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SUMMARY

We propose random-effects models to summarize and quantify the accuracy of the diagnosis of multiple
lesions on a single image without assuming independence between lesions. The number of false-positive
lesions was assumed to be distributed as a Poisson mixture, and the proportion of true-positive lesions was
assumed to be distributed as a binomial mixture. We considered univariate and bivariate, both parametric
and nonparametric mixture models. We applied our tools to simulated data and data of a study assessing
diagnostic accuracy of virtual colonography with computed tomography in 200 patients suspected of
having one or more polyps.
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1. INTRODUCTION

Diagnostic accuracy is usually summarized with the true-positive rate (TPR) or sensitivity and the false-
positive rate (FPR) or one minus specificity. Some diagnostic tasks are more complicated than simple
detection of a single occurrence of the (abnormal) condition, and in such cases calculating TPR and FPR
may prove difficult. In this paper, we will discuss as an example the diagnostic accuracy of virtual colono-
graphy in locating colonic polyps and documenting their size or severity. Accurate sensitive diagnosis is
essential as polyps may develop into tumor tissue, but diagnosis must also be sufficiently specific to min-
imize invasive procedures. Patients often have more than one polyp, any of which may be seen or missed.
Other examples of such a diagnostic situation are occurrence of multiple lesions using mammography or
multiple infarcts using computed tomography (CT) or magnetic resonance imaging in a patient suspected
of having a stroke.
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Zhou and others (2002, p. 43) describe several methods of summarizing diagnostic accuracy for such
data. Often seen is the so called “per-lesion” approach. Sensitivity is calculated as the fraction of correctly
identified polyps. It seems clinically meaningful to assess sensitivity in the case of polyps because of the
importance to diagnose each polyp. Specificity is, however, difficult to define in this case because there
is an almost infinite number of locations in the colon where there could be a polyp. Zhou and others
(2002) suggested a simple way of addressing this difficulty by dividing the image (colon in this case)
into segments and calculating sensitivity and specificity per segment. Unfortunately, however, it is not
always obvious how to define segments. The approach also weighs equally the segments with one or
many true- or false-positive (TP or FP) polyps, whereas, intuitively, a segment with many polyps contains
more information than a segment with only one. Egan and Schulman (1961), Bunch and others (1978),
and Chakraborty and Winder (1990) developed the “free-response receiver-operator-characteristic (ROC)
curve (FROC)” to analyze multiple lesions. The y-axis of the FROC curve is the probability of both
detecting and correctly locating the lesions; the x-axis is the average number of FPs per patient. The
summary measure of the FROC curve may be interpreted as the average fraction of lesions detected on an
image before an observer makes an FP error. Unfortunately, the approach assumes independence between
multiple findings on the same image of a patient.

In this paper, we propose random-effects models to summarize and quantify the accuracy of the di-
agnosis of multiple lesions on a single image without the independence assumption. In Section 2, we
describe the statistical model underlying our approach. In section 4, we apply our tool to the data of a
study assessing diagnostic accuracy of virtual colonography with CT in 200 patients suspected of having
one or more polyps.

2. METHODS

We consider the situation where N patients undergo a diagnostic test to detect and localize possibly
multiple lesions. For each patient, a gold standard is required such that for each lesion identified by the
diagnostic test, it is known whether it is an FP or a TP diagnosis.

2.1 Specificity

Since the exact locations of the FPs are of lesser importance, we consider the number of FP lesions in
patient i , Xi , say, and assume that Xi follows the Poisson distribution with expectation µ. The specificity
is then defined as the probability of zero FP lesions in a patient: Pr(X = 0|µ) = e−µ. Given a sample
of observations x1, . . . , xN , the maximum likelihood estimator of the parameter µ is µ̂ = ∑

i xi/N

with standard error se(µ̂) =
√∑

i xi/N 2, and the 95% confidence interval of the specificity is given by
exp(−µ̂ ± 1.96 × se(µ̂)) (Johnson and others, 1992).

The assumption of a common FPR across patients is often too restrictive, and often the variance of the
number of FPs is larger than the mean, thus violating the Poisson assumption. A common method to relax
this independence assumption is to assume that the intensity parameter varies randomly between patients,
according to a distribution with density g(µ|θ). Specificity is now defined as

Pr(X = 0) =
∫ ∞

0
e−µg(µ|θ)dµ, (2.1)

a weighted average of specificity values across patients with weights given by g(µ|θ).
The density function g(·) is unknown and must be estimated from the data. The most commonly used

approach is to assume a gamma distribution g(µ|a, b). The integral has a closed-form solution, and the
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specificity is then

Pr(X = 0) =
∫ ∞

0
e−µg(µ|(a, b))dµ =

(
b

b + 1

)−a

. (2.2)

Maximum likelihood estimates of (a, b) are easy to calculate (see, e.g. Johnson and others, 1997) but
have no simple equation. It is also awkward to estimate the 95% confidence interval of the specificity, but
a nonparametric bootstrap procedure performs well.

Other parametric functions for g(·) can be used (e.g. a log-normal distribution), but in general there is
little evidence to justify any particular choice. One might therefore prefer to specify a fully nonparametric
distribution for g(·) (Carlin and Louis, 1996, p. 51). Laird (1978) proved that the nonparametric maximum
likelihood estimate of g(·) is a discrete distribution with at most N mass points. Assume that g(·) has
mass points θ = (θ1, . . . , θJ ) with probabilities w = (w1, . . . , wJ ), where J � N , then the likelihood of
observations x1, x2,. . . , xN is given by

L(x1, . . . , xN |·) =
N∏

i=1

J∑
j=1

w j
e−θ j (θ j )

xi

xi !
. (2.3)

Iteratively, this likelihood is easily maximized as a function of θ and w using an expectation-maximization
(EM) algorithm (Carlin and Louis, 1996). Given maximum likelihood estimates of θ̂ and ŵ, specificity
is estimated as Pr(X = 0) = ∑

j ŵ j e−θ̂ j . In this case, calculating the 95% confidence interval is very
awkward too, but we have found that a nonparametric bootstrap approach works well.

2.2 Sensitivity

In contrast to FPs, the exact locations of the TP lesions are of primary importance, and we therefore
consider the outcome of the diagnostic test for each lesion in patient i separately. Define Yi j as the result
of the diagnostic test at the location of the j th lesion in patient i : Yi j = 1 when the diagnostic test is
positive and Yi j = 0 if it is negative.

Sensitivity is defined as the probability of a TP test result. As with the specificity, we allow sensitivity
γi to vary between patients. Given γi , the outcomes of the diagnostic testing in patient i at locations
j and l, yi j and yil , are assumed to be independent for all j, l. The likelihood of the test results of ki

lesions, yi1, . . . , yiki , therefore equals L(yi |γi ) = ∏ki
j γ

yi j
i (1 − γi )

1−yi j . When ki is small, the maximum
likelihood estimate of γi is very unstable. For this reason, we again assume that in the population of
patients γ follows a distribution with density g(γ |θ). A common choice for g(·) is the beta distribution
with parameters θ = (a, b) (Ryea and others, 2007). The likelihood of the observations yi given θ =
(a, b) is L(yi |(a, b)) = ∫ 1

0 L(yi |γ )g(γ |(a, b))dγ . Again the beta distribution is a convenient choice
because the integral in the likelihood has a closed-form solution.

Again there is usually little evidence to prefer a particular distribution, and therefore one might again
prefer a nonparametric specification. As in case of the specificity, we use a discrete distribution with J
classes with mass points θ = (θ1, . . . , θJ ) and probabilities w = (w1, . . . , wJ ), where J � N . The
likelihood of the diagnostic testing of the ki lesions in patient i is given by

Li
(
y1, . . . , yki |·

) =
J∑

j=1

ki∏
l=1

w j

(
exp(θ j )

1 + exp(θ j )

)yil
(

1 − exp(θ j )

1 + exp(θ j )

)1−yil

. (2.4)

This likelihood is also iteratively maximized as a function of θ and w using an EM algorithm.
Given the maximum likelihood estimates θ̂ and ŵ, the (per-lesion) sensitivity is estimated as Pr(Y =

1) = ∑
j ŵ j exp(θ̂ j )/(1 + exp(θ̂ j )). Again we use a bootstrap approach to estimate the 95% confidence
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interval. The probability that there is at least one TP lesion in a patient (the “per-patient sensitivity”)
equals 1 − ∑

j ŵ j (1 + exp(θ̂ j ))
−k , where k is the (mean) number of lesions in the patients.

2.3 A generalization and an alternative

The model can be generalized in several ways. First, both specificity and sensitivity may depend on
observed patient characteristics. Including this dependence in the model may explain the variation between
patients. For the FP lesions, the logarithm of the Poisson intensity parameter µi in patient i may depend
on a linear fashion of a set of covariate values observed in i : log µi = β0 + β1zi1 + · · · + ei , where β is a
regression parameter and ei is a residual component. The lesion-specific sensitivity of patient i may also
be modeled as a function of covariates, logit(γi ) = β0 + β1zi1 + · · · + ei .

Instead of modeling the correlations between (false) lesions in the same patient with a random effect,
these correlations may be ignored. The analysis then boils down to simple Poisson and binomial regres-
sions, and the associated standard errors can be corrected with a generalized estimation equation approach
(Martus and others, 2004).

2.4 Bivariate relation between specificity and sensitivity

Multiple-lesion data allow estimation of the relation between the per-patient specificity and the per-lesion
sensitivity, “even with only one cutpoint”. The relation can be directly modeled in a bivariate random-
effects model in order to obtain the ROC curve. In such a model, the Poisson parameter υi = log(µi )
and the logit-transformed parameter ξi = logit(γi ) are assumed to have a bivariate distribution g(υ, ξ)
across patients, where it helps to model ξi as ξi = a +bυi + εi . An obvious choice for g(·) is the bivariate

normal with expectations ξ̄ = a + b × ῡ and covariance matrix ��� =
(

σ 2
υ bσ 2

υ

bσ 2
υ b2σ 2

υ +σ 2
ε

)
. The likelihood of

the observations of patient i
(
xi , yi1, . . . , yiki

)
is

L
(
xi , yi1, . . . , yiki

) =
∫ ∞

−∞

∫ ∞

−∞
e−eυi exi υi

xi !

exp
( ∑ki

j=1 yi jξi
)

∏ki
j=1(1 + exp(ξi ))

g(υ)g(ε)dυ dε. (2.5)

This model can be estimated in standard software such as SAS proc NLMIXED, and a Bayesian version
is easily implemented in Winbugs.

Instead of the bivariate normal distribution, a nonparametric distribution can be used which is defined
by a 2-dimensional grid of points θrs with weights wrs (r = 1, . . . , R; s = 1, . . . , S). The likelihood of
patient i is then

L
(
xi , yi1, . . . , yiki

) =
R∑

r=1

S∑
s=1

wrs
e−eθr exi θr

xi !

exp
( ∑ki

j=1 yi jθs
)

∏ki
j=1(1 + exp(θs))

. (2.6)

This model is not readily available in standard software, but the log-likelihood is easily maximized with
an EM algorithm.

3. SIMULATION

We simulated data somewhat according to the example of diagnosing colon polyps (lesions) with virtual
colonography, which we will discuss in Section 4. We performed several simulations, and we will show
an extreme and slightly pathological example. For ease of the simulation, lesions (and nonlesions) were
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assumed to be characterized by one variable only, which we might call the lesion thickness, and that each
patient consisted of 50 locations. Data for 50 patients at the 50 locations were simulated as follows. First,
the number of true lesions per patient was sampled from the Poisson distribution with expectation of 5
lesions. The thickness of each lesion per patient was sampled from a normal distribution; the means and
variances of this distribution varied between patients, and these patient-specific parameters were sampled
themselves from a normal distribution (mean) and a gamma distribution (variance) with fixed parameters.
The thickness variable at the nonlesion locations was also sampled from a normal distribution with means
and variances sampled from normal and gamma distributions. Finally, a threshold was chosen such that
the overall number of identified true lesions was a fixed number (30%, 50%, or 70%), and afterwards, the
number of FP lesions and the number of TP lesions were counted for each patient.

We discuss results from one simulation with a threshold chosen such that 50% of all lesions were
identified. In the 50 patients, the number of lesions varied between 0 (in 1 patient) and 9 with a mean of
4.8 and standard deviation 2.0. There were 1124 FP lesions, and the number of FP lesions varied between
0 and 49 per patient with mean 22.48 and variance 388.87, see Figure 1. The histogram seems to consist
of 3 subgroups of patients with few, moderate, or large numbers of FP lesions. The gamma and normal
distributions for the random effect will probably not fit well for these data, and this example will therefore
favor the nonparametric approach.

There were 14 patients without FP lesions, and the specificity could therefore be calculated as 14/50 =
28%. According to the simple Poisson model (log-likelihood 	 ∝ −644.97), the intensity µ is estimated
as 22.48 (se = 0.67) and the specificity is therefore e−22.48 ≈0%, which is clearly much too low. The
generalized estimation equation (GEE) approach, implemented in SAS proc genmod, does not correct
this bias but does increase the standard error of the estimate to 2.76. The parameters of the gamma–
Poisson model (log-likelihood 	 ∝ −198.38) were estimated as log(a) = −0.84 and log(b) = −3.95
yielding an intensity estimate of elog(a)−log(b) = 22.42 and specificity 18%, which is still too low. The
log-normal–Poisson mixture model had a similar estimate of the specificity (15%). The nonparametric
Poisson mixture (log-likelihood 	 ∝ −164.63) resulted in a mixture of 4 patient subgroups: patients with
an intensity of 0.01 FPs (weight w = 0.30), patients with about 7 FPs (w = 0.13), patients with about 18

Fig. 1. Histogram of the number of FP lesions per patient in the simulated data.
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FPs (w = 0.11), and patients with about 42 FPs (w = 0.46). The estimated specificity is 28% with 95%
confidence interval (17–42%). Note that this estimate corresponds with the ratio of number of patients
without FPs to the total number of patients. This correspondence was seen in almost all simulations.

A total of 234 lesions were present in 49 out of the 50 simulated patients, and the number varied
between 1 and 9 with mean 4.8 (standard deviation 2.0). By choosing our threshold, 117 lesions were
identified yielding lesion sensitivity of 117/234 = 50%. The log-likelihood of this binomial model was
	 = −130.21. There were 32 patients in whom at least one lesion was identified (32/49 = 65%). For a
patient with 4 lesions, the probability of observing at least one lesion is therefore 1 − (1 − 0.50)4 = 94%.
The observed proportion of identified lesions per patient varied between 0 and 1 with mean 0.49 and
standard deviation 0.44. This variation cannot be explained by sampling only since the beta-binomial
model (	 = −74.15) and the logit-normal–binomial model fitted better than the binomial model. The
mean lesion sensitivity was 50% in both models, but the probability of observing at least one lesion in
a patient with 4 lesions is much smaller: about 65%. The nonparametric binomial mixture model had
log-likelihood 	 = −76.29 and yielded 3 subgroups of patients with lesion sensitivity of 9%, 47%, and
90% and weights 45%, 11%, and 44%, respectively. The probability of observing at least one lesion in a
patient with 4 lesions was 65%. Note the close correspondence between the “estimated” probabilities of
the random-effect models of identifying at least one lesion in a patient with the “observed” rate of patients
with at least one lesion identified. Again this was observed in almost all simulations.

The log-likelihood of the nonparametric bivariate model was −234.17, which was slightly larger than
the sum of the 2 likelihoods of the 2 nonparametric mixture models (−164.63) + (−76.29) = −240.92.
The correlation between the logit-transformed sensitivity and the Poisson parameter was estimated
as −0.20.

4. APPLICATION: THE VIRTUAL COLONOGRAPHY STUDY

We now apply our methods to data from a study to evaluate the test characteristics of CT colonography
at different levels of radiation dose. In this study, 200 patients at risk for colorectal cancer were evalu-
ated for the presence of one or more polyps. Colonoscopy was used as the reference standard. Herein
only lesions >6 mm will be considered. Colonographic lesions were identified by 3D display mode, and
the lesion was defined as a TP if it was located in the same segment and had similar size and appearance
to a lesion identified by colonoscopy. Detailed information can be found in van Gelder and others (2004).

Of the 200 patients, there were 174 patients without polyps and 26 patients with between 1 and 7
lesions; in total there were 44 lesions. Of these 44 lesions, there were 32 identified by virtual colonography
(70%); the percentage lesions identified by virtual colonography varied in the 26 patients between 0% and
100% (mean 60%, standard deviation 47%).

FP lesions were observed in 68 patients. There were 93 FP lesions in total, and the number of FP
lesions varied between 1 and 3; the mean was 0.5 and variance 0.6. Note that the variance is about the
same as the mean which points to the fact that the differences between patients in number of FPs are likely
due to chance only and not due to systematic differences between patients.

4.1 Specificity

The different estimates of the specificity are given in Table 1. Of the 174 patients without lesions, there
were 118 without FP lesions, and hence, the specificity could be defined as 116/174 = 66%. Alterna-
tively, assuming that the number of FP lesions follows a Poisson distribution with the same intensity µ for
all patients, including the 26 with lesions, the maximum likelihood estimate is the mean of the FP lesions:
µ̂ = 0.47, with standard error se = √

µ̂/n = 0.048. The specificity is then estimated as e−0.47 = 63%
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Table 1. Results of the different models to estimate patient-specific specificity values

Model Log-likelihood AIC Specificity

Poisson −183.97 369.95 0.63 (0.57–0.69)
Poisson + GEE — — 0.63 (0.56–0.70)
Gamma–Poisson mixture −182.17 368.34 0.66 (0.59–0.74)
Nonparametric Poisson mixture −181.93 369.86 0.66 (0.58–0.73)

Table 2. Results of the different models to estimate lesion-specific sensitivity values

Model Log-likelihood AIC Lesion sensitivity

Binomial −24.40 50.79 0.73 (0.58–0.84)
Binomial + GEE — — 0.73 (0.57–0.85)
Beta-binomial −20.99 45.98 0.63 (0.50–0.77)
Nonparametric binomial mixture −20.89 51.78 0.65 (0.47–0.79)

with 95% confidence interval e−0.47±1.96×0.048, that is, 57–69%. Using a GEE approach, assuming ex-
changeable covariance between the FPs, the standard error of µ̂ is slightly increased to 0.054, yielding the
same estimate but a slightly larger confidence interval of the specificity: 56–70%.

Both random-effect models have higher likelihood values than the Poisson model pointing to (small)
systematic differences between patients with respect to the number of FP lesions. The nonparametric
distribution of the nonparametric mixture model was reduced to 2 points (at almost 0 with weight 0.56
and at 1.41 with weight 0.44).

4.2 Sensitivity

The different estimates of the sensitivity are given in Table 2. Of the 26 patients with lesions, there were
17 in whom at least one lesion was recognized. Hence, the patient-specific sensitivity is 17/26 = 65%
(95% confidence interval: 47–84%). Of the 44 lesions, there were 32 identified by colonography, and
if all lesions are independent, the lesion sensitivity can be estimated as 32/44 = 73% (95% confidence
interval: 58–84%). The Akaike information criterion (AIC) value of the beta-binomial model is smaller
than that of the binomial model, again pointing to systematic differences between patients with respect to
lesion sensitivity. The nonparametric binomial mixture distribution was reduced to 3 points (at γ about
0.36, about 0.44, and 0.85 with weights 0.30, 0.13, and 0.57).

4.3 Bivariate model

The deviance of the model with a bivariate normal random effects υ = log(µ) and ξ = logit(γ ) was
369.8, which was slightly smaller than the sum of the deviances of the log-normal–poisson mixture and
the logit-normal–binomial mixture models (deviance = 371.3), although with one parameter more, the
AIC value was slightly larger: 379.8 versus 379.3. The dependence between logit-transformed sensitivity
(ξ ) and the Poisson parameter υ = log(µ) was estimated as E(ξ) = 0.93+0.007× log(µ) (see Figure 2),
but the correlation between log(µ) and ξ was estimated as close to 0 (0.0002). This was also found in the
nonparametric bivariate model; the AIC value of the nonparametric bivariate model was slightly larger
than the sum of the AIC values of both univariate nonparametric models (422.28 versus 421.64). The
distribution consisted of 6 points with weights almost equal to the product of the weights found in the
univariate random-effects models: correlation 0.001.
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Fig. 2. Estimated regression line between sensitivity and specificity derived from the analysis using the bivariate
normal random-effects model.

Although the association is very weak in the present case, the figure illustrates the classical inverse re-
lationship between sensitivity and specificity, and the model can be used to evaluate specific choices for
sensitivity/specificity.

5. CONCLUSION

There are 2 statistical problems with multiple-lesion diagnostic data. The first is the correlation between
the multiple lesions in the same patient. If the correlation is ignored, then the diagnostic yield is often
overestimated, and the estimated standard errors and confidence intervals are almost certainly too small.
There are 2 general statistical methods to take this correlation into account in the statistical analysis, either
with a marginal model with a generalized estimation equation approach or with random-effect models. We
chose the latter approach.

The second problem is that in principle an infinite number of FP lesions might be detected, and this
means that the lesion-specific specificity parameter cannot be assessed. Our approach models the “lesion-
specific” sensitivity because often it is important to diagnose all true lesions and the “patient-specific”
specificity. We defined the patient-specific specificity as the probability to have zero FP lesions.

We modeled the number of FP lesions and the number of TP lesions with the Poisson and the bino-
mial distributions, respectively. The associated parameters were considered to be patient-specific random
effects sampled from some distribution g(·|·). Specific and convenient parametric choices can be made
for g(·|·) or a nonparametric density can be chosen; we found comparable results for the empirical data
of the colonography study. However, in simulated data the nonparametric approach gave better results.
The parametric choices for g(·|·) are available in SAS proc NLMIXED; the nonparametric approach is
available in a collection of R-functions that can be obtained from the first author. A reviewer has pointed
out that all parametric models ignore the possible spatial correlations between lesions with respect to the
outcomes of the diagnostic testing. This will affect the standard error of the estimated sensitivity value,
but it is easy to calculate a robust standard error (Williams, 2000).
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The primary effect of the random-effect models is that the model-based estimate of the marginal
patient-specificity and patient-sensitivity values is much closer to the observed values. This effect is seen
best in simulated examples. Of 50 patients, there were 14 patients without FPs, suggesting a specificity
of 28%. Using the simple Poisson model, the probability to have zero FPs was estimated to be 0%.
Thus, assuming independence between FPs leads to underestimation of the specificity. According to the
nonparametric random-effect model, the specificity was estimated as 28%, and this close correspondence
was seen in almost all simulations. The Poisson–gamma random-effects model also has this effect, but
this effect depends on the goodness-of-fit of the assumed gamma distribution. A similar effect was seen
with the probability of identifying at least one true lesion in a patient. If we define this as the “patient-
specific” sensitivity, then the random-effects models correspond much better to the observed rate, and
when independence between lesions is assumed, this probability is overestimated.

Multiple-lesion data allow estimation of the relationship between patient-specific specificity and lesion-
specific sensitivity directly using a bivariate random-effects model in a similar fashion as was described
by van Houwelingen and others (2002) and can be done with SAS proc NLMIXED and with our R-
functions. The availability of this regression curve allows us to evaluate the effects of different cutoff
values on sensitivity and specificity.
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