variants, it is difficult to establish a well-rounded
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model that can predict all types of regulatory variants in
the current stage. We hence partitioned the non-coding reg-
ulatory variant prediction task into three categories, in-
cluding (i) predicting variant regulatory potential regardless
of its functional direction and pathogenicity; (ii) predict-
ing disease-causal regulatory variant; (iii) predicting can-
cer driver regulatory mutation. Correspondingly, we con-
structed three independent training datasets (Supplemen-
tary Table S4), including (a) functional regulatory variants
dataset from our previous PRVCS (11) (regBase REG); (b)
pathogenic regulatory variants dataset from ClinVar and
Genomiser (regBase PAT); (c) highly recurrent regulatory
somatic mutations dataset from COSMIC (regBase CAN).
For each positive set, we sampled constrained control set
based on the best of our knowledge to alleviate biases (see
Materials and Methods for details).

Owing to the potential complementarity and unique-
ness of existing non-coding regulatory variant prediction
algorithms, we hypothesized that combining functional
scores from multiple tools would boost the prediction
performance for each aforementioned regulatory variant
category. Using the compiled golden standards and reg-
Base scores, we trained three composite models by Gra-
dient Tree Boosting (GTB). We adapted XGBoost clas-
sifier as the implementation of GTB algorithm (48), be-
cause sparsity-aware split finding of XGBoost make it suit-
able for the task as missing value are commonly appeared
in our regBase features. As all training variants of reg-
Base REG came from 1000 Genomes Project, we were
able to train additional model using regBase Common
features (regBase REG Common). We tuned the model
hyper-parameters by 10-fold cross-validation and evaluated
the model performance by receiver operating characteristic
(ROC) curve and area under the curve (AUC).

The new composite models significantly improved the
prediction performance of the best single tool by 5–22%
(Figure 2). Specifically, for functional non-coding regula-
tory variant prediction, regBase REG Common model re-
ceived average AUC of 0.93 (Figure 2A) and regBase REG
model got 0.89 (Figure 2B). GenoCanyon is always the best
single tool with AUC of 0.84 in these two models compared
to an average score less than 0.75 achieved by the major-
ity of tools, which implies that integrating more tools with
weak but complementary ability could increase the perfor-
mance of ensemble prediction model. For pathogenic non-
coding regulatory variant prediction, regBase PAT model
reached an average AUC of 0.90 (Figure 2C) that exceeds
the best tool ReMM by 6% (AUC of 0.84). Remarkably,
Tools without training on any ClinVar data, like Eigen,
LINSIGHT and CADD, can achieve a comparable per-
formance (AUC > 0.8) with ReMM on predicting disease-
causal regulatory variants. This may highlight that evo-
lutionary information and unbiased leaning strategy fre-
quently used in these tools, could be very useful to discrim-
inate mutation pathogenicity or deleteriousness from neu-
tral signals. For the prediction of cancer driver non-coding
regulatory mutation, our regBase CAN model got an un-
expectedly high average AUC of 0.91 (Figure 2D) that out-

performed the best tool FIRE by 22% (AUC of 0.69). We
found most existing algorithms were not specially designed
to prioritize somatic regulatory variants except for FunSeq2
and CScape in the regBase database. The preliminary un-
derstanding of regulatory codes in the cancer genome and
the limited number of cancer driver non-coding variants
could be keypoints that inhibited the development of ef-
fective prediction model. However, by compositing the ef-
fect of existing regulatory variant scoring scheme, we pro-
vided an alternative strategy to prioritize non-coding reg-
ulatory mutation with cancer driver potential. It is worth
noting that some tools received very low or unnormal AUC
in above benchmarks, which could be attributed to the dis-
cordant predictive assumption with corresponding training
dataset.

To investigate the underlying contributions for improved
model performance, we first compared the cross-validation
results among different machine learning algorithms. We
found ensemble learning methods including AdaBoost,
RandomForest and XGBoost exhibited better performance
than conventional SVM classifier in all training datasets, in
which the models trained by XGBoost algorithm showed
the best prediction performance (about 2–3% improve-
ments of AUC, Supplementary Figures S2-S5). Second,
we estimated the feature importance of our trained XG-
Boost models and found varied contributions of predic-
tors among them, for instance, GenoCanyon obtained the
largest importance in regBase REG model while CDTS was
the best contributor in regBase PAT model (Supplementary
Figure S6). This may imply that the models tend to place
higher weight on tools holding similar predictive assump-
tion with corresponding training dataset. Besides the mea-
surement of feature importance, we also used a more in-
terpretable schema, SHAP value, to assess the feature im-
pact on model output. By plotting the SHAP values of ev-
ery feature for every sample and sorting features by the
sum of SHAP value magnitudes over all samples, we found
that several features displayed unique SHAP value distri-
bution and may independently contribute to correspond-
ing models, such as GenoCanyon in regBase REG model
and fitCons in regBase PAT model (Supplementary Figure
S7). This further indicates the potential complementarity
of collected prediction tools and the necessity of score ag-
gregation. Finally, we performed correlation analysis be-
tween our proposed scores under four trained models and
existing prediction scores. In general, regBase REG and
regBase REG Common models are more correlated with
tools used to predict functional regulatory variants, reg-
Base PAT model is highly correlated with pathogenic vari-
ant prediction scores, while regBase CAN model is close to
algorithm utilizing evolutionary information (Supplemen-
tary Figures S8 and S9). These patterns demonstrate the ef-
ficacy of predictive assumption defined by separate train-
ing dataset. Taken together, the improvement of our com-
posite models could be attributed to multiple incorporated
properties, including the learning algorithm, the compre-
hensive aggregation of existing prediction scores as well as
the different predictive assumptions defined by the training
datasets.
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Figure 2. Receiver operating characteristic (ROC) curve and area under the receiver operating characteristics curve (AUC) for different prediction models
using 10-fold cross-validation. (A) ROC and AUC of 23 integrated tools and 10-fold cross-validation result for regBase REG Common model. (B) ROC
and AUC of 13 integrated tools and 10-fold cross-validation result for regBase REG model. (C) ROC and AUC of 13 integrated tools and 10-fold cross-
validation result for regBase PAT model. (D) ROC and AUC of 13 integrated tools and 10-fold cross-validation result for regBase CAN model.

Benchmarks on independent non-coding regulatory variant
datasets

To systematically evaluate our four composite models,
we constructed eight independent benchmark datasets
across different functional categories of non-coding reg-
ulatory variants (Supplementary Table S7), including
two fine-mapped eQTL datasets (Brown eQTL (50),
GTEx eQTL (52)), one experimental validated eQTL
dataset (MPRA eQTL (44)), two disease-associated
variants datasets (GWAS 5E-8, GWAS 1E-5 (53)), one
somatic eQTL dataset (Somatic eQTL (54)) and two
pathogenic mutation dataset (Rare Patho SNV (22,55),
ASD denovo SNV (56)). We also sampled corresponding
control testing dataset and removed variants that appeared
in our training datasets. These independent datasets were
not used to train almost all of integrated algorithms in
the regBase database, which could provide an unbiased

opportunity to comprehensively compare our models with
existing tools.

In general, our composite models can achieve an AUC
score around 0.8–0.9 for most of the above testing sets.
Among them, regBase REG Common model was the best
one to predict fine-mapped eQTLs (AUC of 0.88 for
Brown eQTL, AUC of 0.89 for GTEx eQTL) and GWAS
disease-associated SNVs (AUC of 0.88 for GWAS 5E-8,
AUC of 0.83 for GWAS 1E-5) (Figure 3A), while the
performance regBase REG is similar but falls slightly
behind (Figure 3B). This is consistent with the cross-
validation results in model training step. Interestingly, reg-
Base PAT model exhibited poor performance when pre-
dicting GWAS disease-associated variants. Compared with
common germline variants that conferring hereditary dis-
ease predisposition, the pathogenic SNVs used to train
regBase PAT model are mostly rare variants to cause
Mendelian disorders and obtain very distinct attributes. As
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Figure 3. Area-under-curve scores distribution for eight independent benchmarks. (A) regBase REG Common model. (B) regBase REG model. (C) reg-
Base PAT model. (D) regBase CAN model. Brown eQTL, 11 tissue/cell type-specific eQTLs fine-mapping data that was profiled by Brown and colleagues;
GTEx eQTL, 44 tissues-specific eQTLs within fine-mapped credible set from GTEx V6; MPRA eQTL, significant expression modulating variants by
MPRA in lymphoblastoid cell lines; GWAS 5E-8, GWAS disease-associated regulatory variants with P-value < 5E–8 from GWAS Catalog; GWAS 1E-5,
GWAS disease-associated regulatory variants with P-value < 1E-5 from GWAS Catalog; Somatic eQTL, recurrent somatic mutations within significant
flanking intervals per somatic eGene; Rare Patho SNV, rare pathogenic regulatory variants for inherited diseases; ASD denovo SNV, de novo pathogenic
regulatory mutations for autism spectrum disorder.

expected, regBase PAT model outperformed other predic-
tions (AUC of 0.83 for Rare Patho SNV) in discriminat-
ing rare pathogenic variants (Figure 3C). Regarding to the
prediction of cancer relevant somatic eQTLs, regBase CAN
model received an AUC of 0.94 which largely outperformed
other models (Figure 3D). In addition, regBase CAN
model also showed satisfactory performance (AUC of 0.78
for ASD denovo SNV) to predict pathogenic de novo muta-
tions, further indicating the combination of individual clas-
sifiers could generate stronger learner using Gradient Tree
Boosting strategy (Figure 3D). For predicting expression-
modulating variants identified by MPRA, the best compos-
ite model regBase REG got relatively smaller AUC of 0.62,
implying the integration of existing tools may have limited
ability to distinguish sequence effect of transcriptional reg-
ulatory elements regardless of their chromatin context.

To figure out whether the combined models are better
than individual tools or not, we evaluated the performance
of 23 regBase Common integrated scores on five common
variants testing sets, and 13 regBase integrated scores three
rare/de novo/somatic mutation datasets. Results showed

that our composite models outperformed individual tools
on most of evaluations. First, regBase REG Common
model was top ranked for Brown eQTL (Figure 4A and
Supplementary Table S8), GTEx eQTL (Figure 4B and
Supplementary Table S9), GWAS 5E-8 (Figure 4C and
Supplementary Table S10) and GWAS 1E-5 (Supplemen-
tary Figure S10A and Supplementary Table S11). It is
worth noting that GenoCanyon, FIRE, LINSIGHT and
Eigen PC were well performed on predicting germline cis-
eQTLs, while GenoCanyon, FunSeq2 and SuRFR were
suitable to classify disease-associated regularity variants.
In addition, regBase PAT model preceded other predic-
tions for Rare Patho SNV dataset, demonstrating its po-
tential clinical significance to interpret rare regulatory vari-
ants causing inherited disease (Figure 4D and Supplemen-
tary Table S12). Third, regBase CAN model was the best
one for Somatic eQTL dataset, with an AUC of 0.94 which
greatly surpassed the second-best tool Eigen PC (AUC
of 0.86) (Figure 4E and Supplementary Table S13). reg-
Base CAN model also performed well with the highest
AUC for ASD denovo SNV dataset, implying the shared
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Figure 4. Evaluation result of individual prediction tools on six independent testing datasets. (A) Performance on Brown eQTL dataset. (B) Performance on
GTEx eQTL dataset. (C) Performance on GWAS 5E-8 dataset. (D) Performance on Rare Patho SNV dataset. (E) Performance on Somatic eQTL dataset.
(F) Performance on ASD denovo SNV dataset. AUPR, area under the precision recal curve; AUROC, area under the receiver operating characteristics
curve; bubble size is proportional to Pearson correlation coefficients between predicted and true labels for each evaluation.
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regulatory properties between cancer driver somatic muta-
tion and pathogenic de novo mutation (Figure 4F and Sup-
plementary Table S14).

Moreover, when predicting effective MPRA alleles, tools
learned by deep learning or unsupervised model, such as
DeepSEA, GenoCanyon, Eigen PC and Basset, obtained
a higher AUC than our regBase REG model (Supplemen-
tary Figure S10B and Supplementary Table S15), prob-
ably due to the fact that deep learning and unsuper-
vised methods could capture unknown features that explain
the in vitro activity of regulatory allele. Given the over-
all poor performance of existing tools and our compos-
ite models in predicting MPRA positive regulatory vari-
ants, we have retrained independent composite models, reg-
Base MPRA and regBase MPRA Common, using previ-
ously collected MPRA eQTL dataset (44) to investigate
whether improvement could be made. Comparing with ex-
isting methods, we did find slight improvements (∼3%) us-
ing cross-validation (Supplementary Figures S11 and S12).
We also curated MPRA positive variants from other publi-
cations (56–58) and sampled strict matched controls, called
MPRA intergrated SNV dataset. Using this independent
test dataset, we found that our regBase MPRA and reg-
Base MPRA Common exhibited the best but still moderate
performance to predict in vitro activity of regulatory allele
(Supplementary Tables S16 and S17). This may suggest that
accurate prediction of MPRA positive regulatory variants
requires additional key features which are able to capture
real context around assayed sequences.

We also evaluated the performance of our newly trained
models with existing ensemble methods including IW-
Scoring (12) and our previous PRVCS (11). We found
that regBase REG Common model obtained superior ca-
pability in eQTL and GWAS regulatory variant bench-
marks, except that PRVCS and IW-Scoring slightly outper-
formed regBase REG model at MPRA eQTL dataset. For
pathogenic datasets, our composite models still largely out-
performed other ensemble methods (Supplementary Figure
S13 and Supplementary Table S18). Taken together, these
independent evaluations further demonstrated the effective-
ness of our composite models and illuminated that non-
coding regulatory variants prediction results could be in-
creasingly applicable in the future genetic studies.

regBase composite models facilitate the identification of
causal non-coding regulatory variant from complex GWAS
loci

Exploiting the true disease-causal variants is a challeng-
ing task in the GWAS study, especially for extremely high
LD variants that locate in the non-coding genomic region.
Statistical fine-mapping analysis usually ends with credible
set of likely casual variants in which highly linked SNPs
achieve similar posterior probabilities of causality, requir-
ing further investigation of the true causal variants by other
computational strategies, such as functional annotation
(61). By visualizing regional PHRED-scaled score spec-
trum of composite models across 5p15.33 TERT region,
we found several PHRED score peaks of regBase REG,
regBase REG Common and regBase CAN generally colo-
calize with significant disease-associated variants identified

by existing GWASs, especially in the TERT promoter re-
gion (Figure 5A and Supplementary Table S19). To evalu-
ate the ability of our composite models for causal variant
prioritization, we collected 22 unique SNPs in the 5p15.33
TERT region that confer risk of multiple cancers from ten
GWAS fine-mapping results (Supplementary Table S20).
Previous results showed there are many independent causal
SNPs around the TERT genomic region, and many of
them can alter promoter or enhancer activities (62). We re-
vealed that our regBase CAN and regBase REG Common
models acquired relatively higher regional PHRED scores
than other methods (tools with no >25% equal scores
were selected) for collected fine-mapped SNPs (Figure 5B
and Supplementary Table S21). Moreover, compared with
relatively higher correlation among these 22 fine-mapped
SNVs (Supplementary Figure S14), our top ranked vari-
ants (regional PHRED score > 10) of regBase CAN or
regBase REG Common showed very low LD with each
other (Figure 5C), which indicates that our composite mod-
els could distinguish true signal from difficult credible set.
For example, among all 22 prioritized fine-mapped SNPs
by regBase REG Common model, rs2853669 obtained the
largest PHRED score in the whole 5p15.33 TERT region
(Figure 5C). This SNP was previously validated to disrupt
TERT promoter and confer cancer risk by extensive func-
tional experiments (63–65), further suggesting our com-
posite model could efficiently narrow down the potentially
causal variants for following functional validations.

regBase composite models discriminate casual regulatory al-
leles at base-wise resolution

To evaluate the ability of our composite models in distin-
guishing the true casual allele at base-wise level, we per-
formed two independent comparisons using real and sim-
ulated datasets. First, recent studies of saturation muta-
genesis could identify allele-specific effect for all possible
sites of regulatory element (60,66). We selected a previously
reported ALDOB (aldolase B, fructose-bisphosphate) en-
hancer which showed larger mutation effect in the satu-
ration mutagenesis assay (60), and we compared whether
our predicted scores are more correlated with the base-wise
fold changes of experiment than scores from other single
method. Since base-wise evaluation ideally requires non-
missing and unique score at each site, we found that pre-
diction scores of 13 regBase-incorporated tools for 259bp
ALDOB enhancer overall showed high non-missing rate but
some of them exhibited low uniqueness (Figure 6A). To en-
sure a valid base-wise comparison, we excluded tools with
low score uniqueness (<75%) and performed correlation
analysis between prediction scores and true fold changes
of experiment. We showed that regBase PAT model (Pear-
son correlation coefficients, R = 0.4603) outperformed all
qualified prediction scores (Figure 6B) and other compos-
ite models (Supplementary Figure S15), which indicates the
improved ability of our aggregated score in characterizing
base-wise effect for regulatory element. Since ALDOB is a
disease-causal gene of hereditary fructose intolerance (67),
this result may also imply that the top-ranked regBase PAT
model could better distinguish pathogenic regulatory alleles
than other methods.
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Figure 5. Non-coding regulatory variants prioritization at 5p15.33 TERT region. (A) GWAS significant SNPs and regional PHRED-scaled score distri-
bution of our four composite models across 5p15.33 TERT region. LocusZoom plot is generated using the most significant SNP rs10069690 as lead and
the EUR LD structure. (B) Comparison of regional PHRED scores among our composite models and all integrated methods for 22 fine-mapping SNPs at
5p15.33 TERT gene. Tools that obtain more than 25% equal scores in the evaluation are excluded. (C) LocusZoom plots for regional PHRED-scaled score
of 22 fine-mapping SNPs. The top prioritized SNP rs2853669 in regBase REG Common model and the top prioritized SNP rs13172201 in regBase CAN
models are selected as leads.

Second, we collected a recently simulated 55 453 non-
coding SNVs with pathogenic allele never observed in 57
diverse non-human placental mammals (typically evolu-
tionarily forbidden alleles under purifying selection) and
matched non-pathogenic derived alleles with frequencies of
5–15% in human (minimize potential influence by positive
or balancing selection) at same position (13). Upon this
simulated dataset, previous benchmark observed very low
AUC of existing methods and concluded that biological
usefulness of existing prediction scores for discriminating
pathogenic alleles at single variant resolution is extremely
limited (13). These inabilities could be attributed to sev-
eral potential factors such as the false positives/negatives
of simulated pathogenic/neutral alleles, the low unique-
ness or limited discrimination of allelic prediction scores
at same position, etc. As expected, majority of existing
tools frequently predict the same score between simulated
pathogenic and non-pathogenic alleles, and only six pre-
diction tools show score difference for >50% sites (includ-
ing our three composite models, Figure 6C). By prioritizing

the distance of normalized prediction score at each posi-
tion, we evaluated the capability of discriminating variant-
level pathogenicity for six qualified models from a differ-
ent angle. We found our regBase PAT model achieves bet-
ter degree of discrimination for top 1% prioritized variants,
while regBase CAN model works better for top 10% prior-
itized variants as a whole (Figure 6D), which reveals that
our composite models may have higher discriminability in
pathogenic allele detection at single variant resolution. Sim-
ilar results were also observed when using additional simu-
lated datasets by requiring that pathogenic alleles were sam-
pled in different manners (Supplementary Figures S16 and
S17).

DISCUSSION

Evolved methods had been developed to predict and prior-
itize functional non-coding regulatory variants, yet system-
atical integration of existing predicted scores for all possible
substitutions of human SNV was largely deficient. Compar-
ing with a commonly used lightweight resource dbNSFP
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Figure 6. Causal regulatory alleles discrimination at base-wise resolution. (A) The uniqueness of prediction scores of 13 regBase-incorporated tools in the
259 bp ALDOB enhancer. (B) Prediction scores overlaid with expression fold changes (gray bars) for an ALDOB enhancer as determined with saturation
mutagenesis assay. Pearson correlation values for this region are provided in parentheses for each method. (C) The proportion of discriminable scores
among 13 regBase-incorporated tools for 55 453 simulated sites. (D) Degree of discrimination for pathogenic and non-pathogenic alleles of top prioritized
variants among qualified prediction models.

on functional prediction and annotation for human non-
synonymous and splice-site SNVs (68), we compile a com-
prehensive resource that includes 23 different tools to pre-
dict functional non-coding regulatory variants at the whole
genome scale. To maximize the power and completeness
for different types of non-coding regulatory variant pre-
diction, we introduce three independent ensemble models
to score functional, pathogenic or cancer driver regulatory
variants respectively. We demonstrate that our composite
strategies significantly increase the prediction accuracy and
can greatly assist the casual non-coding regulatory variant
discovery at base-wise resolution.

According to the benchmarks of several independent
datasets, we found stable and reasonable performance of
existing tools to predict variant regulatory potential regard-
less of its pathogenicity, such as predicting the probability
of SNV to be a cis-eQTL. This merit could be attributed to
the fact that current models are generally learned from an-
notation features that delineate regulatory signals around
SNV locus, including chromatin accessibility, histone mod-
ifications and transcription factor binding. However, when
evaluating the expression-modulating variants identified by

in vitro reporter assay (60), no methods can achieve satis-
factory performance. Since effective alleles in the MPRA
are only weakly correlated with the associated eQTL effects
(44,57), it may imply that surrounding sequence and local
chromatin state could change the effect size of casual al-
lele. In addition, recent CRISPR screening and GWAS fine
mapping study have uncovered that some regulatory alleles
locating in the unmarked regulatory elements are not asso-
ciated with the conventional histone modifications or chro-
matin accessibility (69,70), which highlights the importance
to exploit the missing but distinct prediction features. Be-
sides, rational classification of pathogenic non-coding reg-
ulatory variant will extend the scopes of genetic diagnosis
and precision medicine. Increasing studies have reported
that pathogenic non-coding regulatory variant can influ-
ence the penetrance and causality of certain diseases (6),
or alter the drug sensitivities (71,72). However, using Clin-
Var or COSMIC non-coding regulatory SNVs (not includ-
ing splicing-altered SNVs) as golden standards (42,73), pre-
vious and our evaluations on pathogenic classification of
regulatory variants showed limited performance (8,11). To
this end, by leveraging the complementarity and unique-
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ness of existing methods, we trained regBase PAT and reg-
Base CAN models to score the probability of variants be-
ing pathogenic or cancer driver in the gene regulation, and
found significant improvements in both cross-validation
and independent benchmark. As the continual discoveries
of non-coding disease-casual regulatory variants and more
associated features, we believe that pathogenic prediction of
non-coding regulatory variants will play a critical role in the
clinical consensus interpretation of whole genome DNA se-
quence.

Highly context-dependent gene regulation can determine
the cellular function of regulatory variants, and many
recent methods are able to interpret regulatory variant
in tissue/cell type-specific and disease-specific conditions
(7,74). Since very few context-specific dataset could be
used to benchmark the performance of tissue/cell type-
specific predictions, researchers usually apply indirect so-
lutions to evaluate the algorithms, such as the enrich-
ment of tissue/cell type-specific epigenetic signals and cis-
regulatory elements (75). Such imperfections and under cal-
ibrated performance could inhibit the broader applications
of context-specific methods, especially for accurately pre-
dicting pathogenic regulatory variant on particular con-
ditions. Despite the importance of systematic integration
and evaluation of tissue/cell type-specific methods, regBase
particularly aggregates and operates context-free prediction
scores from existing tools. Our regBase aggregated scores
together with three ensemble models provide a versatile tool
that prioritizes organismal level non-coding regulatory vari-
ants in a context-free manner, greatly facilitating the inter-
pretation of human non-coding genome in the era of preci-
sion medicine.
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