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Abstract
The study of the 3D architecture of chromosomes has been advancing rapidly in recent

years. While a number of methods for 3D reconstruction of genomic models based on Hi-C

data were proposed, most of the analyses in the field have been performed on different 3D

representation forms (such as graphs). Here, we reproduce most of the previous results on

the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of

3D reconstructions. We show that many of these results can be reproduced in sparse re-

constructions, generated from a small fraction of the experimental data (5% of the data),

and study the properties of such models. Finally, we propose for the first time a novel ap-

proach for improving the accuracy of 3D reconstructions by introducing additional predicted

physical interactions to the model, based on orthologous interactions in an evolutionary-re-

lated organism and based on predicted functional interactions between genes. We demon-

strate that this approach indeed leads to the reconstruction of improved models.

Author Summary

Understanding the importance of genome architecture, the arrangement of genes within
the genome and how this organization evolved has been intensively studied in recent
years. Despite rapid progress in the field, accurate 3D modeling of genome organization
remains a challenge. While a number of methods for 3D reconstruction of genomic mod-
els based on genome-wide experimental data were proposed, most of the analyses in the
field have been performed on different 3D representation forms (such as graphs). Here, we
reproduce most of the previous results on the 3D genome organization of the eukaryote
Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of
these results can be reproduced in sparse reconstructions, generated from a small fraction
of the experimental data (5% of the data), and study the properties of such models. Finally,
we propose for the first time a novel approach for improving the accuracy of 3D recon-
structions by introducing additional predicted physical interactions to the model, based
on orthologous interactions in a different organism and based on predicted functional
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interactions between genes. Our proposed approach can facilitate future studies of 3D ge-
nome organization via improved models.

Introduction
Understanding the importance of genome architecture, the arrangement of genes within the
genome, and how this organization evolved has been intensively studied in recent years [1–4].
It has become evident that the genomic architecture and thus the three dimensional organiza-
tion of genes in the genome is far from random. A recent experimental approach for studying
the three-dimensional architecture of genomes, Chromosome Conformation Capture (3C) [5]
—and its high-throughput variants (such as Hi-C [6])—has enabled far more accurate charac-
terization of genomic spatial organization.

Different methods have been applied and developed in recent years for the analysis of Hi-C
data. Contact frequencies—i.e., the number of times each pair of genomic loci was observed in
proximity—are the raw variables measured in Hi-C experiments, and provide a way to assess
the co-localization of sets of loci in the nucleus. Indeed, many of the published results in the
field are based on direct analysis of contact frequencies [6–10]. Hi-C data was also studied in
conjunction with polymer simulations in order to develop models that may explain the ob-
served contact frequency maps [6,11–13]. For example, a study in Saccharomyces cerevisiae has
suggested that many earlier results—including features of the contact maps, the co-localization
of early firing replication origins and genomic location of tRNA genes—can be explained by
random configurations of chromosomes that are tethered to a number of sites in the nucleus
[11]. Such random models offer insights into the possible mechanisms that give rise to the
complex genomic architecture.

There have been a number of attempts to interpret Hi-C data by generating non-random
3D reconstructions based on distance constraints obtained from contact frequency maps
[8,9,14,15]. Such models may have several benefits: reducing noise and biases in the data by
seeking consistent solutions for the entire genome; increasing the resolution of the model by
generating a continuous solution from discrete samples; enabling a clear interpretation of dis-
tances in consistent units (compared with contact frequencies); enabling accurate analysis of
loci dispersion as well as co-localization (contact enrichment analysis being limited to the lat-
ter); enabling the utilization of existing algorithms for 3D model analysis, such as structural
comparison between models; and providing an integrative view of genomic architecture, given
the experimental data as well as known physical constraints [8]. Thus 3D reconstructions are a
promising way of studying the genomic architecture; nevertheless, most of the previous results
have yet to be studied in 3D models, with a few exceptions [14,16–18].

Here we carry out a detailed analysis of the properties of populations of 3D reconstructions
of the S. cerevisiae genome, showing that previous results can be reliably reproduced in 3D
models. We quantify the redundancy in information in the previously generated S. cerevisiae
Hi-C map [8], showing that the hallmarks of 3D genomic architecture emerge from a sparse
set of distance constraints. Finally, we propose novel ways of improving 3D reconstructions
methods by adding orthologous spatial interactions from the fission yeast S. pombe as well as
predicted spatial interactions.

Results
We adopted the 3D model reconstruction approach proposed by Duan et al. [8], a method
for generating a consensus model from Hi-C data using a non-linear optimization problem:
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Chromosomes are composed of beads on a string and their most probable conformation is
sought via an objective function, which is based on the observed contact frequencies between
DNA segments and minimized under a set of physical constraints (details in Materials and
Methods). This approach has been successfully applied in a number of studies [8,9,17–19].
Other approaches for reconstruction have been applied to this problem [14,15,20–26], with
comparable results [21,23]. However, some of these approaches have limitations, such as re-
constructing each chromosome independently from others [15,20,24,26], dispersing (rather
than ignoring) DNA regions with missing data [24,26] or specifying no physical constraints
on the chromatin fiber [14,20–24]. Nevertheless, the methods proposed here are not limited
to any particular approach. We utilized Duan's reconstruction protocol to generate and study
a number of types of 3D models of the S. cerevisiae genome (Fig 1): First, we generated mod-
els of the genome based on varying portions of the Hi-C data (Fig 1A); second, we generated
improved models of the genome by integrating additional Hi-C measurements from S.
pombe (Fig 1B); third, we generated improved models of the genome by integrating the pre-
dicted functional distance of genes according to the codon usage frequency similarity
(CUFS), i.e. the similarity in the codon composition of genes [16] (Fig 1C); finally, we con-
firmed that the observed improvement is indeed due to the additional information intro-
duced to the model by comparing it with perturbed models containing integrated random
interactions (Fig 1D). A gallery of examples of reconstructed models appears in S1 Fig.

Previously identified architectural features can be reproduced using
sparse 3D reconstructions
The information in genome-wide Hi-C measurements is expected to be, at least to some degree,
redundant [11]. Even for a small set of interactions between DNA loci, physical constraints are

Fig 1. 3D reconstruction schemes. The figure depicts the 4 reconstruction schemes employed in the study. (A) Sparse Hi-C models were generated by
converting Hi-C contact maps to spatial nanometric distances and uniformly sampling from this map according to the desired sparseness. The non-linear
program solved by Duan et al. [8] was utilized to generate the 3D model. Finally, the quality of the resultant models was assessed in a series of tests based
on previously published results on yeast genomic organization. (B)Orthologous-integrated models were generated by converting the S. pombe (SP) Hi-C
contact map to spatial nanometric distances, projecting it on the S. cerevisiae (SC) genome through orthologous genes and normalizing it according to SC
distances. Integration into the Hi-C based map of distances was done by sampling non-overlapping (unknown) distances. (C)Gene interaction-integrated
models were generated by utilizing the codon usage frequency similarity (CUFS) to predict the functional distance between genes. Distances were
normalized according to S. cerevisiae distances, and non-overlapping distances were sampled and integrated into the model. (D) Randommodels were
generated by shuffling the coordinates of the Hi-C distance map and integrating them into the model in the samemanner.

doi:10.1371/journal.pcbi.1004298.g001
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expected to considerably reduce the number of probable observed conformations. We studied
this effect through sparse Hi-C models, generated by uniformly sampling from the bias-cor-
rected Hi-C map to produce 0.5%, 5% and 50%maps. 20 models were generated in each catego-
ry (Fig 1A; details in Materials and Methods). We note that sparse reconstructions have been
previously generated, based however on highly significant contacts from an FDR-corrected Hi-
C map [8,14,19], while here we systematically study a uniform decrease in the amount of data
in the map. We then tested whether the models were able to reproduce previously published re-
sults that were originally based on analyses of the same S. cerevisiaeHi-C map (Fig 2). A recent
attempt to reproduce some of these results in 3D reconstructions has failed [17], thus we study
for the first time 3D genomic models that are consistent with many previous analyses. For refer-
ence, we generated 20 randommodels by shuffling the coordinates of the Hi-C map before
using the distances as input to the reconstruction program (details in Materials and Methods).
Randommodels were generated in order to test whether the observed patterns in genomic orga-
nization are due to particular features in the S. cerevisiaeHi-C map, and not due to the nature
of random fluctuations of polymers, to clusters of genes on the same chromosome or to possible
biases in the reconstruction method. In addition, we tested whether signals observed in sparse
models were significantly stronger than expected from randommodels. We observed that even
the sparsest map—based on 2,751 interactions—was able to reproduce some important hall-
marks of the S. cerevisiae genomic organization.

All reconstructions were formulated as a non-linear optimization problem (see Materials
and Methods), aiming to minimize an objective function that is comprised of the sum of square
errors between pairwise distances in the reconstructed model and the set of distances provided
as input (interactions). The optimization objective score (the square error between reconstruc-
tion and input distances) of the resultant models increases, naturally, with the number of inter-
actions (S2A–S2B Fig), as the number of components being summed increases. We note,
however, that when we normalized the objective score by the objective of randommodels gen-
erated from the same number of interactions, the score decreased with the number of interac-
tions (Fig 2A). It appears that, according to this relative criterion, additional data facilitates the
convergence of the optimization to a better solution. It is possible that the normalized objective
score cannot converge to zero with the number of constraints due to the population based na-
ture of Hi-C data, which isn’t consistent with a single reconstructed model, as well as due to
other biases in the experiment. Random models attained a significantly higher normalized ob-
jective score per interaction than either of the model types.

It is important to mention that the reconstructed solutions for a given input are not deter-
ministic and unique. First, the input set of distances was sampled uniformly and independent-
ly 20 times from the total map of distances for each type of model (0.5%-50% sparseness).
Second, the optimization process was initialized randomly 4 times for each interaction set /
sample and the best solution (out of 4) in terms of optimization error was selected. We studied
the similarity of the models generated in this manner (Fig 2B). To this end, Spearman's corre-
lation between all pairwise distances in each model was computed to measure the similarity
between different reconstructions with the same degree of sparseness. As expected, the simi-
larity increases with the number of interactions. We note that even when including all interac-
tions in the model, different solutions attained a median correlation of 0.77, a result which is
possibly related to the population of genomic conformations that Hi-C measures, as well as to
the stochastic nature of the optimization. In comparison, random models with the same (but
permuted) interactions attained an average correlation of 0.43. Thus, our randomization
scheme was able to generate a wide distribution of models, which lead to large variance in
results (Fig 2). The positive correlation attained for random models is due to the fact that
some constraints apply also in this case. For instance, genes that are located nearby on a
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chromosome are expected to remain in proximity in random 3D reconstructions. As a conse-
quence, random models also serve as control for the linear organization of genes on the chro-
mosomes. This provides an explanation for some of the observed results in random models
(discussed below).

Fig 2. Sparse 3D reconstructions. The figure contains boxplots of the benchmark test results for each of the 5 model categories (H1-4, R1). 20 models
were generated from each type. Randommodels were generated by shuffling the coordinates of the original S. cerevisiaeHi-C distance map. Results that are
distributed significantly above or below the random reference models (their median marked with a line) according to Wilcoxon rank-sum (one-tail), are
denoted with a star or more with respect to their significance level (one star for p<0.05, two for p<0.01, three for p<0.001). We observe that on most tests all
Hi-C model types obtain similar results, with some tests showing a gradual increase in signal gain with the number of Hi-C interactions. (A)Optimization
objective function of the reconstructed solution, normalized with respect to randommodels with similar properties. (B) Average Spearman’s correlation
between the pairwise distances in each model (9.1x105 points) with the other reconstructions generated in its category. (C) Centromere co-localization,
measured in normalized set distance (NSD), expected to be lower/greater than 1 for co-localized/dispersed sets, respectively. (D) Telomere radius from the
center of the nucleus. (E) Ratio of the average cis (intra-chromosomal) distances between chromosome arms and trans (inter-chromosomal) distances. (F)-
(L) Co-localization results for various sets of functional loci. Where the set comprises of several co-localized subsets (such as each GO term, tRNA clusters 1
and 2, etc.), the result presented is the mean of the sets’mean distance. (M) Spearman's correlation between pairwise distances of genes and their
coefficient of correlation of expression (n = 2,000 bins). (N) Spearman's correlation between pairwise distances of genes and their distances on a protein-
protein interaction (PPI) graph (n = 2,000 bins). (O) Spearman's correlation between pairwise distances of genes and their distances according to the codon
usage frequency similarity (CUFS) (n = 2,000 bins).

doi:10.1371/journal.pcbi.1004298.g002
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Centromeres [8] were significantly co-localized in all models, with a normalized set distance
(NSD) below 1, and significantly lower than random models (Fig 2C). The strength of co-local-
ization increased with the number of interactions. It is interesting to note that centromeres in
random models also exhibited some degree of co-localization. Telomeres were not co-localized
in any of the models, although Duan et al., based on a different modeling approach, identified
inter-chromosomal contact enrichment between telomeres [8]. It is possible that signals de-
tected using one approach will be hard to detect using a different approach. This result may be
due to telomere co-localization in multiple, spread clusters (S3 Fig). We did find, however, that
telomeres were distributed closer to the nuclear envelope, as indicated by their distance from
the center of the nucleus (Fig 2D). An analysis of chromosome arms interactions confirmed
that the two arms of each chromosome interact more often than with other arms, as previously
observed [8] (Fig 2E); that each arm is closely packed (S2C Fig); and that shorter arms tend to
interact more often (S2D Fig). These results suggest that chromosome territories are main-
tained in the 3D reconstructions.

We observed that early-firing replication origins (Clb5-independent) [27] were co-localized
in all models, including random ones (Fig 2F). It had been suggested before, that random con-
formations of the yeast genome exhibit co-localization of early-firing replication origins [11],
in agreement with previous analysis of Hi-C data [8,28]. Thus it is not surprising to find the set
co-localized in random models. Co-localization in random models may also be attributed in
part to a tendency of early-firing origins to be positioned closer linearly on the chromosome.
Specifically, it should be noted that models containing 50% of the interactions (and above)
showed significant co-localization of early-firing replication origins even with respect to the
co-localized random distribution. We also found that late-firing replication origins were co-lo-
calized in all models and more significantly so than early replication origins, compared with
random models (Fig 2G). A relation between subnuclear positioning and replication timing
has been observed in yeast and other eukaryotes [29,30], suggesting that replication later in S
phase takes place at specific loci, such as the nuclear periphery, the nucleolar periphery, and at
internal blocks of heterochromatin [31]. Evolutionary chromosome breakpoints were found to
be significantly co-localized in models containing at least 5% of the Hi-C interactions (Fig 2H),
as suggested by Duan et al. [8]. We controlled for an overlapping signal with the co-localization
of centromeres by excluding breakpoints that were located in the vicinity of a centromere.

We found the previously identified 2 tRNA clusters [8] co-localized significantly in models
containing 5% of the interactions and above (Fig 2I). Genes bound by the same transcription
factor (TF) in the vicinity of their transcription start site (TSS) [32] were also significantly co-lo-
calized (Fig 2J), as previously observed in [14,33]. Specifically, sites bound by Irr1p, part of the
cohesin complex, were co-localized (Fig 2K) as suggested in [33]. Repeating this analysis for
binding sites in upstream activating sequences (UAS) and open reading frames (ORF) yielded
similar however less significant results (S2E–S2F Fig). We analyzed a slim set of Gene Ontology
(GO) terms and found no global co-localization of genes relating to the same term (Fig 2L). A
set of GO terms has been previously suggested to be co-localized based on S. cerevisiaeHi-C
data [10], and additional terms have been suggested based on S. pombeHi-C data [9], but we
found no significant support for this conjecture in the 3D reconstructions (S2G Fig). Restating
the question, we employed a measure of GO terminology distance between genes that has been
shown to correlate with Hi-C-based 3D genomic distances [16], and found it to be correlated
with pairwise gene distances in the 3D reconstructions for all models (S2H Fig).

Previous results in S. cerevisiae [10,14,16] and other eukaryotes [6,9,18] have shown a rela-
tion between gene expression and 3D genomic organization. We found the correlation coeffi-
cient of co-expression between pairs of genes to be negatively correlated with gene distances,
suggesting that co-expressed genes are co-localized (Fig 2M) as suggested by [10,18]; however,
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this correlation was not significant compared with random models. We tested the correlation
between the average expression levels of pairs of genes with pairwise gene distances on the 3D
model (S2I Fig) and observed that protein abundance levels were negatively correlated with
distance, suggesting a co-localization of highly expressed genes and vice versa. In addition, we
considered the distance between genes on a protein-protein interaction (PPI) graph and
showed that it is strongly correlated with pairwise distances on the models (Fig 2N), consistent
with previous predictions [16] and observations in human [34]. Finally, we verified that the
codon usage frequency similarity (CUFS; details in Materials and Methods) of genes—a mea-
sure of the functional distance between them [16]—is strongly correlated with 3D distances in
the reconstructions (Fig 2O), consistent with previous observations [16]. The latter result en-
abled us to use predicted distances from CUFS as means to improve 3D reconstructions as de-
scribed in the following sections.

We estimated the minimal amount of data that is required to reproduce the results obtained
by models generated from the complete dataset. We considered a sparse result to be similar to
the full result if we were unable to reject the null hypothesis that the two medians of the value
distributions were equal (Wilcoxon two-tail rank sum at 0.01 significance level). For example,
if the co-localization of TFs was similar for all models with sparseness of 0.5% and above, we
concluded that the minimal sparseness required to reproduce this result was 0.5% (see Fig 3).
We repeated the process for each of the tests in Fig 2. It can be seen that in most cases (10 out
of 15) as little as 5% of the data could reliably reproduce results from models based on the com-
plete data. In none of the tests the complete data was required.

These results may indicate that the scale of the Hi-C experiment could be reduced if 3D re-
construction is employed to analyze the data. We attempted to test this hypothesis by repeating
the sparse reconstruction process with a modified approach, aiming to simulate a smaller ex-
periment. In this scheme, rather than randomly sampling from the complete map of distance
constraints, we gradually damped the number of observed reads (frequency) between each pair
of DNA fragments in the experiment. We then proceeded with the reconstruction, regarding
the input Hi-C map as a complete new dataset (details in Materials and Methods). Surprisingly,
a 20-fold damped Hi-C map showed significantly stronger signals on most of the tests (S4 Fig).
This could be explained by the fact that contacts that were retained after a 20-fold damp were
significantly enriched in the original dataset and are probably related to distinct architectural
features of yeast genomic organization.

S. cerevisiae reconstructions can be improved by integrating S. pombe
data
One advantage of 3D reconstructions over statistical analysis of raw Hi-C measurements is
that additional data can be incorporated into their construction and taken into account in sub-
sequent analyses. Reconstructed models can thus be improved by integrating genomic datasets
of different types. One way by which this can be achieved, is by adding constraints to the opti-
mization problem, as proposed by [8]. Alternatively, we propose the addition of components
to the objective function of the optimization problem. These additional components should
contain 3D interactions that are non-overlapping with the Hi-C interactions at hand, thus only
filling gaps in our knowledge for unknown genomic loci (Fig 1; details in Materials and Meth-
ods). We also employed a heuristic for distributing the additional information by sampling
with higher probability from regions with low coverage in the original Hi-C map (details in
Materials and Methods). Specifically, we propose that integrating 3D genomic measurements
from different organisms may improve the reconstructed models. Our approach is motivated
by previous results that suggested that 3D genomic organization of orthologous genes tends to
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be conserved [15,16]. In addition, data integration may facilitate overcoming biases that are or-
ganism-specific and protocol-specific.

We generated 20 models based on 0.5% of the Hi-C map with the addition of an equal num-
ber of orthologous Hi-C measurements, and 20 models with 10-fold the number of interactions
(5%) transformed from S. pombeHi-C maps (Fig 1B). In addition, 20 randommodels were gen-
erated with the addition of 0.5% and 5% of the interactions from permuted S. cerevisiaeHi-C
maps (Fig 1D). We then analyzed the reconstructions similarly to the previous section in order
to determine whether the additional interactions contribute to the reconstructed models and

Fig 3. Minimal reproduction of the complete dataset. The bars in the figure denote the minimal amount of
data required to reproduce the results obtained using the complete dataset in Fig 2. The minimal degree of
sparseness is the one that for all models with equal or larger datasets we were unable to reject the null
hypothesis that the median of values was equal to that of the complete dataset (Wilcoxon two-tail rank sum at
0.01 significance level). In most cases (10 out of 15), 5% of the data sufficed to reproduce the result observed
for 100%. Choosing a significance threshold of 0.05 affected only model similarity and Irr1p (minimal data:
100% and 50%, respectively).

doi:10.1371/journal.pcbi.1004298.g003
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improve upon them (Fig 4). By performing a comparison with integrated randommodels, we
tested whether the improvement seen on these quality tests is only due to the increase in the
number constraints and whether the cumulative improvement on the tests is likely to be ob-
served by chance. On most tests, orthologous-integrated models (orto-Hi-C) scored higher than

Fig 4. Orthologous-integrated 3D reconstructions. The figure contains benchmark test results for 2 types of S. cerevisiae 3D genomic models
incorporating additional S. pombeHi-C interactions (orto-Hi-C) and 2 types of models incorporating additional random interactions (random). 20 models
were generated from each type. Randommodels were generated by permuting the coordinates of the original S. cerevisiaeHi-C map (see Materials and
Methods). Results in each panel compare the improved reconstructions with the baseline model—Hi-C-0.5%. Arrows denote the expected direction for an
improved model (a stronger signal than the one appearing in Fig 2). We observe that in most tests the addition of orthologous interactions shows a significant
improvement over the baseline model (marked by the horizontal line H1) and over models containing additional random interactions. Moreover, some models
show stronger signals than 100%models (marked by the horizontal line H2). Results that are distributed significantly above or below the baseline according
to Wilcoxon signed rank (one-tail), are denoted with a star or more with respect to their significance level (one star for p<0.05, two for p<0.01, three for
p<0.001). (A)Optimization objective function of the reconstructed solution, normalized with respect to randommodels with similar properties. (B) Average
Spearman’s correlation between the pairwise distances in each model (9.1x105 points) with the other reconstructions generated in its category. (C)
Centromere co-localization, measured in normalized set distance (NSD), expected to be lower/greater than 1 for co-localized/dispersed sets, respectively.
(D) Telomere radius from the center of the nucleus. (E) Ratio of the average cis (intra-chromosomal) distances between chromosome arms and trans (inter-
chromosomal) distances. (F)-(L)Co-localization results for various sets of functional loci. Where the set comprises of several co-localized subsets (such as
each GO term, tRNA clusters 1 and 2, etc.), the result presented is the mean of the sets’mean distance. (M) Spearman's correlation between pairwise
distances of genes and their coefficient of correlation of expression (n = 2,000 bins). (N) Spearman's correlation between pairwise distances of genes and
their distances on a protein-protein interaction (PPI) graph (n = 2,000 bins). (O) Spearman's correlation between pairwise distances of genes and their protein
abundance (PA) distances—measuring the similarity in expression levels (n = 2,000 bins).

doi:10.1371/journal.pcbi.1004298.g004
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the baseline 0.5% models: The addition of 2,751 (orto-Hi-C 0.5%) interactions significantly im-
proved (Wilcoxon one-tail signed rank at 0.01 significance level) on 0.5% Hi-C models in 12
out of 15 quality tests, compared with randommodels that significantly improved the recon-
structions in none of the tests (permutation test for orto-Hi-C 0.5% vs. random: p<10–4, details
in Materials and Methods). The addition of 27,506 interactions (orto-Hi-C 5%) significantly im-
proved on 0.5%-HiC in 12 quality tests while random interactions improved in none of them
(orto-Hi-C 5% vs. random p<10–4). We note that the latter orto-Hi-Cmodels performed even
better on 10 quality tests than models comprising of the complete dataset.

We normalized the objective score of orto-HiCmodels by the objective of random models
generated from the same number of interactions, sampled from shuffled Hi-C maps and shuf-
fled orthologous-Hi-C maps. We observed that the normalized objective function value is
smaller than random (<1) for orto-Hi-Cmodels, but increases with the number of added
orthologous interactions (Fig 4A). Thus, it appears to be harder for the process to converge to
models that are compatible with numerous orthologous interactions. It is also clear that the
similarity between models was improved for orto-Hi-C (Fig 4B).

Centromeres were significantly more co-localized in integrated models (Fig 4C; p0.5% =
1.5x10-3, p5%<10–4). However, there was no improvement in the signal for telomeres, which
moved away from the nuclear periphery towards the center of the nucleus (Fig 4D). This issue
could be avoided by constraining the telomeres to the nuclear periphery in the reconstruction
program [9,11]. Chromosome arms analysis showed an increase in intra-chromosomal interac-
tions (Fig 4E, p5%<10–3).

The most apparent improvement was found in functional model features, such as early-
and late- firing replication origins (Fig 4F and 4G), evolutionary breakpoints (Fig 4H) and
tRNA clusters (Fig 4I; Wilcoxon one-tail signed rank p<10–4 for each test). Improved results
were seen also for all TFs around the TSS (Fig 4J; p0.5% = 3x10-3, p5% = 5.6x10-5) and particu-
larly Cohesin Irr1p (Fig 4K; p0.5% = 0.008, p5% = 0.0297), as well as correlation with PPI dis-
tance (Fig 4N, p<10–3). Moreover, results that were expected, but not significant, in Hi-C
reconstructions, improved considerably, such as GO terms co-localization (Fig 4L; p<10–4),
correlation with the co-expression coefficient of genes (Fig 4M; p<10–4) and protein abun-
dance (PA) distance between genes (Fig 4O; p<10–4). We note that, in general, the signal
increased with the addition of more orthologous-interactions to the models in the aforemen-
tioned tests.

We repeated the above process while integrating orthologous-interactions into other baseline
models. 5% sparse Hi-C models (S5 Fig) showed similar results (sig. improvement on 12 tests).
The FDR-corrected Hi-C map employed by Duan et al. [8] (S6 Fig) also showed comparable re-
sults (sig. improvement on 10 tests), indicating that the integrated orthologous interactions are
not redundant with the highly significant reads in this dataset. We also repeated the integration
with distance constraints obtained from a 200-fold damped Hi-C map, as described above and in
Materials and Methods (S7 Fig), leading to a significant improvement on 11 tests. Finally, we
tested whether orthologous-interactions can contribute to a reconstructed model based on the
complete Hi-C map (S8 Fig). The coverage of gene-related data (orthologous-interactions) and
the vast genomic areas already covered by the complete Hi-C dataset limited the number of addi-
tional interactions to 20% of the data. As a result, the weight of the additional interactions in the
reconstruction problem is smaller than it was when integrated into sparse Hi-C maps. Neverthe-
less, orthologous-integrated models led to improvement in 9 of the quality tests (7 of which were
significant), including a decrease in the normalized objective of the reconstruction. Thus, this
demonstrates that orthologous-interactions contain additional information that was missing
from the Hi-C dataset and resulted in a better convergence of the reconstruction.
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Reconstructions can be improved by integrating predicted functional
interactions between genes
In this section, we considered additional forms of genomic data which can provide heuristics
for the reconstruction of better, biologically meaningful 3D models. To this end, we employed
a previously proposed tool that can serve as a proxy for functional similarity between genes,
the codon usage frequency similarity (CUFS) [16]. Given a pair of genes, the CUFS metric
gives an estimate of the functional distance between them (see Materials and Methods); this
distance was shown to be highly correlated with the 3D genomic organization of eukaryotic
genes, including S. cerevisiae (see also Fig 2O), as well as with many functional features [16].
These results provide motivation for the addition of CUFS-interactions to the optimization
problem in order to improve 3D reconstructions. The main advantage of CUFS over other ex-
isting annotations is that it is computed based solely on the sequence of ORFs in the genome,
and thus it is expected to be less biased than most of the currently available genome-wide inter-
actions datasets, and can provide complete coverage for any given sequenced genome.

We normalized CUFS distances according to the S. cerevisiaeHi-C distance map, trans-
forming them to estimated nanometric distances (Fig 1C; details in Materials and Methods)
and added the resultant interactions to the reconstruction objective function. We then tested
the models to see whether the additional interactions improved upon the Hi-C-0.5% model
(Fig 5). We generated 20 models based on HiC-0.5% maps, containing additional 2,751 (CUFS
0.5%) interactions and observed that the addition improved results compared to the baseline
model in 14 out of 15 quality tests (10 of which were significant, Wilcoxon one-tail signed rank
at 0.01 significance level) while the corresponding random models significantly improved on
the baseline results in none of the tests (permutation test for CUFS-0.5% vs. random: p<10–4,
details in Materials and Methods). The addition of 27,506 (CUFS-5%) interactions significantly
improved the results in 12 quality tests while the corresponding random models significantly
improved in none of them (CUFS-5% vs. random p<10–4). We note that CUFS-5% showed
stronger signals than the ones observed inHi-C 100% on 9 quality tests, despite being based on
considerably sparser data.

We normalized the objective score of CUFS models by the objective of random models gen-
erated from the same number of interactions, sampled from shuffled Hi-C maps and shuffled
CUFS maps. We observed, similarly to orthologous-integrated models, that the normalized ob-
jective is lower than random (<1), but still higher than the baseline (Fig 5A). Model similarity
significantly improved for CUFS models (Fig 5B; p<10–3). Centromeres were marginally more
co-localized in CUFS models compared to the baseline Hi-C models (Fig 5C; p5% = 0.044),
while telomeres occupied regions closer to the nuclear envelope (Fig 5D; p<0.01). Chromo-
some territories were more compact in CUFS models (Fig 5E, p0.5% = 0.02, p5%<10–3). Many
functional sets were significantly more co-localized in CUFS-integrated models compared with
the baseline Hi-C model, such as early- (Fig 5F; p<0.01) and late-firing replication origins (Fig
5G; p<10–3), evolutionary breakpoints (Fig 5H; p<10–3), tRNA clusters (Fig 5I; p<10–3).
Global TFs co-localization (Fig 5J) was improved for 0.5% models (p0.5% = 0.0175) but not for
5% models, however Irr1p bound genes (Fig 5K; p0.5% = 0.048, p5% = 5.4x10-4) were significant-
ly more co-localized than before. Other functionally related features that improved include GO
terms (Fig 5L; p<10–4), as well as the correlation between pairwise gene distances and co-ex-
pression coefficient (Fig 5M; p<10–3), PPI distances (Fig 5N; p<10–4) and similarity in expres-
sion levels (Fig 5O; p<10–4). We repeated the above process while integrating CUFS-
interactions into other baseline models, as was done for orthologous-interactions, with compa-
rable results (S5–S8 Figs). Markedly, CUFS-interactions were able to improve models based on
the complete Hi-C dataset in 13 out of 15 quality tests (12 of which were significant).
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Discussion
In this study, we proposed an approach for the reconstruction of 3D genomic models. Our con-
clusions are that at least according the current quality tests the redundancy in Hi-C measure-
ments in S. cerevisiae is great; thus, if we aimed at studying 3D reconstructions we could do it

Fig 5. CUFS-integrated 3D reconstructions. The figure contains benchmark test results for 2 types of S. cerevisiae 3D genomic models incorporating
additional interactions based on the codon usage frequency similarity between genes (CUFS) and 2 types of models incorporating additional random
interactions (random). 20 models were generated from each type. Randommodels were generated by permuting the coordinates of the original S. cerevisiae
Hi-C map (see Materials and Methods). Results in each panel compare the improved reconstructions with the baseline model—Hi-C-0.5% (marked by the
horizontal line H1). Moreover, somemodels show stronger signals than 100%models (marked by the horizontal line H2). Arrows denote the expected
direction for an improved model (a stronger signal than the one appearing in Fig 2). We observe that in most tests the addition of CUFS interactions shows a
significant improvement over the baseline model and over models with random interactions. Results that are distributed significantly above or below the
baseline according to Wilcoxon signed rank (one-tail), are denoted with a star or more with respect to their significance level (one star for p<0.05, two for
p<0.01, three for p<0.001). (A)Optimization objective function of the reconstructed solution, normalized with respect to randommodels with similar
properties. (B) Average Spearman’s correlation between the pairwise distances in each model (9.1x105 points) with the other reconstructions generated in its
category. (C) Centromere co-localization, measured in normalized set distance (NSD), expected to be lower/greater than 1 for co-localized/dispersed sets,
respectively. (D) Telomere radius from the center of the nucleus. (E) Ratio of the average cis (intra-chromosomal) distances between chromosome arms and
trans (inter-chromosomal) distances. (F)-(L)Co-localization results for various sets of functional loci. Where the set comprises of several co-localized
subsets (such as each GO term, tRNA clusters 1 and 2, etc.), the result presented is the mean of the sets’mean distance. (M) Spearman's correlation
between pairwise distances of genes and their coefficient of correlation of expression (n = 2,000 bins). (N) Spearman's correlation between pairwise
distances of genes and their distances on a protein-protein interaction (PPI) graph (n = 2,000 bins). (O) Spearman's correlation between pairwise distances
of genes and their protein abundance (PA) distances—measuring the similarity in expression levels (n = 2,000 bins).

doi:10.1371/journal.pcbi.1004298.g005
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with significantly sparser amount of data. We were able to reproduce many of the previously
reported results on yeast genomic organization for the first time in 3D reconstructions. We
also suggest that distances on a protein-protein interactions graph are correlated with gene
pairwise distances on the genomic models. In addition, 3D reconstructions can be improved
using our proposed approach to generate models that reproduce previous results better. We ap-
plied the proposed method to several baseline models and demonstrated significant improve-
ment on a set of quality tests. The ability to improve models which were based on the complete
Hi-C dataset suggests that our predicted distances may contain valuable information that is
complementary to the S. cerevisiaeHi-C dataset. Our results support previous observations
that the genomic organization of genes is partially conserved between species [16]. These re-
sults also support observations that codon usage is tightly linked to functional relatedness of
genes and to spatial genomic organization [16]. The proposed approach is not limited to a par-
ticular reconstruction method, and can be easily employed in different reconstruction schemes
and in other organisms. The methods proposed here are gene-centered, but can be extended to
any type of genomic data. Additional types of data may be employed to improve reconstruction
in the future, e.g., gene expression levels, protein-protein interactions as well as metabolic net-
works. Improvement of 3D reconstructions can be further extended to integrate several Hi-C
datasets from the same organism, where available. In multicellular organisms, tissue-specific
data may be employed to improve the reconstruction, such as a list of known active / inactive
genes in a cell type, condition, or developmental stage. Hi-C data from different tissues can
also potentially be utilized and integrated into the model; however, in this case attention should
be given to choosing tissue-invariant features, such as some aspects related to the local chromo-
some folding of topologically associated domains (TADs) [35,36].

There are a number of computational challenges related to 3D reconstruction in higher eu-
karyotes. First, whole-genome reconstructions have been limited to small genomes due to
computational costs [21]. It is possible that in some cases removing some of the constraints can
improve the computational time without changing the quality of the result. Second, diploid
cells introduce a complication since two copies (often separated spatially [37]) of each chromo-
some are measured simultaneously in Hi-C but later modeled as two polymers.

Finally, most Hi-C experiments to date were carried on cell populations, thus measuring the
average contact frequencies of a population of 3D structures. The latter issue can be partially
dealt with by producing a population of reconstructions [11,15,18], as was carried here. In the
future, single-cell Hi-C [15] will enable to estimate the variability of genomic conformations of
different cells and to compare it with the reconstructed model distribution; it would be interest-
ing to explore the performance of the approach described here on single-cell Hi-C.

Materials and Methods

Sequences
Sequences of the S. cerevisiae (S288c) and S. pombe (972h) genomes were obtained from NCBI,
as well as the coding sequences of their 5,888 (SC) and 5,123 (SP) protein-coding genes.

Hi-C data preparation
Hi-C data was obtained from [8]. Hi-C map (HindIII library) values were corrected using the
iterative correction proposed by [38]. We utilized the complete (unfiltered) set of contacts for
model reconstruction, allowing for the optimization program to reconstruct the most probable
chromosome conformation given the entire dataset. The conversion from Hi-C contacts to
nanometric distances was performed as proposed in [8], by generating a profile of linear
genomic distances (in bp) vs. Hi-C contact frequency using 100 bins. We employed linear
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interpolation between bins, free of any assumptions on the contact frequency distribution.
Conversion from genomic distances to nanometric distances was then approximated by a 130
bp/nm constant describing characteristic chromatin packing [8]. The frequency-to-distance
function was applied on the Hi-C contact map after binning it according to the reconstruction
model coordinates (10kbp resolution)—summing the contacts in each bin (S9 Fig). In S6 Fig,
the 1% FDR-corrected Hi-C map was obtained from [8], corrected using iterative correction
and its distance conversion function was learned as described above.

3Dmodel reconstruction
3D reconstructions were generated using a modified version of the program provided by [8].
The program defines a non-linear programming optimization problem and utilizes the Ipopt
(version 3.6.1) package to solve it [39]. The reconstruction objective function being minimized
is the sum of square errors between the current solution and the given 3D distances:

min
X

i

ðdistðpi; qiÞ � diÞ2 ð1Þ

Where pi,qi are a pair of beads in the model and δi is their expected distance (the input to the pro-
gram). The solution is bounded, to comply with the following constraints [8]: nucleus radius;
maximal elasticity between two adjacent beads; minimal distance between chromosome poly-
mers; position of the nucleolus; position of chromosome XII's centromere. The optimization is
initialized with a random configuration of the chromosomes. Models typically converged after
approximately 1800 iterations. Models were visualized (S1 Fig) using Jmol [40]. The reconstruc-
tion program is available for download at: http://www.cs.tau.ac.il/~tamirtul/reconstruction.zip

Sparse reconstruction
Sparse models were generated by uniformly sampling a portion of the set of Hi-C interactions
(0.5%, 5%, 50%). Hi-C interactions were binned at a resolution of 10kbp prior to sampling.
Sampling was repeated independently 20 times (generating 20 sets of interactions), from each
set 4 models were constructed (for a total of 80 models). The best model out of the 4 in terms
of optimization error (the dual infeasibility score as reported by Ipopt) was chosen to represent
the set of sampled interactions, in order to avoid solutions that converged to local minima. For
the sake of consistency, the 80 models generated from the 100% map were partitioned into 20
groups and selected according to the same principle.

In S4 and S7 Figs, damped Hi-C maps (simulating a smaller-scale experiment) were gener-
ated by: (1) dividing the read count of each pair of HindIII fragments by the damping factor
(e.g., 20); (2) filtering reads below 1 (a detection threshold); (3) quantizing the reads by round-
ing them to the nearest integer; (4) summing the reads per 10kbp bin; (5) converting the ob-
served contact frequencies to distances according to rank, i.e. by assigning the highest value in
the damped-map with the lowest value in the distribution of Hi-C distances and so on, until
the sparse damped-map was completely converted.

Orthologous Hi-C interactions
Hi-C maps for S. pombe were obtained from [9]. The authors also provided with an experimen-
tally verified (via FISH) nanometric distance function to convert the Hi-C measurements for
this map. Each S. pombe pair of genes was assigned with a spatial distance according to the
nearest measured coordinates on the map. Next, 3,367 orthologous families obtained from the
manually curated orthologs database at PomBase [41] were utilized to transform distances
from pairs of S. pombe genes to their identified respective orthologs in S. cerevisiae (averaged

Improving 3D Genome Reconstructions Using Functional Constraints

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004298 May 22, 2015 14 / 22

http://www.cs.tau.ac.il/~tamirtul/reconstruction.zip


on multiple genes). So that, given a distance matrixDB in organism B, the orthologous-trans-
formed matrix in organism A is given by:

DB!A
ij ¼ 1

jOijjOjj
X
k2Oi

X
l2Oj

DB
kl ð2Þ

Where Oj is the set of orthologous genes in organism B corresponding to gene j in organism A.
3D distances were further normalized to account for the different dimensions of the nucleus in
the 2 organisms, by scaling S. pombe distances to have the same median as the S. cerevisiae set
of Hi-C distances (S10 Fig). We filtered the resultant distances, taking the bottom 5% (based
on more reliable Hi-C contacts) as additional constraints for improving the S. cerevisiae recon-
structions. Using different thresholds up to 50% did not have a strong effect on the results.
When integrating orthologous-distances into the 100% Hi-C map (S8 Fig), we raised the
threshold to 50% in order to increase the coverage of the orthologous map. Distances were
binned into model coordinates (10kbp resolution) by averaging the distances in each bin.

Finally, orthologous interactions were sampled to produce an additional set of interactions
added to Hi-C interactions (see main text), after excluding bins with existing Hi-C interactions
(see Fig 1B). The sampling scheme chosen (poor-get-richer, see below) aims at distributing the
data added to the model while reinforcing parts of the model that were missing / badly repre-
sented in the original Hi-C data. To this end, we computed the degree of each bead in the
model—i.e., how many interactions with other beads are currently known for that bead. The
probability to add an interaction between a pair was chosen to be proportional to the inverse of
the beads’ degrees. This resulted in a distribution of degrees with smaller variance.

Poor-get-richer sampling:
Data: distance matrix C.
Result: distance matrix C containing additional n interactions.
Init: compute the degree of each node according to:

di ¼ maxð0:5;NfCi;j > 0; 8jgÞ

where N{} indicates the number of elements satisfying the condition. A non-zero de-
gree was assigned for beads with no interactions, for numerical stability.

begin

1. Remove orthologous interactions (i,j) if distance already known (Ci,j > 0)

for each sample up to n

2. Draw from the available orthologous interactions (i,j) with probability:

pi;j / d�1
i d�1

j

3. Update node degrees.

CUFS interactions
The codon usage frequency similarity (CUFS) [16] was used as a proxy for functional distances
between genes. Codon frequencies were computed for each of the 5,888 S. cerevisiaeORFs. The
CUFS distance between a pair of genes, given their two codon frequency vectors, p and q (nor-
malized for a sum of 1), was then computed by the Endres-Schindelin metric for probability
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distributions [42]:

dKLðp;qÞ ¼
X64
i¼1

pilog
pi
qi

� �
ð3Þ

m � 1

2
ðpþ qÞ ð4Þ

dES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dKLðp;mÞ þ dKLðq;mÞ

p
ð5Þ

Where dKL is the Kullback—Leibler divergence. In order to transform CUFS distances to nano-
metric distances independently of additional data, we used a simple linear model. CUFS distances
were converted to nanometric distances by scaling the map to have the same median as the Hi-C
distances. The top and bottom 10% of distances were considered for integration into the Hi-C
distance map (S11 Fig). Different thresholds did not have a strong effect on the result.

The resultant distance map was binned into model coordinates (10kbp resolution) by aver-
aging the distances in each bin. CUFS interactions were sampled to produce an additional set
of interactions added to Hi-C interactions (see Fig 1C), after excluding bins with existing Hi-C
interactions. To this end, the poor-get-richer sampling scheme was employed.

Random interactions
Random interactions were obtained by permuting the coordinates of the 10kbp-binned Hi-C
interaction map. Thus, the permuted maps preserve the distribution of distances in the dataset.
20 permutations were drawn, and the complete permuted maps were utilized to generate the
random reconstructions that appear in Fig 2. The success rate for the convergence of the recon-
struction program was about 75%. Since we kept the best model out of 4 (in terms of Ipopt’s
optimization error) for every model reported in the study, this low failure-rate did not pose a
problem. The squared reconstruction error between the input distance matrix and recon-
structed model was significantly higher for randommodels than for non-permuted Hi-C mod-
els (real: 7.6x104 μm2, random: 8.9x104 μm2). The magnitude of this error is related to the
number of interactions in the input matrix, which was identical for random and real. When
testing for co-localization of sets of elements in random models, we used their original position
on the chromosome (rather than their position on the permuted coordinates).

In addition, random sets were sampled and added to a subsampled, non-permuted Hi-C
distance map using poor-get-richer sampling (see Fig 1D), after excluding bins with existing
Hi-C interactions as described above. The resultant perturbed models appear in Figs 4 and 5.

Co-localization
Co-localization / dispersion analysis of sets of loci / genes was performed using a normalized
set distance (NSD) measure. NSD is defined as the mean set distance for the set of interest, nor-
malized by the expected distance of random sets of equal size drawn from the same model. Spe-
cifically, 100 samples were drawn from all possible gene pairs, for gene sets; or samples from a
uniform 10kbp coordinate grid on the model, for other sets of loci (such as early replication or-
igins). Thus, the obtained value is<1 for co-localized sets and>1 for dispersed sets.

Chromosome arms analysis
Chromosome arms analysis followed that of [8] and provides quantified analysis of chromo-
some territories and the interactions between chromosomes. To this end, three measures were
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employed: first, the ratio of the average distance between short arms (<250kbp, as defined by
Duan et al.) and long arms (>250kbp) (short-vs-long); second, the ratio of the average distance
between the two arms of each chromosome and the rest of the arms (cis-vs-trans); third, the
ratio of the average distance between regions on the same arm and their distance from other
arms (self-vs-else). All distances along the arms were sampled in 10kbp resolution.

Correlation
Model similarity quantifies how similar repeated reconstructions are according to pairwise dis-
tances. Model reconstruction is stochastic due to both random initialization of the reconstruc-
tion program, as well as random sampling of interaction sets. Model similarity was estimated
by computing the correlation between pairwise distances in 10kbp resolution between all gen-
erated models in the same category. For example, a total of 80 models were generated in the
Hi-C-0.5% category (4 instances from 20 sampled sets of interactions). For each of the 80x80
possible pairs of models the pairwise distances between 10kbp-spaced genomic loci were uti-
lized to compute Spearman’s rank correlation between them. Similarity was defined as the av-
erage correlation coefficient between all pairs.

Spearman’s rank correlation with CUFS, protein abundance [43,44] distance (normalized
distance between pairs of PA: 2|p-q|/(p+q), see Figs 4 and 5), average protein abundance of
pairs (see S2 Fig), Gene Ontology (GO) [45,46] term distance [16], protein-protein interac-
tion graph distance and gene co-expression was computed by dividing all gene pairs into
2,000 bins.

P-values
P-values, unless stated otherwise, were computed using a one-tailed Wilcoxon signed rank test,
comparing the distributions of values obtained for 2 model types (e.g., HiC-0.5% vs. an ortho-
logous-integrated model). We chose a paired-test in order to compare each set of sampled Hi-
C interactions to its extended set (the one containing additional interactions).

In order to estimate the probability of observing the resultant improvement on tests in inte-
grated models by chance, we shuffled the models between two categories—e.g., random-inte-
grated models and orthologous-integrated models—10,000 times. We then computed the total
benchmark result for the drawn partition. If the probability of observing the difference between
models (or a more extreme one) was smaller than 0.01 we rejected the null hypothesis that the
observed improvement on the tests was a random effect.

Additional datasets
Centromere positions were obtained from [8]. Telomeres were defined as the first and last
beads in each chromosome. 77 early-firing replication origins and 123 late-firing replication
origins were obtained from [27]. 718 evolutionary breakpoints were obtained from [47] (Wol-
feScerKwalBreakpoints.txt), and 127 breakpoints within 50kbp from centromeres were exclud-
ed from this set. Two tRNA clusters were obtained from [8], where they were suggested to be
co-localized in the nucleus. TF gene binding data was obtained from [32], and included 193 TF
binding profiles around transcription start sites (TSS), 194 TF binding profiles in upstream ac-
tivating sequences (UAS) and 159 TF binding profiles inside the ORF. Cohesin Irr1p co-locali-
zation was computed by averaging the result over the 3 libraries. Co-expression correlation
coefficients were computed between the mRNA expression profiles of genes in 530 conditions
[46]. Full GO annotations were obtained from SGD [46] and mapped onto the generic GO slim
definitions. The set of previously co-localized GO terms [10] appearing in S2 Fig included:
GO:0016798, GO:0016810, GO:0016874, GO:0006810, GO:0006950, GO:0007049, GO:0051276,
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GO:0007165, GO:0007059, GO:0005694, GO:0005886, GO:0005730. Protein-protein physical
interactions were obtained from several databases [48–51] and filtered according to quality
score thresholds 200 and 0.3 for STRING and the rest, respectively. When computing short-
est path distances on the PPI graph, disconnected pairs were assigned with a finite large
number (255).

Clustering
We performed hierarchical clustering (see S3 Fig) by utilizing MATLAB’s linkage function on
the pairwise telomere distance matrix (averaged across 80 models), using the average distance
algorithm.

Supporting Information
S1 Fig. Examples of reconstructed models.Models are not illustrated in precise, equal scale.
(A)-(D) Reconstructed models for different levels of sparseness. (E) A random model. (F)-(G)
Integrated models, containing predicted distances in addition to the complete Hi-C dataset.
(H) An illustration of the proposed reconstruction approach employed in (F)-(G).
(EPS)

S2 Fig. Additional analysis of sparse 3D reconstructions. (A) Optimization objective func-
tion (squared error between input distances and resultant model). (B)Mean objective per
input constraint. (C) Ratio of the average distance between points on a chromosome arm and
the average distance between that arm and the rest of the chromosome arms. (D) Ratio of the
average distance between short chromosome arms (<250kbp) and long chromosome arms
(>250kbp). (E) Co-localization results for TF binding sites in the upstream activation sequence
(UAS) library. (F) Co-localization results for TF binding sites in the open reading frame (ORF)
library. (G) Co-localization results of previously identified GO terms (details in Materials and
Methods). (H) Spearman's correlation between pairwise distances of genes and their Gene On-
tology terminology distance (n = 2,000 bins; details in Materials and Methods). (I) Spearman's
correlation between pairwise distances of genes and their average protein abundance (PA;
n = 2,000 bins).
(EPS)

S3 Fig. Telomere clusters. The figure shows the pairwise distance heat map between telomeres,
averaged across 80 reconstructions, and ordered by utilizing hierarchical clustering on the Hi-
C 100% model. Telomeres from the long chromosome arm are denoted with L while ones from
the short arm are denoted with S. Additional matrices corresponding to Hi-C 5% (retained sig-
nal) and random models (missing signal) are presented for reference. The largest cluster (1)
comprises of 15 telomeres from 11 chromosomes (upper corner, marked with an asterisk). Ad-
ditional clusters appear along the diagonal. In addition, it can be seen that the 2 telomeres of
each chromosome tend to interact. Distances are in micrometers.
(EPS)

S4 Fig. Sparse reconstruction from a damped Hi-C map. The results in this figure mirror
those appearing in Fig 2, but reconstructions were generated by damping the contact frequen-
cies in the entire Hi-C map 2-, 20- and 200-fold before proceeding with the reconstruction (de-
tails in Materials and Methods).
(EPS)

S5 Fig. Integrated reconstruction based on 5% sparse Hi-C maps. The results in this figure
mirror those appearing in Figs 4 and 5, with the difference that predicted distances were
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integrated into 5% sparse Hi-C maps, with an equal number of predicted and Hi-C distances.
Orthologous-integrated models improved on 12 out of 15 tests (12 of them were significant),
while CUFS-integrated models improved on 13 (13 of them were significant).
(EPS)

S6 Fig. Integrated reconstruction based on FDR-corrected Hi-C maps. The results in this
figure mirror those appearing in Figs 4 and 5, with the difference that predicted distances were
integrated into FDR-corrected Hi-C maps, with an equal number of predicted and Hi-C dis-
tances. P-values here were computed using Wilcoxon rank-sum test, since the FDR corrected
map was fixed in all 20 reconstructions (unlike sparse reconstructions, where maps were re-
sampled and paired with their corresponding integrated models). Orthologous-integrated
models improved on 10 out of 15 tests (10 of them were significant), while CUFS-integrated
models improved on 10 (10 of them were significant).
(EPS)

S7 Fig. Integrated reconstruction based on damped Hi-C maps. The results in this figure
mirror those appearing in Figs 4 and 5, with the difference that predicted distances were inte-
grated into 200-fold damped Hi-C maps, with an equal number of predicted and Hi-C dis-
tances. P-values here were computed using Wilcoxon rank-sum test, since the damped map
was fixed in all 20 reconstructions (unlike sparse reconstructions, where maps were resampled
and paired with their corresponding integrated models). Orthologous-integrated models im-
proved on 11 out of 15 tests (11 of them were significant), while CUFS-integrated models im-
proved on 12 (11 of them were significant).
(EPS)

S8 Fig. Integrated reconstruction based on the complete Hi-C data. The results in this figure
mirror those appearing in Figs 4 and 5, with the difference that predicted distances were inte-
grated into the 100% Hi-C map, with predicted interactions amounting to one fifth of the con-
straints in the original map. P-values here were computed using Wilcoxon rank-sum test, since
the 100% map was fixed in all 20 reconstructions (unlike sparse reconstructions, where maps
were resampled and paired with their corresponding integrated models). CUFS-integrated
models improved on 13 (12 of them were significant), while orthologous-integrated models im-
proved on 9 out of 15 tests (7 of them were significant).
(EPS)

S9 Fig. Distribution of Hi-C distances. This figure presents the histogram of distances in the
Hi-C distance map (100 bins).
(EPS)

S10 Fig. Distribution of orto-HiC distances. This figure presents the histogram of the nor-
malized S. pombe distance map (100 bins), after transformation to S. cerevisiae coordinates
(orthologous genes) and scaling. For the purpose of reconstruction, distances up to the marked
threshold were sampled. These distances are expected to be more reliable. Note that the median
is equal to the one in S9 Fig.
(EPS)

S11 Fig. Distribution of CUFS distances. This figure presents the histogram of the scaled
CUFS distance map (100 bins). For the purpose of reconstruction, distances below the left
marked threshold and above the right threshold were sampled. Note that the median is equal
to the one in S10 and S9 Figs.
(EPS)
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