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Abstract: Hydrogen sulphide (H;S) is produced endogenously via two enzymes dependent
on pyridoxal phosphate (PLP): cystathionine beta-synthase (CBS, EC 4.2.1.22), cystathionase
v-liase (CTH, EC 4.4.1.1), and a third, 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2).
H,S strengthens the defence mechanisms of the gastric mucosal barrier, and plays an important
role in gastroprotection, including the increased resistance to damage caused by various irritants
and non-steroidal anti-inflammatory drugs. The study was conducted to determine the role of HpS
in ulcerated gastric mucosa of rats caused by immobilization in cold water (WRS). The activity
and expression of y-cystathionase, cystathionine (3-synthase, 3-mercaptopyruvate sulfurtransferase,
and rhodanese was compared with healthy mucosa, together with H,S generation, and cysteine,
glutathione, and cystathionine levels. The results showed that the defence mechanism against stress
is associated with stimulation of the production of H;S in the tissue and confirmed the observed
advantageous effect of H»S on healing of gastric ulcers. In case of animals pretreated with exogenous
sources of HpS and NaHS, and some changes observed in the ulcerated gastric mucosa tend to return
to values found in the healthy tissue, a finding that is in accordance with the previously determined
gastroprotective properties of H,S. The results presented in this paper point to the possible role of
rhodanese in H;S production in the gastric mucosa of rats, together with the earlier mentioned three
enzymes, which are all active in this tissue.

Keywords: hydrogen sulphide; gastric mucosa; NaHS; cystathionine-f3-synthase; 3-mercaptopyruvate
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1. Introduction

The gastrointestinal tract is exposed to various substances and factors which often cause gastric
mucosal damage. Long-term exposure to these factors, or to stress, can result in pathological
inflammation, such as erosions, haemorrhages, or ulcers. An important role in maintaining the
integrity of the gastric mucosa is played by hydrogen sulphide (H,S). H;S is produced from L-cysteine
enzymatically in pathways involving three enzymes: cystathionine 3-synthase (CBS, EC 4.2.1.22),
cystathionine y-lyase (CTH, EC 4.4.1.1), and 3-mercaptopyruvate sulfurtransferase (MPST EC 2.8.1.2)
(reviewed in [1]). CBS and CTH are enzymes dependent on pyridoxal phosphate (PLP). The MPST
reaction converts 3-mercaptopyruvate produced from cysteine in a PLP-dependent transamination
reaction (Scheme 1). CBS produces cystathionine and H,S from L-cysteine or homocysteine.
Cystathionine is converted by CTH to L-cysteine, alpha-ketobutyrate, and ammonia. Cysteine can be
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also converted by CTH to pyruvate and H;S. Alternatively, after oxidizing to cystine, it is converted by
CTH to thiocysteine—a sulfane sulfur-containing compound. The third enzyme, 3-mercaptopyruvate
sulfurtransferase, acts in combination with cysteine aminotransferase (CAT, EC 2.6.1.3) (Scheme 1).
Cysteine aminotransferase catalyses L-cysteine transamination to 3-mercaptopyruvate (3MP). MPST
catalyses the transfer of sulphur atom from 3MP to sulphite and the product of this reaction, thiosulfate,
can be further reduced to hydrogen sulphide. Non-enzymatic reduction of sulfane sulphur to hydrogen
sulphide can occur in the presence of glutathione (GSH) [2]. In the mitochondria, hydrogen sulphide is
oxidized to sulphite, which is then converted to thiosulfate (a sulfane sulphur-containing compound)
by thiosulfate sulfurtransferase (thodanese; TST, EC 2.8.1.1) [1,3-5] (Scheme 1). Thus, rhodanese can
be involved in H;,S generation in the mitochondria [6].
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Scheme 1. Enzymatic pathways involved in hydrogen sulphide formation. CBS: cystathionine
B-lyase; CTH: y-cystathionase; MPST: 3-mercaptopyruvate sulfurtransferase; CAT: cysteine
aminotransferase; 3MP: 3-mercaptopyruvate; PA: pyruvate; and PLP: pyridoxal phosphate; CN™:
cyanide; SCN™: thiocyanate.

Stress in the gastrointestinal tract may affect the motility, secretion of glands, the mucous
membrane, or the flow in small blood vessels. Water immersion restraint stress (WRS) of rats are
commonly used for studying stress-induced gastrointestinal erosion and ulcers [7]. Experiments
carried out by Lou et al. [8] on an animal model of stress induced by immersing the animals in water
and their fixation at a low temperature showed that H,S reduced the amount of gastric mucosal
damage and statistically significantly reduced the concentration of lipid peroxidation compared to the
control group exposed only to the stress from the cold and immobilization.

The study was conducted to determine the role of H,S in the inflammatory process associated
with damage to the gastric mucosa of rats caused by stress and immobilization in cold water (WRS).
The investigations involved the comparison of the activity and expression of CTH, CBS, MPST, and
TST in the gastric mucosa of rats not exposed and exposed to WRS. H;,S generation, and cysteine,
glutathione and cystathionine levels were also compared. The results showed an increased production
of HyS as a defence against damage of the gastric mucosa caused by WRS. NaHS, a donor of H,S,
administered to animals before WRS, resulted in the reversion of some investigated parameters to
values found in healthy tissue, thus confirming the gastroprotective properties of H,S.
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2. Results and Discussion

The studies were conducted in the gastric mucosa from healthy rats and rats with ulcers induced
by immersion in cold water (21 °C) for 3.5 h (WRS). Differences observed in hydrogen sulphide
generation (Figure 1) confirm the beneficial effect of H,S in ulcer healing in rats [9].
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Figure 1. The level of hydrogen sulphide after 1 h of incubation with L-cysteine in the experimental
group. The experiments were carried out in gastric mucosa homogenates in three experimental groups
(Intact, water immersion restraint stress (WRS), WRS + NaHS), with L-cysteine as a main endogenous
substrate for the hydrogen sulphide-producing enzymes. The data represent the mean value from two
independent experiments. Statistical analysis was performed using the Student’s ¢-test (* p < 0.05).

2.1. HyS Generation in Gastric Mucosa of Healthy Rats

H,S is produced in the gastric mucosa of healthy rats (Figure 1). In the presence of L-cysteine,
2.32 £ 0.05 nmol of H,S is produced per 1 g of tissue during 1 h. It has also been postulated that
H,S can be generated by degradation of persulfide, i.e., sulfane sulphur may be a precursor to
biological H;S in the presence of thiols [10,11]. The determined level of sulfane sulphur in the gastric
mucosa of healthy rats was 160 == 60 nmol per 1 mg of protein (Figure 2). The GSH level equalled
17.5 £ 1.91 nmol/mg and the level of oxidized glutathione (GSSG)—3.35 + 1.02 nmol/mg. Thus, the
GSH/GSSG concentration ratio was 5.5 (Figure 3).

Table 1 shows the activity and expression of four enzymes involved in both H,S and sulfane
sulphur metabolism (Scheme 1). The results confirm the expression of MPST, rhodanese, CTH
and CBS in the gastric mucosa of healthy rats. The highest specific activity expressed in nmol of
product produced during 1 min per 1 mg of protein was determined for MPST. On the other hand,
non-detectable activity of CBS was found.

Cysteine, cystine, and cystathionine levels were also measured in the gastric mucosa of healthy
rats and are presented in Figure 4. The total cysteine level in the tissue calculated as the sum of pmol
of cysteine/mg and 2x pmol of cystine/mg equalled 1.4 nmol/mg.

On the basis of these results it can be concluded that substrates for MPST, CTH, CBS, and
rhodanese are available in healthy gastric mucosa and the ability to generate H,S was confirmed in
the tissue [4,12]. Mard et al. [4] and Martin et al. [12] reported the expression of CBS and CTH in the
rat gastric mucosa and suggested CTH as the main enzyme responsible for H,S production. Based
on the obtained results, it seems possible that due to the low activity of CBS and CTH, the main H;S
generating pathway in the tissue involves MPST and 3-merceptopiruvate as a substrate (Scheme 1).
The importance of rhodanese and sulfane sulphur can also be considered—the role of this enzyme in
creation of H,S in tissues is the least studied [6].
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Figure 2. The level of sulfane sulphur in the experimental groups. The experiments were carried out
in gastric mucosa homogenates in three experimental group (Intact, WRS, WRS + NaHS). The data
represent the mean value from two independent experiments. Each value is the mean of 8-20 repeats.
Statistical analysis was performed using the Student’s t-test (* p < 0.05).
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Figure 3. The level of reduced (GSH) and oxidized (GSSG) glutathione in the experimental groups.
The experiments were carried out in gastric mucosa homogenates in three experimental group
(Intact, WRS, WRS + NaHS) using the reversed-phase high-performance liquid chromatography
(RP-HPLC) method. The data represent the mean value from two independent experiments. Each value
is the mean of 8-10 repeats. Statistical analysis was performed using the Student’s t-test (* p < 0.05).
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Figure 4. The level of cystathionine, cysteine, and cystine in the experimental group. The experiments
were carried out in gastric mucosa homogenates in three experimental group using the RP-HPLC
method. The data represent the mean value from two independent experiments. Each value is the
mean of 8-10 repeats. Statistical analysis was performed using the Student’s t-test (* p < 0.05).
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Table 1. The activity and expression of MPST, rhodanese, CTH, and CBS in the experimental group.

A MPST Rhodanese CTH CBS
Experimental Group — .
nmol/mg-min-! pmol/mg-min-!
INTACT 2549 +£570 7 1765 +£310 7 0.202+0.09 7 not detected
Expression =
RT-PCR = | S
B-Actin — — [ S
WRS 2915 +£520* 7 2567 £ 779 * 0.75+0.17* ~ 55+1.6
Expression =
RT-PCR d ] B d
p-Actin | s | ]
NaHS + WRS 4067 +890* - 1580 £ 520 * - 0.82+0.34 not detected
Expression
RT-PCR — g = P—
p-Actin [— [—— [—— [—

The experiments were carried out in gastric mucosa homogenates in three experimental group. The data represent
the mean value from two independent experiments. Each value is the mean of 10-15 repeats. Statistical analysis
was performed using the Student’s t-test (* p < 0.05). MPST, TST (rhodanese), CTH, and CBS gene expression levels
were evaluated by RT-PCR (reverse transcription polymerase chain reaction) analysis. One set of representative
results is shown. (3-Actin was used as an internal control.

2.2. Gastric Mucosa from Rats with Ulcers Induced by Water Immersion and Restraint Stress

The gastric mucosa of rats with ulcers induced by immersion in cold water (21 °C) for 3.5 h
had a 2-3-fold higher ability to generate H,S in comparison to the gastric mucosa of healthy rats
(Figure 1). The level of sulfane sulphur was similar to that in the healthy mucosa (Figure 2). The GSH
and GSSG levels were significantly decreased as compared to the healthy mucosa (Figure 3) and
the concentration ratio of GSH/GSSG was also slightly decreased. These results may suggest that a
higher capability of H,S generation by ulcerated mucosa results from an increased specific activity
of the enzymes involved in the process rather than from its increased release from sulfane sulphur
stores. As it is shown in Table 1, no increased expression (messenger RNA (mRNA) levels) of the
investigated enzymes was found in comparison to the healthy mucosa; however, changes in the
specific activity were significant. A three-fold increased activity of CTH and a detectable CBS activity
was noted in the WRS group. Similarly, the activity of MPST and rhodanese were also significantly
increased. Accelerated cystathionine conversion by CTH resulted in its decreased level (Figure 4).
Thus, stimulation of all enzyme-dependent pathways for H,S generation (Scheme 1), in response to
stress resulting from water immersion and restraint, was confirmed. The results show that the defence
mechanism against stress is associated with stimulation of the production of hydrogen sulphide in the
tissue, and confirm the observed advantageous effect of H,S on healing of gastric ulcers [8,13,14].

2.3. NaHS Pretreatment Affects the Formation of Hydrogen Sulphide in Gastric Mucosa of Rats with WRS
Induced Ulcers

The rats administered NaHS, a precursor of hydrogen sulphide, 30 min prior to WRS,
demonstrated a decreased ability of endogenous H,S generation in gastric mucosa as compared
to the gastric mucosa of rats with ulcers induced by immersion in cold water, not pre-administered
with NaHS (Figure 1). Figure 2 shows a significantly higher level of sulfane sulphur in the gastric
mucosa of rats pre-administered NaHS. This suggests that H,S released from NaHS results in an
in-creased level of sulfane sulphur-containing compounds in the tissue [15]. The expression of all the
investigated enzymes is not changed (Table 1) in the mucosa pre-treated with NaHS as compared to
the gastric mucosa with ulcers induced by immersion in cold water in rats not pre-treated with NaHS.
In contrast to the CTH activity, which was not affected by NaHS pre-treatment, the activity of CBS and
rhodanese was found to be decreased and MPST increased.
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Stress caused by immersion in cold water resulted in an increased activity of MPST and CTH in
the ulcerated gastric mucosa, which remained high, independently of pre-treatment with an exogenous
(NaHS) source of H,S, whereas NaHS pre-treatment resulted in a decrease in the activity of CBS and
rhodanese to the level characteristic of the healthy mucosa.

The levels of GSH and GSSG in the case of NaHS pre-treatment were significantly higher in
comparison to the ulcerated mucosa (Figure 3). They were reversed to the levels found in the healthy
mucosa. A similar tendency was observed in the case of the level of cystathionine, cysteine, and cystine
(Figure 4).

Thus, in comparison to the healthy mucosa, the changes observed in the ulcerated gastric mucosa,
such as an increased production of H;S, an increased activity of the investigated enzymes, a decreased
level of GSH, GSSG, and cystathionine, revert back to the levels/activities similar to these found in the
healthy mucosa. These results confirm the beneficial effect of NaHS, as a donor of H;S, in changing
some biochemical parameters (except MPST and CTH activities and the level of cysteine), back to the
values found in the healthy tissue. This is in accordance with the previously mentioned gastroprotective
effect of endogenous H,S and HjS released from the donors (NaHS) [8,13,14]. The mechanism by
which HjS protects the gastric mucosa may involve an increase in gastric flow—the exposure of rats to
3.5 h of WRS causes gastric lesions and a significantly decreased gastric blood flow [16]. The results
presented in this paper show that the defence against WRS-induced gastric mucosal lesions includes
the acceleration of endogenous H,S formation. In case of pre-administration of an exogenous source
of H,S, the changes observed in the gastric mucosa tend to maintain the activities of some mucosal
enzymes involved in H,S generation and the levels of their substrates at levels characteristic to the
healthy mucosa.

3. Material and Methods

3.1. Chemicals

L-Glutathione reduced, D,L-cystathionine (CTN), D,L-homoserine (HSer), 1-fluoro-24-
dinitrobenzene (DNFB), bathophenanthroline-disulfonic acid disodium salt (BPDS), acetonitrile, PLP,
-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NADH), L-lactic dehydrogenase
(LDH), 3-mercaptopyruvate acid sodium salt, D,L-dithiothreitol, (DTT), N-ethylmaleimide (NEM),
DL-propargylglycine (PPG), sodium dihydrogen phosphate dihydrate pure, sodium sulphite,
chloroform, isopropanol, agarose, sodium hydrosulphide hydrate, sodium chloride, Folin-Ciocalteu’s
phenol reagent, iron (III) nitrate nonahydrate, sodium thiosulfate pentahydrate, sodium carbonate,
N,N-dimethyl-p-phenylenediamine sulphate salt, and sodium thiosulfate were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Trifluoroacetic acid (TFA) and 2-mercaptoethanol were purchased
from Fluka Chemie GmbH (Buchs, Switzerland). Ethanol and 70% perchloric acid (PCA), 38%
formaldehyde, 65% nitric acid, 38% hydrochloric acid, ammonia solution 25% pure, potassium
sodium tartrate tetrahydrate, copper sulphate pentahydrate, potassium dihydrogen phosphate,
ferric chloride, zinc acetate dehydrate pure, trichloroacetic acid (TCA), and sodium hydroxide were
from Polskie Odczynniki Chemiczne S.A. (Gliwice, Poland). N®-methyllysine was obtained from
Bachem (Bubendorf, Switzerland). Trizol, ethidium bromide and EDTA (Ethylenediaminetetraacetic
acid)—disodium salt dihydrate were obtained from Lab-Empire (Rzeszow, Poland). Potassium cyanide
was from Merck (Darmstadt, Germany). Reverse transcriptase M-MuLV was obtained from Promega
(Madison, WI, USA). Polymerase DNA Dream Taq™, Gene Ruler 100 bp DNA Ladder, Oligo (dT)g
primer and Deoxynucleotide (dNTP) Solution Mix were obtained from Abo (Gdarisk, Poland).

3.2. Animals

Male Wistar rats (220-300 g) were used in the experiments. They were deprived of food for
24 h with free access to tap water before the experiments. After the experiment, the rats were kept
under anesthesia under pentobarbital (60 mg/kg, intraperitoneally (i.p.)) and the stomachs were
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removed. The stomach was slit along the curvatura major. Mucosal specimens were scraped off
using a slide glass and immediately frozen in liquid nitrogen and stored at —80 °C until analysis as
described in Magierowska et al. [17]. All of the experiments were conducted in cooperation with the
Department of Physiology, Faculty of Medicine at the Jagiellonian University and were approved by
the Institutional Animal Care and Use Committee of the Jagiellonian University Medical College in
Cracow (No.: 68/2014) and performed in accordance with the Helsinki Declaration.

3.3. Experimental Group

Stress lesions were caused by immobilizing the rats in individual Bollman’s cages and immersing
the animals in cold water (21 °C) for 3.5 h as described in previous studies [18]. The experiment was
carried out in three experimental groups: (1) the control group (intact); (2) vehicle (saline)-pre-treated
30 min prior to 3.5 h of water immersion and restraint stress (WRS); or (3) NaHS (HS donor)
administered i.p. at a dose of 5 mg/kg (Scheme 2).

3.4. Tissue Homogenates

For determinations of the enzyme activities (CTH, MPST, CBS, rhodanese) and the level of sulfane
sulphur, the gastric mucosa samples were weighed and homogenized in ice-cold 0.1 M phosphate
buffer pH 7.5 (1 g/4 mL) for 1 min at 8000-9500 rpm using a blender homogenizer. The homogenates
were centrifuged at 1600 g for 10 min. After centrifugation, the supernatants were used for the
determination of the enzyme activities (CTH, MPST, CBS rhodanese) and the level of sulfane sulphur
and protein content.

I group: II group: k III group:
INTACT WRS NaHS + WRS
NaHS -5 mg/kg
o
control group Exposulie. of rats_ to NaHS (H,S donor)
stn:ess by e on administered (i.p.) at 30
in cold water in min prior to 3.5h of WRS
Bollman’s cages for
35h

Scheme 2. Experimental group. i.p.: intraperitoneally.

For the reversed-phase high-performance liquid chromatography (RP-HPLC) the tissues were
weighed and homogenized at 8000-9500 rpm in ice-cold 10% PCA/1 mM BPDS (1 g/3 mL)
(1 g tissue/3 mL solution). The homogenates were centrifuged for 10 min at 4 °C at 1400x g.
The supernatants were used for assays immediately or stored at —80 °C until HPLC analysis.
The tissues were homogenized using an Ultra-Turrax T 25 (Janke and Kunkel IKA-Labortechnik
Company, Staufen, Germany). The homogenates were centrifuged using a MPW 375 centrifuge
(MPW MED Instruments, Warszawa, Poland) or a Hettich Universal 16 centrifuge (Hettich AG,
Kloten, Switzerland).



Molecules 2017, 22, 530 8 of 12

3.5. RP-HPLC

The RP-HPLC method of Dominick et al. [19] with modifications [20-22] was used for the detection
and quantitation of the levels of direct and non-related products of the CBS- and CTH-catalysed
reactions, such as cystathionine, reduced (GSH) and oxidized (GSSG) glutathione, cysteine, and cystine.

3.6. Determination of HyS in the Homogenate of the Gastric Mucosa

The gastric mucosa tissue samples were homogenized at a ratio of 1/8 with 50 mM phosphate
buffer, pH 8.0. Then, the homogenates were incubated for 5 min at 37 °C on ice. Before the experiment,
50 mL tissue culture flasks with unventilated caps were covered with a layer of agarose mixed with 1%
of zinc acetate and 3 M sodium hydroxide as described by Karth et al. [23]. On the opposite side of
the layer of agarose, 5000 pL of a reaction mixture containing 4500 uL. homogenate, 250 pL. 2 mM of
pyridoxal phosphate, and 250 pL of 10 mM L-cysteine (final concentration) was added. The caps of the
flasks were secured with parafilm. The incubation was initiated by the transfer of the bottles with ice
to 37 °C. After the 90-min incubation, 2500 uL 50% TCA was added to the reaction mixture. Another
60 min was allowed for the trapping of evolved H,S by the layer of agarose. After incubation the
reaction mixture was removed from the flasks, the flasks were rotated through 180 °C and the reaction
was conducted on the layer of agarose by adding 2 mL of 40 mM N,N-dimethyl-p-phenylenediamine
sulphate salt (DMPPDA) and subsequently incubating for 10 min at room temperature, followed by
addition of 400 pL 1% ferric chloride and re-incubation for 20 min at room temperature (Scheme 3).
As a result of the reaction, methylene blue was formed, which was spectrophotometrically determined
at 670 nm. The standard curve was linear over the concentration range of 0-250 uM with a correlation
coefficient of 0.994.

agarose layer
Zn(CH,C00); + NaOH

-cysteine + + homogenate

incubationfor 1 h at 37°C

m

rotation 180°

D_/ H,S+ DMPPDA + FeCl; = Methylene blue

\ H agarose layer
Zn(CH,CO0), + NaOH

I Measurement the

/ absorbance at 670 nm

Scheme 3. Determination of H,S in the homogenate of the gastric mucosa according to Kartha et al. [23].
Details are described in Materials and Methods. DMPPDA: N,N-dimethyl-p-phenylenediamine
sulphate salt.

3.7. Enzymes Assay in the Gastric Mucosa Homogenates

The MPST activity was assayed according to the method of Valentine and Frankelfeld [24],
following a procedure described in our earlier paper [25]. The incubation mixture contained in a
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final volume of 500 pL: 250 uL, 0.12 M sodium phosphate buffer, pH 8.0, 50 pL, 0.5 M sodium sulfite,
50 pL 0.15 M dithiothreitol, 50 uL homogenates, 50 uL HyO, and 50 uL 0.1 M 3-mercaptopyruvate
acid sodium salt. The mixture was incubated for 15 min. To stop the reaction, 250 uL of 1.2 M PCA
was added. The samples were centrifuged at 1600x g for 5 min, and 100 pL of supernatant was
transferred to 1350 uL mixture that contained: 1200 uL, 0.12 M sodium phosphate buffer, pH 8.0,
100 uL 0.1 M N-ethylmaleimide, and 50 uL NADH 5 mg/mL. After equilibration at 37 °C, 2.5 uL of
L-lactic dehydrogenase (7 IU) were added, and the decrease in absorbance at 340 nm was measured.
The enzyme activity was expressed as nmol of pyruvate produced during 1 min incubation at 37 °C
per 1 mg of protein.

The y-cystathionase activity was determined by the Matsuo and Greenberg’s method [26] with
modifications described by Czubak et al. [27]. The incubation mixture contained: 25 uL. 1.3 mM PLP,
25 uL. 13 mM EDTA, 250 uL 45 mM cystathionine solution in 0.1 M phosphate buffer, pH 7.5 (2.5 mg
cystathionine per sample), 75 uL. homogenates, and 0.1 M phosphate buffer, pH 7.5 containing 0.05 mM
2-mercaptoethanol, in a final volume of 650 pL. The reaction was stopped after 15 min of incubation
at 37 °C by placing 125 uL incubation mixture in 25 pL 10% PCA. The samples were centrifuged at
1600 x g for 10 min, and 25 pL of supernatant was transferred to 625 uL 0.194 mM NADH solution and
kept at 37 °C. The control samples, without 45 mM cystathionine, were prepared in the same way as
the examined samples. After 10 s of the measurement (absorbance at 340 nm), 25 pL (9.06 IU) L-lactic
dehydrogenase were added and the measurement was continued to 180 s. The difference between
the initial value of absorbance (before addition of LDH) and the lowest value (after adding LDH)
corresponded to the amount of x-ketobutyrate formed in the course of the y-cystathionase reaction.
The y-cystathionase activity is expressed as nmol of a-ketobutyrate formed.

Sulfane sulphur was determined by the method of Wood [28], based on cold cyanolysis and
colorimetric detection of the ferric thiocyanate complex ion. Incubation mixtures in a final volume
880 pL contained: 20 uL 1 M ammonia solution, 20 uL. homogenate, 740 uL. H,O, and 100 uL 0.5 M
sodium cyanide. The incubation was performed for 45 min at room temperature. After incubation,
thiocyanate was estimated calorimetrically at 460 nm after the addition of 20 puL 38% formaldehyde
and 40 pL ferric nitrate reagent. The sulfane sulphur level is expressed as nmol of SCN™ (thiocyanate)
produced per 1 mg of protein during 1 min incubation at 37 °C per 1 mg of protein.

The activity of CBS was examined in homogenates in the presence of D,L-homoserine
(HSer) as a substrate. After 15 min of the incubation at 37 °C, the methods described in
Bronowicka-Adamska et al. [21] were used. The level of cystathionine was determined using the
HPLC method described by Bronowicka-Adamska et al. [20]. The CBS activity is expressed as pmol of
cystathionine formed during 1 min incubation at 37 °C per 1 mg of protein.

Rhodanese in the gastric mucosa homogenates was assayed according to Sorbo [29] with
modifications. Incubation mixtures in a final volume 500 uL. contained: 200 uL, 0.125 M sodium
thiosulfate, 100 pL, 0.2 M potassium phosphate (KH,PO,), 100 uL, 0.25 M sodium cyanide, and 100 uL
homogenate. The incubation was performed during 5 min at 20 °C, after which thiocyanate was
estimated colorimetrically at 460 nm after the addition of 20 pL of 38% formaldehyde and 40 uL ferric
nitrate reagent. The enzyme units are defined as umol of SCN™ generated per minute per 1 mg of
protein at 20 °C under the prescribed assay conditions.

The protein concentration was determined by the method of Lowry et al. [30] using crystalline
bovine serum albumin as a standard.

3.8. Expression of MPST, CTH, and CBS in the Gastric Mucosa Homogenates

3.8.1. RNA Extraction

Total RNA was extracted using TRIzol (Lab-Empire S.A (Rzeszow, Poland)), according to
the protocol provided by the manufacturer. The quality of the RNA samples was determined by
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spectrophotometric analysis (Ag0/Azgp) and electrophoresis in 2.5% agarose gel followed by staining
with ethidium bromide.

3.8.2. Reverse Transcription of RNA

Total RNA from the cell samples was reverse-transcribed using a First-Stand complementary
DNA (cDNA) synthesis kit according to the manufacturer instructions (Promega, Madison, WI,
USA). For reverse transcription (RT), 3 ug of the total RNA was mixed with 1 pL of Oligo (dT);5
(0.5 ng/reaction) and nuclease-free water and heated in a 70 °C heat block for five minutes. After
pre-incubation, the reverse transcription reaction mix containing: 4 pL. GoScript 5x reaction buffer
(Promega, Madison, W1, USA), 3uL MgCl, (final concentration 1.5-5.0 mM), 1 uL dNTPs (10 mM),
1 uL Recombinant RNases Ribonuclease Inhibitor (20 U/uL), and 1 pL GoScript Reverse Transcriptase
was prepared.

3.8.3. cDNA Synthesis and RT-PCR Analysis

Expressions of MPST, CTH, CBS, rhodanese, and 3-actin were analysed by RT-PCR. Amplification
of cDNA samples was run in a 12.5 pL reaction volume containing 1 pL of synthesized cDNA, 0.2 uM
of each of the gene-specific primer pair, 0.04 U/uL DNA polymerase in 10 mM buffer Tris-HCI pH 8.8,
0.2 mM each of dNTPs and nuclease-free water. The temperature profile of RT-PCR amplification
for MPST consisted of activation of Taqg DNA polymerase (Abo, Gdansk, Poland) at 94 °C for 5 min,
denaturation of cDNA at 95 °C for 30 s, primer annealing at 54 °C for 30 s, elongation at 72 °C for
1 min for the following 28 cycles, and finishing by the extension step for 8 min. For the CTH gene, after
an initial 5 min at 94 °C denaturation, amplification was performed under the following conditions:
95 °C for 30's, 56 °C for 30 s, and 72 °C for 2 min for 36 cycles, with a final incubation at 72 °C for 8 min.
For the CBS gene [4], after an initial 10 min of denaturation at 95 °C, amplification was performed
under the following conditions: 94 °C for 20 s, 60 °C for 1 min, and 72 °C for 1 min for 40 cycles, with
a final incubation at 72 °C for 5 min. For the B-actin gene, after an initial 5 min denaturation at 94 °C,
amplification was performed under the following conditions: 94 °C for 30 s, 53.6 °C for 30 s, and 72 °C
for 2 min for 28 cycles, with a final incubation at 72 °C for 8 min. For the rhodanese gene, after an
initial 5 min denaturation at 94 °C, amplification was performed under the following conditions: 94 °C
for 30's, 55.6 °C for 30 s, and 72 °C for 2 min for 38 cycles, with a final incubation at 72 °C for 8 min.
The specific primers (Oligo.pl, Warszawa, Poland) were used (Figure 5). The PCR reaction products
were separated electrophoretically in a 2.5% agarose gel, visualized with ethidium bromide, directly
visualized under ultraviolet (UV) light, and photographed.

GENE PRIMER PCR product size  Annealing temperature

F: 5 TCCTGGGTGGAGTGGTACAT 3'
by 33 544
el R: 5" GTGAAACAAGCTAGGTGGGC 37 iy WL

F: 5 CTGTGAAGGGCTATCGCTGC 3 Vs i
s R: 5 CTGGCATTGCGGTACTGGTC3’ 2050p 60°C

F: 5" TTTGTATACAGCCGCTCTGGA 3 .
IR R 5 ACAAGCTTGGTCTGTGGTGT 3° 290 bp 54°C

F: 5 CTCTATCGAGCCGCTGGTCTC 3
2 556°
TR R: 5" TCGTAAGGCGAAGTCGTGTC 3° 00 s
F: 5" ACCCGCGAGTACAACCTTCTT 3

R 5" GCCGTGTTCAATGGGGTACT 3°

B-ACTIN 285bp 53.6°C

Figure 5. Forward and reverse primers used in the RT-PCR reaction to assess messenger RNA (mRINA)
expression for MPST, CBS, CTH, TST, and (3-actin.
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3.9. Statistical Analysis

All results are expressed as means = SEM (standard error of the mean). The significance of the
differences between the controls and the investigated samples was calculated using the Student’s t-test
(p < 0.05) (MS Excel 2013). Each experiment was repeated a minimum of three times.

4. Conclusions

Endogenous synthesis of H;,S is stimulated in the gastric mucosa as a compensatory mechanism
to damage induced by WRS. Hydrogen sulphide is produced in the gastric mucosa in response to
injury and acts to promote healing when its precursor, NaHS, is administered prior to WRS. The results
suggest that HyS-releasing drugs could be employed to accelerate healing of gastric ulcers.
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