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Emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infec-

tion, COVID-19, has become the global panic since December 2019, which urges the

global healthcare professionals to identify novel therapeutics to counteract this pan-

demic. So far, there is no approved treatment available to control this public health

issue; however, a few antiviral agents and repurposed drugs support the patients

under medical supervision by compromising their adverse effects, especially in emer-

gency conditions. Only a few vaccines have been approved to date. In this context,

several plant natural products-based research studies are evidenced to play a crucial

role in immunomodulation that can prevent the chances of infection as well as com-

bat the cytokine release storm (CRS) generated during COVID-19 infection. In

this present review, we have focused on flavonoids, especially epicatechin,

epigallocatechin gallate, hesperidin, naringenin, quercetin, rutin, luteolin, baicalin, dio-

smin, ge nistein, biochanin A, and silymarin, which can counteract the virus-mediated

elevated levels of inflammatory cytokines leading to multiple organ failure. In addi-

tion, a comprehensive discussion on available in silico, in vitro, and in vivo findings

with critical analysis has also been evaluated, which might pave the way for further

development of phytotherapeutics to identify the potential lead candidatetoward

effective and safe management of the SARS-CoV-2 disease.
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1 | INTRODUCTION

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

outbreak has created a pandemic, which has turned out to be a major

public health crisis worldwide (Hamid, Mir, & Rohela, 2020). This

global outbreak of SARS-CoV-2, also termed coronavirus disease

2019 (COVID-19), was initially considered to be spread through zoo-

notic transmission connected with the seafood market in the Wuhan

area of China (Novel Coronavirus Pneumonia Emergency Response

Epidemiology Team, 2020). Soon after, it was acknowledged that

human-to-human transmission played a significant role in the conse-

quent outbreak, thus transmitted to the rest of the world through

rapid pulsatile movement (Yuki, Fujiogi, & Koutsogiannaki, 2020).

World Health Organization (WHO) declared it as a pandemic with an

average mortality rate of 2.9% around the world (Cucinotta &

Vanelli, 2020; Shereen, Khan, Kazmi, Bashir, & Siddique, 2020;

Sohrabi et al., 2020). Adults within the age range of 35–55 years are

prone to this infection than children, where males are accounted for

59–68% of total cases (Hamid et al., 2020; Q. Li et al., 2020). More-

over, older people with a median age of 75 years (48–89 years) and

associated with a poor immune system, chronic comorbidities, sur-

gery history, and under immunosuppressive drugs are more likely

to casualty (Wang, Tang, & Wei, 2020). Several antiviral drugs

(e.g., lopinavir, ritonavir, ribavirin, remdesivir, favipiravir,

umifenovir, and danoprevir), antibiotics (e.g., azithromycin,

ivermectin, and doxycycline), repurposed drugs (e.g., corticoste-

roids, chloroquine, hydroxychloroquine, camostat, darunavir,

cobicistat, duvelisib, decitabine, aspirin, clopidogrel, rivaroxaban,

disulfiram, nitazoxanide, isotretinoin, infliximab, pamrevlumab,

levilimab, ruxolitinib, tocilizumab, sirolimus, dexamethasone, pred-

nisone, methylprednisolone, colchicine, aviptadil, and indometha-

cin) as alone or in combination are at different stages of

investigation in multiple clinical trials globally for prophylactic as

well as treatment of this disease (Chibber, Haq, Ahmed, Andrabi, &

Singh, 2020; Horby et al., 2020; Luo et al., 2020; Million

et al., 2020; Rabby, 2020; M. A. Rahman et al., 2020; Scavone

et al., 2020). However, there is no approved therapy available to

date to selectively counteract this disease prevalence. Moreover,

consumption of the above-mentioned drugs is associated with seri-

ous adverse effects, including cardiotoxicity, hepatotoxicity, gastro-

intestinal toxicity, renal toxicity, reduced red blood cells (RBC)

level, etc. (Falc~ao, de Góes Cavalcanti, Filgueiras Filho, & de

Brito, 2020; Funck-Brentano, Nguyen, & Salem, 2020; Million

et al., 2020; Sacks et al., 2018; Sardana, Sinha, & Sachdeva, 2020).

Alternatively, Comirnaty (mRNA-based vaccine), Moderna COVID-

19 vaccine (mRNA-based vaccine), CoronaVac (inactivated vaccine),

Covishield (Adenovirus vaccine), Sputnik V (non-replicating viral

vector), BBIBP-CorV (inactivated vaccine), EpiVacCorona (peptide

vaccine), and Covaxin (inactivated vaccine) are recently approved

vaccines, whereas several others are at different stages of research

(https://www.clinicaltrials.gov). There is a growing awareness

among the people toward boosting immunity to prevent SARS-

CoV-2 infection and to recover infected cases.

Under these circumstances, natural products have immense

potential to heighten the immunity status of the people. Moreover,

pathophysiological investigation of the COVID-19 patients showed a

crucial role of cytokine storm in the severity and complexity of the

disease (Nile et al., 2020; Q. Ye, Wang, & Mao, 2020; Ming

Zhao, 2020). Currently, supplementation therapy with zinc, vitamin C,

vitamin D, deferoxamine, lactoferrin, omega-3-fatty acids, glycine, and

probiotics has also been prescribed to minimize the likelihood of

infection (http://ctri.nic.in; https://www.clinicaltrials.gov). In this

direction, biological activities like immunomodulatory, antiviral, anti-

inflammatory, and so on are crucial to prevent the chances of infec-

tion as well as combat the cytokine release storm (CRS) generated

during this viral infection (Boozari & Hosseinzadeh, 2020; Islam

et al., 2020; Yang, Zhang, et al., 2020). Natural products are well

known for these above-mentioned pharmacological actions because a

large proportion of marketed drugs are indirectly or directly obtained

from natural origin. Currently, several research works are also ongoing

under this purview as there are quite a few reported evidences in the

literature. Plants species like Allium, Piper, Boswellia, Curcuma, Echina-

cea, Glycyrrhiza, etc., are known to have immunomodulatory and anti-

inflammatory effects for treating COVID-19 patients (Brendler

et al., 2020; Yang, Zhang, et al., 2020). Similarly, cannabidiol-rich

extract of Cannabis sativa had shown to modulate the expression of

ACE2 and serine protease, TMPRSS2 (Wang, Kovalchuk, et al., 2020).

The extract also reported possessing an anti-inflammatory activity to

regulate the cytokine storm during COVID-19 infection (Onaivi &

Sharma, 2020). Additionally, plant-based natural products like

homoharringtonine, silvestrol, tylophorine, 7-methoxycryptopleurine,

and so on are reported for their potent antiviral activity (Islam

et al., 2020). Based on the ADMET profile of different natural bioac-

tive compounds, Abd El-Mageed et al. (2021) reported that caulerpin

could be considered as a potential candidate to target SARS-CoV-2

spike protein, SARS-CoV-2,3-chymotrypsin-like protease, and a host

target human angiotensin-converting-enzyme 2 (ACE2) receptor.

Methyl tanshinonate, sugiol, α-cadinol, 8-β-hydroxyabieta-9,13-dien-

12-one, dehydroabieta-7-one, and tanshinone-I are plant-based ter-

penes or their derivatives exhibited activity against SARS-CoV-2 pro-

tease (Alrasheid, Babiker, & Awad, 2021; Diniz, Perez-Castillo,

Elshabrawy, & de Sousa, 2021). Rhein, an active metabolite of

diacerein (anthraquinone derivative), is known to inhibit cytokine

storm and viral replication as well as inhibits SARS-CoV-2 spike pro-

tein and ACE2 activity (de Oliveira et al., 2020). Concurrently, studies

on ayurvedic preparations or traditional plant-based medicines are

ongoing in different parts of the world to prevent chances of infection

as well as for improving the immunity of a person to combat this dis-

ease (Iqubal, Iqubal, Ahmed, & Haque, 2021). A few examples include

Tinospora cordifolia, Glycyrrhiza glabra, Cocculus hirsutus, Withania som-

nifera, Ocimum sanctum, Bryonia alba, Curcuma longa, Brazilian green

propolis, resistant starch, ayurvedic kadha, shanshamani vati plus, etc.

(http://ctri.nic.in; https://www.clinicaltrials.gov). Despite the unprece-

dented advancement of the modern system of medicine, a high per-

centage of marketed drugs are evidenced from natural origin,

especially plant-based products (Gurnani, Mehta, Gupta, &
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Mehta, 2014). Among these herbal components, flavonoids are

known to be useful to combat against overproduction of cytokines

and/or boosting the immune system based on their several key

pharmacological properties (A. Agrawal, 2011; García-Lafuente,

Guillamón, Villares, Rostagno, & Martínez, 2009; Havsteen, 1983;

Serafini, Peluso, & Raguzzini, 2010; Tripoli, La Guardia,

Giammanco, Di Majo, & Giammanco, 2007). Additionally, flavo-

noids are also found to be beneficial to protect drug-induced tox-

icity in major organs as evidenced in COVID-19 patients (Dillard &

German, 2000; Sadzuka, Sugiyama, Shimoi, Kinae, & Hirota, 1997;

Shahbazi, Dashti-Khavidaki, Khalili, & Lessan-Pezeshki, 2012).

Therefore, we had explored the available literature on flavonoids

for their inhibitory effect on important cytokines, particularly

interleukins (ILs) like IL-1β, IL-6, and tumor necrosis factor-alpha

(TNF-α), including the pathways of action based on in vitro as well

as an in vivo platforms. Most of the reported preclinical efficacy

by the flavonoids was evaluated under the lung injury model,

which could be closely in line with the SARS-CoV-2 infection.

Available reports on flavonoids based antiviral effects as well as in

silico molecular docking studies to predict the binding of SARS-

CoV-2 with flavonoids are also described. Being the first of a kind,

to the best of our knowledge, this comprehensive information of

flavonoids can be handy for the researchers toward the develop-

ment of phytotherapeutics for the prevention as well as symptom-

atic management of COVID-19.

2 | ROLE OF CYTOKINES IN IMMUNO-
PATHOPHYSIOLOGY OF SARS-COV-2
INFECTION

The pathophysiological mechanism of SARS-CoV-2 infection involves

invasion of the virus within the cell through ACE2 receptor, primarily

via the toll-like receptor-4 (TLR-4) (Ekaidem, Moses, & Tatfeng, 2020;

Liu, Xiao, et al., 2020). Thereafter, this virus-mediated infection stimu-

lates the immune response by recruiting the macrophages as well as

monocytes, cytokines, and adaptive B and T cell immune responses in

the microenvironment of the lung cells. Viral infection and replication

of SARS-CoV-2 in the airway epithelial cells induce elevated virus-

mediated pyroptosis (programmed cell death due to viral infection)

with vascular leakage, which triggers the subsequent inflammatory

responses (I.-Y. Chen, Moriyama, Chang, & Ichinohe, 2019; Fink &

Cookson, 2005; Zhang, Zhou, et al., 2020). IL-1β, the major inflamma-

tory cytokine, is released during pyroptosis and additionally increased

during SARS-CoV-2 infection (Figure 1) (Huang, Wang, et al., 2020).

The pathogen-associated molecular patterns (e.g., viral RNA) and

damage-associated molecular patterns (e.g., ATP, nucleic acid and,

ASC oligomers) by a variety of pattern-recognition receptors, alveolar

macrophages, and alveolar epithelial cells were reported. After confir-

mation of COVID-19, proinflammatory cytokines and chemokines

such as IL-6, interferon-gamma (IFN-γ), monocyte chemoattractant

protein-1(MCP1), and inducible protein (IP-10) were reported to be

F IGURE 1 A schematic overview of SARS-CoV-2 invasion into the lung cells via ACE 2 receptor and generation of cytokine storm to
adversely affect the lungs alveoli to ARDS [Colour figure can be viewed at wileyonlinelibrary.com]
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elevated into the blood of infected patients (Huang, Wang,

et al., 2020; Zhang, Dong, et al., 2020). These cytokines attract

immune cells, particularly monocytes and T lymphocytes, from the

blood to the site of infection (S. Tian et al., 2019; Xu, Shi, et al., 2020).

The recruitment of immune cells and permeation of lymphocytes into

the airways can elucidate the lymphopenia and elevated neutrophil–

lymphocyte ratio in 80% of SARS- CoV-2 infected patients (Guan

et al., 2020; S. Liu et al., 2016). Significant complications of lung occur

mainly due to inflammation, which is again induced by interleukin and

cytokine storm (Figure 1). Data on COVID-19 patients demonstrated

that the elevated levels of serum cytokines, including IL-6, IL-10, IL-

1β, TNF-α, IFN-γ, granulocyte colony-stimulating factor (G-CSF), mac-

rophage colony-stimulating factor (M-CSF), granulocyte-macrophage

colony-stimulating factor (GM-CSF), MCP-1, and macrophage inflam-

matory protein 1-α (MIP 1-α) might increase hospitalization of the

patients, particularly in the intensive care units (ICUs) (Huang, Wang,

et al., 2020; Mehta et al., 2020; Zhou, Fu, Zheng, Wang, &

Zhao, 2020). Actually, stimulation of interleukins (e.g., IL-6, IL-1β, and

TNF-α) facilitates the production of specific cytotoxic CD8+ T cells

followed by the stimulation of antigen-specific B cells and antibody

via CD4+ helper T cells (Ahmadpoor & Rostaing, 2020). COVID-19

patients possessed average or reduced lymphopenia, and white cell

counts, as well as patients with severe disease had demonstrated con-

siderably augmented levels of neutrophils and urea in their blood (Liu,

Du, et al., 2020; Tan et al., 2020). IL-6 level in COVID-19 patients had

shown to increase constantly, which is positively connected with

severity of the disease (critically ill patients > severely ill patients >

ordinary patients). In addition, the level of IL-6 was reported to be rel-

atively higher in non-survivors as compared to the survivors of

COVID-19 (L. Chen et al., 2020a; Sinha, Matthay, & Calfee, 2020;

Zhou, Yu, et al., 2020). Patients with severe diseased conditions

exhibited a highly inflammatory monocyte-derived FCN1+ macro-

phage population within the bronchoalveolar lavage fluid (BALF) (Liao

et al., 2020). These patients demonstrated a considerably higher per-

centage of CD14+ and CD16+ inflammatory monocytes in peripheral

blood (Y. Zhou, Fu, et al., 2020). These cells are known to produce

inflammatory cytokines that could further contribute to the cytokine

storm. Hyperproduction of cytokines possibly promotes edema, viral

sepsis, and lung injury, which result in acute respiratory distress syn-

drome (ARDS) followed by hepatic, renal, and cardiovascular compli-

cations (Figure 1) (Costela-Ruiz, Illescas-Montes, Puerta-Puerta,

Ruiz, & Melguizo-Rodríguez, 2020; Huang, Wang, et al., 2020; Luo

et al., 2020; Moon, 2020; Prompetchara, Ketloy, & Palaga, 2020;

Wang, He, & Wu, 2020).

3 | IMMUNO TARGETS FOR THE
MANAGEMENT OF SARS-COV-2 INFECTION

During SARS-CoV-2 infection, the response elicited by the cytokines

has been regarded as a decisive part of immunity and immune-

pathophysiology (Channappanavar & Perlman, 2017). The augmented

level of serum cytokines, including TNF-α, IL-6, IL-10, and IFN-γ, were

linked with the severity of the disease and adverse clinical outcomes

(Huang, Wang, et al., 2020; Liu, Zhang, et al., 2020). Among these,

several cytokines exhibit different intracellular signaling pathway

mediated by Janus kinase (JAK)-signal transducer and activator of

transcription (STAT), mitogen-activated protein kinase (MAPK), and

nuclear factor-kappa B (NF-κB) (S. M. U. Ahmed, Luo, Namani, Wang, &

Tang, 2017; Catanzaro et al., 2020; Dzobo, Chiririwa, Dandara, &

Dzobo, 2021; J. S. Kim et al., 2021; Schwartz et al., 2017). It could be

stated that the involvement of cytokines acts as a significant part in

the CRS, triggers the JAK-STAT, MAPK, and NF-κB followed by stim-

ulation of transcription signaling pathway to confer various biological

functions, including lymphocyte growth and differentiation, immune

regulation, oxidative stress, and so on (S. M. U. Ahmed et al., 2017;

Catanzaro et al., 2020; Kang, Tanaka, Narazaki, & Kishimoto, 2019;

Schwartz et al., 2017). Stimulation of nuclear factor erythroid

2-related factor 2 (Nrf2) is known to inhibit the activation of

proinflammatory cytokines, viz., IL-6, IL-1β, TNF-α, and promote the

upregulation of anti-inflammatory gene responses (S. M. U. Ahmed

et al., 2017). In this context, it is noteworthy to mention that inflam-

matory storm, which engenders during SARS-CoV-2 infection, can be

effectively managed by the flavonoids through targeting JAK-STAT,

MAPK, NF-κB, and Nrf2 inflammatory signaling pathways (J. S. Kim

et al., 2021; Serafini et al., 2010; Tisoncik et al., 2012; Zeinali,

Rezaee, & Hosseinzadeh, 2017). On the other hand, NF-κB, a tran-

scription factor, is activated by inflammatory stimuli and stimulates

IκB kinase in the cytosol (Brasier, 2010). Consequently, signaling path-

ways lead to migration of NF-κB toward the nucleus via canonical or

noncanonical, which initiate the target-specific gene. Upon stimula-

tion, NF-κB pathway acts very quickly and subsequently elevated the

proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α), ultimately

results in apoptosis. Again, signaling of TNF-α receptor plays a signifi-

cant role in the canonical pathway of NF-κB in cellular apoptosis. Fol-

lowing the discussion in the previous section, IL-6 is one of the main

activators of JAK/STAT signaling pathway and associated with acute

inflammation and cytokine storm (Luo et al., 2020; Mehta et al., 2020;

Qin et al., 2020; Tisoncik et al., 2012). It had been demonstrated that

activation of membrane-bound IL-6 receptor stimulates the down-

stream activation of JAK/STAT signaling, which further triggers the

production of IL-6 (Zhang, Wu, Li, Zhao, & Wang, 2020). These path-

ways had been reported to be activated aberrantly in COVID-19

patients, thereby aggravating the inflammatory response within host

(Catanzaro et al., 2020). Several repurposed drugs have been identi-

fied based on the target, including viral protease, regulating immunity,

reducing the inflammatory CRS, declining viral loads, and improving

pulmonary function. Currently, the treatment of COVID-19 disease is

primarily focused on symptomatic treatment of inflammation, CRS,

and compromised respiratory function targeting the inflammatory sig-

naling pathways (Nile et al., 2020). A specific anti-cytokine approach

had been proven to be more effective in treating cytokine storm syn-

dromes targeting IL-1 and IL-6 (Nasonov & Samsonov, 2020; Q. Ye

et al., 2020). However, rapid research on the pathophysiology of

SARS-CoV-2 helps to reveal some novel targets for potential treat-

ment. Several drugs that have been experimented based on different
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immuno targets to manage SARS-CoV-2 infection are represented in

Table 1, and their clinical trials are ongoing at an exceptional pace to

validate their efficacy and safety to combat the severity of the dis-

ease. In recent times, synthetic drugs like hydroxychloroquine,

azithromycin, adalimumab, tocilizumab, and baricitinib have been

explored under purview of management inflammatory conditions in

SARS-CoV-2 infection, however, these agents are associated with

several adverse effects including QT prolongation, hepatotoxicity,

dyspepsia, abdominal cramps, erythema, eosinophilia, and so on

(Bakadia et al., 2020; Falc~ao et al., 2020; Funck-Brentano et al., 2020;

Million et al., 2020; Sernicola et al., 2020; Srinivasa, Tosounidou, &

Gordon, 2017; Tsilimbaris et al., 2009; Zhang, Zhang, et al., 2020).

Alternatively, the convalescent serum has become one of the best

options in the treatment of SARS-CoV-2 infection; however, transfu-

sion of plasma has several side effects, including allergic and anaphy-

lactic reactions, hemolysis, and transfusion-related acute lung injury

(MacLennan & Barbara, 2006). A higher level of inflammation induced

by viral load aggravates these adverse effects, especially the hyper-

activity of bronchial lining followed by apnea, hypoxia, and multi-

organ failure, even leading to death (Fajgenbaum & June, 2020; Gib-

son, Qin, & Puah, 2020; Huang, Wang, et al., 2020; Wang, Hu,

et al., 2020). Therefore, there is a high demand for suitable alterna-

tives from natural sources where plant-based natural products can

safely fulfill the purpose.

4 | POTENTIAL OF FLAVONOIDS TO BE
PHYTOTHERAPEUTICS FOR SARS-COV-2
INFECTION

According to the WHO report, approximately 80% of the world's pop-

ulation relies on natural products to satisfy their health necessities.

Moreover, there are a large number of marketed drugs, which are

directly or indirectly obtained from plant-based natural origin (Gurnani

et al., 2014; Thomford et al., 2018). Additionally, recent experimental

results of different supplement therapies provide a level of hope in

the current scenario of SARS-CoV-2 infection toward symptomatic

management (Infusino et al., 2020). Jayawardena, Sooriyaarachchi,

Chourdakis, Jeewandara, & Ranasinghe (2020) demonstrated that

vitamins (A and D), trace elements (selenium, zinc), nutraceuticals, and

probiotics benefit in patients infected with COVID-19 to reduce

inflammation-related syndromes. These supplementations have

shown a positive impact on enhancing immunity during viral infec-

tions. Molecular docking, in vitro, and in vivo studies have suggested

that plant-based natural products have the potential to interfere with

viral entry, inhibition of protease enzymes, viral assembly, reverse

transcriptase, and inflammation associated with SARS-CoV-2

(Colunga Biancatelli, Berrill, Catravas, & Marik, 2020; Elfiky, 2020;

M. Russo, Moccia, Spagnuolo, Tedesco, & Russo, 2020; Upadhyay

et al., 2020; Yang, Zhang, et al., 2020). Under these circumstances,

TABLE 1 Potential drugs/therapeutic agents with its target on immune system for the treatment of SARS-CoV-2 infection

Drugs/Therapeutic agents Targets/Mechanism of action References

Chloroquine Suppression of IL-6 and TNF-α (Gao, Tian, & Yang, 2020)

Hydroxychloroquine Reduce viral load by inhibiting the IL-6 and TNF-α (Gautret et al., 2020)

Azithromycin Blockage of IL-6 and TNF-α (Chen et al., 2020; Gautret et al., 2020)

Anakinra Inhibits the secretion of IL-6 (Monteagudo, Boothby, & Gertner, 2020)

Dexamethasone Reduce the level of inflammatory cytokines,

chemokines, and adhesion molecules

(Horby et al., 2020)

Tocilizumab IL-6 receptor antagonists and block IL-6 signaling to

revert the cytokine storm production

(Zhang, Wu, et al., 2020)

Adalimumab Specific blockade of TNF-α (Rizk et al., 2020)

Certolizumab Anti-TNF-α antibody (Zhang et al., 2020)

Eculizumab Inhibitor of the terminal complement system (Scavone et al., 2020)

Baricitinib Targets JAK-STAT and inhibits viral entry and

inflammation

(Cantini et al., 2020; Zhang, Zhang, Qiao,

Zhang, & Qi, 2020)

Ruxolitinib JAK-STAT inhibitor (Luo et al., 2020)

Fedratinib JAK-STAT inhibitor (Stebbing et al., 2020)

Tofacitinib JAK-STAT and TYK2 inhibitor (Luo et al., 2020)

Sarilumab Inhibits anti-human IL-6R (Benucci et al., 2020)

Myo-inositol Reduction in IL-6 levels, and prevent the cascade

inflammation response

(Bizzarri, Laganà, Aragona, & Unfer, 2020)

Chymotrypsin and papain-like protease Inhibits the host innate immune responses (L. Chen et al., 2005)

Mesenchymal stem cell Down-regulation of IL-1, IL-12, TNF-α, and IFN-γ (Leng et al., 2020)

Convalescent plasma therapy Inhibits viremia and regulate overactive immune

system (cytokine storm)

(Chen, Xiong, Bao, & Shi, 2020b)
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flavonoids, the polyphenolic secondary metabolites of plants, play a

crucial role in protecting patients with several diseases. Normally,

people consume these agents as dietary supplements/health booster

as well as to mitigate ailments. Flavonoids represent the group of nat-

ural compounds with phenolic structures and are present in fruit, veg-

etables, grains, flowers, stems, bark, roots, tea, and wine (Del Rıo

et al., 2004; Harnly et al., 2006; Lairon & Amiot, 1999; Nielsen,

Freese, Kleemola, & Mutanen, 2002; Zakaryan, Arabyan,

Oo, & Zandi, 2017). Flavonoids are characterized into different

classes based on their chemical structures (Brodowska, 2017;

Kumar & Pandey, 2013), which are useful as antioxidant, antiviral,

antimicrobial, anti-inflammatory, immunomodulatory, anticancer, and

antithrombotic activities (X. Feng & Hao, 2021; Friedman, 2014; Gar-

cía-Lafuente et al., 2009; Juan, PÉrez-VizcaÍno, JimÉnez, Tamargo, &

Zarzuelo, 2001; Kaul, Middleton Jr, & Ogra, 1985; H. P. Kim, Son,

Chang, & Kang, 2004; S.-S. Zhang, Tan, & Guan, 2021). These flavo-

noids have the potential to control lung inflammation in various disor-

ders, including lung emphysema, asthma, ARDS, and COPD (Geraets

et al., 2009; Jantan, Ahmad, & Bukhari, 2015; Kojima et al., 2019;

Lago et al., 2014; Tanaka & Takahashi, 2013; Zeinali et al., 2017;

R. Zhang et al., 2017). It has been illustrated earlier in this section that

inflammatory cytokines could be the therapeutic targets for the treat-

ment of inflammatory diseases (Siebert, Tsoukas, Robertson, &

McInnes, 2015). Therefore, the impact of flavonoids on inflammatory

mediators, mainly via modulating cytokines, is significant for the

development of alternative treatments for inflammation-related dis-

eases like COVID-19. During inflammation, these flavonoids are

known to inhibit the inflammatory mediators, viz., reactive oxygen

species (ROS) and nitric oxide (NO); regulate the activity of inflamma-

tory enzymes and inducible NO synthase; decrease the expression of

cytokines production by modulating the transcription factors, includ-

ing activating protein-1 (AP-1), NF-κB, MAPK, and JAK-STAT pathway

(A. Ahmad, Kaleem, Ahmed, & Shafiq, 2015; S. M. U. Ahmed

et al., 2017; Hämäläinen, Nieminen, Vuorela, Heinonen, &

Moilanen, 2007; Hougee et al., 2005; H. P. Kim et al., 2004; Kumar &

Pandey, 2013). During an unregulated immune-inflammatory

response, there is an augmentation in the level of inflammatory medi-

ators, which might lead to several chronic diseases (Leyva-López,

Gutierrez-Grijalva, Ambriz-Perez, & Heredia, 2016). In this direction,

the use of flavonoids as IL-6, IL-1β, and TNF-α inhibitors can be an

effective alternative to neutralize the emergence in CRS. Moreover,

these compounds also have the potential to interfere with virus

attachment to the host cell, main protease, reverse transcriptase, viral

assembly, and polymerase enzyme of SARS-CoV-2 (Colunga

Biancatelli et al., 2020; Elfiky, 2020; M. Russo et al., 2020). They also

showed synergistic potential against COVID-19 with conventional

drugs and decline systemic toxicity. It has been demonstrated that fla-

vonoids reduce the expression and production of cytokines without

exerting any adverse effects during chronic consumption (Leyva-

López et al., 2016). Hence, flavonoids are considered to be pleiotropic

compounds because of their promising role to interact with diverse

cellular targets and block multiple pathways (G. L. Russo, Tedesco,

Spagnuolo, & Russo, 2017; M. Russo et al., 2020; Spagnuolo,

Moccia, & Russo, 2018). These features constitute flavonoids as

potential candidates to combat the progression of severe illness and

the pathophysiological process associated with COVID-19 disease.

The mechanism of actions to obtain the physiological role depends on

several pathways that can be targeted to combat the production of a

cytokine storm in COVID-19. The targets with different pathways for

action are depicted in Figure 2. Alternatively, the effect of flavonoids

on major cytokines and pathways of action using cell-based in vitro

assay models are summarized in Table 2. The anti-inflammatory action

of flavonoids on inhibition of serum cytokines, including IL-6, IL-1β,

and TNF-α, along with their pathways of action in the preclinical

model of in vivo inflammation like lung injury model is presented in

Table 3, whereas the clinical data of flavonoids toward the cytokine

inhibition are summarized in Table 4. Their antiviral effects can be an

added advantage in developing as phytotherapeutics. Their potential

can have great importance to reduce the mortality in severe and criti-

cally ill COVID-19 patients. We have summarized a few of the impor-

tant flavonoids in the connecting sections, which are possessing

prominent roles toward combating COVID-19.

4.1 | Epicatechin

Epicatechin is a flavonoid that belongs to the class of flavan-3-ol. It is

widely present in tea (Chan et al., 1999). Epicatechin exhibited signifi-

cant inhibition of IL-6 andIL-8 in human whole blood culture stimu-

lated with phytohemagglutinin (PHA) and lipopolysaccharide (LPS) (Al-

Hanbali et al., 2009). It also has ability to impede significantly the IL-

1β action (Mitjans et al., 2004). Epicatechin at a dose of 15 mg/kg in a

preclinical mice model of acute lung injury had depicted noticeable

inhibition of IL-6 and TNF-ɑ secretion by interfering with p38 MAPK

signaling pathways (Xing et al., 2019). Epicatechin exhibited the role

of a potent reverse transcriptase inhibitor activity in HIV (Chang,

Hsu, & Lin, 1994; Chu, Hsieh, & Lin, 1992). Tea catechins, which con-

tain both epicatechin and epigallocatechin gallate (EGCG), are permit-

ted for use in adults at 500–1000 mg/day (or Camellia sinensis extract

at 1000–2000 mg/day) as nutraceuticals (FSSAI, 2016). A recent in sil-

ico report by Ghosh and team revealed that three polyphenols of

green tea extract, specifically EGCG, and gallocatechin-3-gallate, pos-

sess drug likeliness with less conformational fluctuations. Further-

more, the authors suggested its efficacy against the main protease of

SARS-CoV-2 to prevent the key component of a viral replication

(Ghosh, Chakraborty, Biswas, & Chowdhuri, 2020). Similarly,

Storozhuk also reported that catechin constituents in green tea are

favorable to decrease the associated risks of COVID-19 disease

(Storozhuk, 2020).

4.2 | EGCG

EGCG is another compound from the class of flavan-3-ol and is also

widely present in tea (Chan et al., 1999). It had been reported that

EGCG inhibits IL-6, TNF-ɑ, and IL-8 levels in phorbol 12-myristate
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13-acetate and calcium ionophore A23187 (PMACI)-stimulated

human mast cells (HMC-1) (Shin et al., 2007). On the other hand,

EGCG suppresses the secretion of IL-6, IL-1β, and TNF-ɑ in fluoride

(Shanmugam et al., 2016) and sea aspiration (Liu, Dong, et al., 2014)-

induced lung injury in rat model via regulation of Nrf2/Keap1 and

JAK/STAT pathways, respectively. Vázquez-Calvo et al. reported

in vitro antiviral property of EGCG against west Nile virus, Zika virus,

dengue virus, and influenza virus by targeting the replication (J.-M.

Song, Lee, & Seong, 2005; Vázquez-Calvo, Jiménez de Oya, Martín-

Acebes, Garcia-Moruno, & Saiz, 2017). EGCG possessed a remarkable

inhibition of reverse transcriptase enzymatic activity in murine leuke-

mia virus (Chang et al., 1994; Chu et al., 1992). Carneiro et al. reported

significant ability of EGCG in inhibiting the entry of Zika virus within

host cells in Vera cultured cells and representing a virucidal activity at

a concentration less than 5 μM (Carneiro, Batista, Braga, Nogueira, &

Rahal, 2016). It also exhibited considerable inhibition of SARS-CoV

3CLpro with an IC50 value of 47–73 μM. It also demonstrated signifi-

cant inhibitory activity against the main protease of SARS-CoV-2 in a

dose-dependent manner with IC50 of 7.5 μg/ml in cultured cells (Jang

et al., 2020). Furthermore, EGCG is considered safe and already

included in the list of nutraceuticals as per FSSAI guidelines

(FSSAI, 2016). Molecular docking studies exhibited that EGCG has a

greater affinity to bind with the S-protein of SARS-CoV-2 (Dzobo

et al., 2021; Khan, Khan, Khan, Ahamad, & Ansari, 2020). It has also

been reported that EGCG could be used for the COVID-19 treatment

as it interferes with the transition that exists between the closed and

open state of the viral spike (Maiti & Banerjee, 2020). It inhibits viral

activity by binding to the 3CLpro active site and the 3-OH

galloyl group (Chojnacka, Witek-Krowiak, Skrzypczak, Mikula, &

Młynarz, 2020). Additionally, Ohgitani and co-researchers reported

significant efficacy of EGCG and other derivatives of catechins,

theasinensin A (TSA), and galloylated theaflavins toward the inactiva-

tion of the SARS-CoV-2 (Adhikari et al., 2020; Ohgitani et al., 2020).

Overall, it could be summarized that EGCG could be a potential candi-

date to combat SARS-Cov-2.

4.3 | Hesperidin

Hesperidin is the most common citrus flavonoid from the class of fla-

vanones and is widely found in lemons, sweet oranges, and in a few

other fruits and vegetables (Zanwar, Badole, Shende, Hegde, &

Bodhankar, 2014). Its inhibitory role in the production of IL-6, IL-1β,

TNF-α, and IL-8 in THP-1 cells had been reported (C.-C. Yeh

et al., 2007). Hesperidin has the potential to inhibit the expression of

TNF-α, IL-1β, and IL-12 as well as enhancing the production of IL-4

and IL-10 in LPS-induced acute lung injury model in Wistar rats via

downregulation of NF-κB and AP-1 signaling (C.-C. Yeh et al., 2007).

F IGURE 2 A schematic overview of flavonoids for its action on possible immuno targets to counteract cytokine storm associated with SARS-
CoV-2 infection [Colour figure can be viewed at wileyonlinelibrary.com]

4264 GOUR ET AL.

http://wileyonlinelibrary.com


T
A
B
L
E
2

In
vi
tr
o
ef
fe
ct

o
f
fl
av
o
no

id
s
o
n
cy
to
ki
ne

s

Fl
av

o
no

id
's

na
m
e

A
ct
io
n
o
n
cy
to
ki
ne

s
(T
es
t
co

nc
en

tr
at
io
n)

A
ss
ay

ce
ll
lin

es
P
at
h
w
ay

o
f
ac
ti
o
n

R
ef
er
en

ce
s

IL
-6

IL
-1
β

T
N
F-
ɑ

O
th
er

cy
to
ki
ne

s

C
at
ec
hi
n

⊥
[6
.2
5
–2

5
μM

]
–

⊥
[6
.2
5
–2

5
μM

]
"IL

-4
M
o
us
e
m
ic
ro
gl
ia
l

ce
ll
lin

e
B
V
-2

In
h
ib
it
io
n
o
f
N
F
-κ
B
si
gn

al
in
g

p
at
h
w
ay

(S
ye

d
H
u
ss
ei
n
,

K
am

ar
u
d
in
,&

A
b
d
u
l

K
ad

ir
,2

0
1
5
)

–
–

⊥
[2
5
μg

/m
l]

–
m
ac
ro
ph

ag
es

–
(G
u
ru
va
yo

o
ra
p
p
an

&

K
u
tt
an

,2
0
0
8
)

E
pi
ca
te
ch

in
⊥
[1
–1

0
0
μg

/m
l]

–
–

⊥
IL
-8

an
d
"IL

-

1
0

W
ho

le
bl
o
o
d

cu
lt
ur
e

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n

(A
l-
H
an

b
al
ie

t
al
.,
2
0
0
9
)

–
⊥
[2
0
–1

2
0
μM

]
–

–
H
um

an
bl
o
o
d

cu
lt
ur
e

–
(M

it
ja
n
s
et

al
.,
2
0
0
4
)

E
G
C
G

⊥
[5
7
.3
%

at
1
0
0
μM

]
–

⊥
[3
9
.4
%

at
1
0
0
μM

]
⊥
IL
-8

H
M
C
-1

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
si
gn

al
in
g

p
at
h
w
ay

(S
h
in

et
al
.,
2
0
0
7
)

T
he

af
la
vi
n

⊥
[5
0
μg

/m
l]

–
–

–
B
o
ne

m
ar
ro
w

ce
lls

D
o
w
n
-r
eg

u
la
ti
o
n
o
f
N
F
-κ
B

an
d
M
A
P
K
p
at
h
w
ay
s

(S
.K

im
&
Jo
o
,2

0
1
1
)

⊥
[6
.2
5
–5

0
μM

in
U
9
3
7

ce
lls
]
an

d
⊥
[6
.2
5
–5

0
μM

in
R
A
W

ce
lls
]

⊥
[1
2
.5
–5

0
μM

in
U
9
3
7

ce
lls
]
an

d
⊥
[6
.2
5
–5

0
μM

in
R
A
W

ce
lls
]

⊥
[6
.2
5
–5

0
μM

in
U
9
3
7

ce
lls
]
an

d
⊥
[6
.2
5
–5

0
μM

in
R
A
W

ce
lls
]

–
U
9
3
7
hu

m
an

le
uk

em
ia
an

d

R
A
W

2
6
4
.7

ce
lls

D
o
w
n
-r
eg

u
la
ti
o
n
o
f
N
F
-κ
B

an
d
M
A
P
K
p
at
h
w
ay
s

(Y
.W

u
et

al
.,
2
0
1
7
)

⊥
[2
5
an

d
5
0
μM

]
⊥
[2
5
an

d
5
0
μM

]
⊥
[5
0
μM

]
"IL

-1
0

R
A
W

2
6
4
.7

ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

(K
o
,L
o
,W

an
g,
C
h
io
u
,&

Li
n
,2

0
1
4
)

H
es
pe

ri
di
n

⊥
[5
0
μM

]
⊥
[5
0
μM

]
⊥
[5
0
μM

]
⊥
IL
-8

T
H
P
-1

ce
lls

D
o
w
n
re
gu

la
ti
o
n
N
F
-κ
B
an

d

A
P
-1

si
gn

al
in
g
p
at
h
w
ay
s

(C
.-
C
.Y

eh
et

al
.,
2
0
0
7
)

H
es
pe

ri
ti
n

⊥
[1

an
d
1
0
μM

]
–

–
–

SW
9
8
2
sy
no

vi
al

ce
lls

In
h
ib
it
io
n
o
f
JN

K
si
gn

al
in
g

(C
h
o
i&

Le
e,

2
0
1
0
)

⊥
[1
0
–4

0
μM

]
⊥
[1
0
–4

0
μM

]
⊥
[1
0
–4

0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
an

d

ac
ti
va
ti
o
n
o
f
N
rf
2

p
at
h
w
ay
s

(R
en

et
al
.,
2
0
1
6
)

Li
qu

ir
it
ig
en

in
⊥
[1
0
an

d
3
0
μM

]
⊥
[1
0
an

d
3
0
μM

]
⊥
[1
0
an

d
3
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

(Y
.K

im
et

al
.,
2
0
0
8
)

⊥
[5
0
an

d
1
0
0
μM

]
⊥
[5
0
an

d
1
0
0
μM

]
⊥
[5
0
an

d
1
0
0
μM

]
–

M
o
us
e
m
ic
ro
gl
ia
l

ce
ll
lin

e
B
V
-2

–
(Y
u
et

al
.,
2
0
1
5
)

E
ri
o
di
ct
yo

l
⊥
[2
.5
–1

0
μM

]
⊥
[1
0
μM

]
⊥
[1
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n
,

M
A
P
K
,E

R
K
,a
n
d
JN

K

p
at
h
w
ay
s

(J
.K

.L
ee

,2
0
1
1
)

T
ax
if
o
lin

⊥
[1
0
0
an

d
2
0
0
μM

]
⊥
[1
0
0
an

d
2
0
0
μM

]
–

–
R
A
W

2
6
4
.7

ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(R
h
ee

et
al
.,
2
0
0
8
)

N
ar
in
ge

ni
n

⊥
[2
5
an

d
5
0
μM

]
⊥
[1
0
–5

0
μM

]
⊥
[2
5
an

d
5
0
μM

]
⊥
IL
-8

U
9
3
7
ce
lls

R
eg

u
la
ti
o
n
o
f
p
h
o
sp
h
o
ry
la
ti
o
n

o
f
E
R
K
an

d
M
A
P
K

(B
o
d
et
,L

a,
E
p
if
an

o
,&

G
re
n
ie
r,
2
0
0
8
)

P
in
o
ce
m
br
in

⊥
[1
0
0
–3

0
0
μg

/m
l]

⊥
[2
0
0
–3

0
0
μg

/m
l]

⊥
[1
0
0
–3

0
0
μg

/m
l]

"IL
-1
0

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
p
h
o
sp
h
o
ry
la
ti
o
n

o
f
Iκ
B
α,

E
R
K
,J
N
K
,a
n
d

p
3
8
/M

A
P
K
p
at
h
w
ay
s

(S
o
ro
m
o
u
et

al
.,
2
0
1
2
)

(C
o
n
ti
n
u
es
)

GOUR ET AL. 4265



T
A
B
L
E
2

(C
o
nt
in
ue

d)

Fl
av

o
no

id
's

na
m
e

A
ct
io
n
o
n
cy
to
ki
ne

s
(T
es
t
co

nc
en

tr
at
io
n)

A
ss
ay

ce
ll
lin

es
P
at
h
w
ay

o
f
ac
ti
o
n

R
ef
er
en

ce
s

IL
-6

IL
-1
β

T
N
F-
ɑ

O
th
er

cy
to
ki
ne

s

⊥
[3

an
d
1
0
μM

]
⊥
[3

an
d
1
0
μM

]
⊥
[1
0
μM

]
–

M
o
us
e
m
ic
ro
gl
ia
l

ce
ll
lin

e
B
V
-2

D
o
w
n
-r
eg

u
la
ti
o
n
o
f
N
F
-κ
B

ac
ti
va
ti
o
n
,a
n
d
T
LR

4

ex
p
re
ss
io
n

(L
an

et
al
.,
2
0
1
7
)

⊥
[1
0
an

d
3
0
μM

]
⊥
[3
–3

0
μM

]
⊥
[3
–3

0
μM

]
–

hB
M
E
C
s

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n

an
d
M
A
P
K
p
at
h
w
ay
s

(L
iu
,L
i,
et

al
.,
2
0
1
4
)

M
yr
ic
et
in

⊥
[3
0
μM

]
-

⊥
[3
0
μM

]
–

H
M
C
-1

ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(P
ar
k
et

al
.,
2
0
0
8
)

–
⊥
[3
0
μM

]
–

–
R
A
W

2
6
4
.7

ce
lls

–
(B
lo
n
sk
a,
C
zu
b
a,
&

K
ro
l,
2
0
0
3
)

Q
ue

rc
et
in

⊥
[3
0
μM

]
⊥
[3
0
μM

]
⊥
[3
0
μM

]
⊥
IL
-8

H
M
C
-1

ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

(P
ar
k
et

al
.,
2
0
0
8
)

⊥
[5

μM
]

⊥
[5

μ M
]

⊥
[5

μM
]

–
A
5
4
9
ce
lls

D
o
w
n
-r
eg

u
la
ti
o
n
o
f
T
LR

4
/

N
F
-κ
B
si
gn

al
in
g

(T
.-
C
.W

u
et

al
.,
2
0
1
8
)

–
⊥
[3
0
μM

]
–

–
R
A
W

2
6
4
.7

ce
lls

–
(B
lo
n
sk
a
et

al
.,
2
0
0
3
)

R
ut
in

⊥
[3
0
μM

]
⊥
[3
0
μM

]
⊥
[3
0
μM

]
⊥
IL
-8

H
M
C
-1

ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(P
ar
k
et

al
.,
2
0
0
8
)

–
–

⊥
[2
5
-1
0
0
μM

]
–

H
U
V
E
C
s

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(W
.L

ee
,K

u
,&

B
ae

,2
0
1
2
)

C
as
ti
ci
n

⊥
[1
–1

0
μM

]
⊥
[3

an
d
1
0
μM

]
⊥
[1
–1

0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n

an
d
E
R
K
p
at
h
w
ay
s

(L
io
u
et

al
.,
2
0
1
4
)

⊥
[5

an
d
1
0
μg

/m
l]

–
–

⊥
IL
-8

1
6
-H

B
E
ce
lls

In
h
ib
it
io
n
o
f
N
rf
2
/K

ea
p
1
an

d

N
F
-κ
B
p
at
h
w
ay
s

(J
.W

an
g,
2
0
1
8
)

⊥
[1
0
an

d
2
0
μg

/m
l]

⊥
[5
–2

0
μg

/m
l]

⊥
[1
0
an

d
2
0
μg

/m
l]

⊥
IL
-8

an
d
M
C
P
-

1

A
5
4
9
an

d
H
4
6
0

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
,P

I3
K
-A

kt
,

an
d
M
A
P
K
si
gn

al
in
g

(L
io
u
&
H
u
an

g,
2
0
1
7
)

G
al
an

gi
n

⊥
[2
5
an

d
5
0
μM

]
–

⊥
[5
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n

an
d
E
R
K
p
at
h
w
ay
s

(J
u
n
g
et

al
.,
2
0
1
4
)

–
⊥
[3
0
μM

]
–

–
R
A
W

2
6
4
.7

ce
lls

–
(B
lo
n
sk
a
et

al
.,
2
0
0
3
)

K
ae

m
pf
er
o
l

–
⊥
[3
0
μM

]
–

–
R
A
W

2
6
4
.7

ce
lls

–
(B
lo
n
sk
a
et

al
.,
2
0
0
3
)

F
is
et
in

⊥
[3
0
μM

]
⊥
[3
0
μM

]
⊥
[3
0
μM

]
⊥
IL
-8

H
M
C
-1

ce
lls

R
eg

u
la
ti
o
n
o
f
N
F
-κ
B
si
gn

al
in
g

(P
ar
k
et

al
.,
2
0
0
8
)

⊥
[1
0
μM

]
-

⊥
[1
0
μM

]
⊥
IL
-1
ɑ,
IL
-1
2
,

an
d
IL
-1
7

B
o
ne

m
ar
ro
w

de
ri
ve

d
de

nd
ri
ti
c

ce
lls

Su
p
p
re
ss
io
n
o
f
N
F
-κ
B

ac
ti
va
ti
o
n

(S
.-
H
.L

iu
et

al
.,
2
0
1
0
)

⊥
[1
0
an

d
3
0
μM

]
–

⊥
[1
0
an

d
3
0
μM

]
⊥
IL
-8

an
d
M
C
P
-

1

A
5
4
9
ce
lls

Su
p
p
re
ss
io
n
o
f
N
F
-κ
B
an

d

E
R
K
p
at
h
w
ay
s

(P
en

g,
H
u
an

g,
C
h
en

g,
&

Li
o
u
,2

0
1
8
)

Lu
te
o
lin

⊥
[1
0
μM

]
–

⊥
[1
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

D
ec
re
as
ed

N
F
-κ
B
st
im

u
la
te
d

p
ro
m
o
te
r
ac
ti
vi
ty

(X
ag
o
ra
ri
et

al
.,
2
0
0
1
)

–
⊥
[I
C
5
0
–5

.1
μM

]
⊥
[I
C
5
0
–7

.9
μM

]
–

P
B
M
C
s

–
(H

o
u
ge

e
et

al
.,
2
0
0
5
)

⊥
[5

μM
]

⊥
[5

μM
]

⊥
[5

μM
]

⊥
IL
-1
0

A
5
4
9
ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
T
LR

4
/N

F
-

κB
si
gn

al
in
g

(T
.-
C
.W

u
et

al
.,
2
0
1
8
)

4266 GOUR ET AL.



T
A
B
L
E
2

(C
o
nt
in
ue

d)

Fl
av

o
no

id
's

na
m
e

A
ct
io
n
o
n
cy
to
ki
ne

s
(T
es
t
co

nc
en

tr
at
io
n)

A
ss
ay

ce
ll
lin

es
P
at
h
w
ay

o
f
ac
ti
o
n

R
ef
er
en

ce
s

IL
-6

IL
-1
β

T
N
F-
ɑ

O
th
er

cy
to
ki
ne

s

⊥
[2
0
μM

]
–

⊥
[2
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n

an
d
M
A
P
K
p
at
h
w
ay
s

(X
ie

et
al
.,
2
0
1
2
)

A
pi
ge

ni
n

⊥
[I
C
5
0
-4
.8

μM
]

⊥
[I
C
5
0
-5
.3

μM
]

⊥
[I
C
5
0
-8
.9

μM
]

–
P
B
M
C
s

–
(H

o
u
ge

e
et

al
.,
2
0
0
5
)

⊥
[5

μM
]

⊥
[5

μM
]

⊥
[5

μM
]

–
A
5
4
9
ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
T
LR

4
/N

F
-

κB
si
gn

al
in
g

(T
.-
C
.W

u
et

al
.,
2
0
1
8
)

⊥
[2
0
μM

]
–

⊥
[2
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n

an
d
M
A
P
K
p
at
h
w
ay
s

(X
ie

et
al
.,
2
0
1
2
)

C
hr
ys
in

⊥
[I
C
5
0
-1
0
.8

μM
]

⊥
[I
C
5
0
-1
0
.7

μM
]

⊥
[I
C
5
0
-1
7
.8

μM
]

–
P
B
M
C
s

–
(H

o
u
ge

e
et

al
.,
2
0
0
5
)

⊥
[5

μM
]

⊥
[5

μM
]

⊥
[5

μM
]

–
A
5
4
9
ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
T
LR

4
/N

F
-

κB
si
gn

al
in
g

(T
.-
C
.W

u
et

al
.,
2
0
1
8
)

B
ai
ca
le
in

⊥
[5

an
d
1
0
μM

]
–

⊥
[5

an
d
1
0
μM

]
–

H
U
V
E
C
s

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(W
.L

ee
,K

u
,&

B
ae

,2
0
1
5
)

–
⊥
[3
0
μM

]
–

–
R
A
W

2
6
4
.7

ce
lls

–
(B
lo
n
sk
a
et

al
.,
2
0
0
3
)

⊥
[1
0
–4

0
μM

]
–

#[
1
0
–4

0
μM

]
⊥
IL
-8

A
5
4
9
ce
lls

R
ed

u
ct
io
n
o
f
vi
ru
s-
in
d
u
ce
d

ac
ti
va
ti
o
n
o
f
A
K
T
,E

R
K
,a
n
d

N
F
-k
B
si
gn

al
in
g

(S
it
h
is
ar
n
,M

ic
h
ae

lis
,

Sc
h
u
b
er
t-
Z
si
la
ve

cz
,&

C
in
at
lJ
r,
2
0
1
3
)

B
ai
ca
lin

⊥
[1
0
an

d
2
0
μM

]
–

⊥
[1
0
an

d
2
0
μM

]
⊥
IL
-8

T
yp

e
II

pn
eu

m
o
cy
te
s

In
h
ib
it
io
n
o
f
N
F
-k
B
ac
ti
va
ti
o
n

(L
ix
u
an

et
al
.,
2
0
1
0
)

W
o
go

ni
n

⊥
[5

an
d
1
0
μM

]
–

⊥
[5

an
d
1
0
μM

]
–

H
U
V
E
C
s

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(W
.L

ee
et

al
.,
2
0
1
5
)

V
el
ut
in

⊥
[2
0
μM

]
–

⊥
[5
–2

0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
ac
ti
va
ti
o
n

an
d
M
A
P
K
p
at
h
w
ay
s

(X
ie

et
al
.,
2
0
1
2
)

G
en

is
te
in

⊥
[5
0
μM

]
–

⊥
[5
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

D
ec
re
as
ed

N
F
-k
B
st
im

u
la
te
d

p
ro
m
o
te
r
ac
ti
vi
ty

(X
ag
o
ra
ri
et

al
.,
2
0
0
1
)

⊥
[1
0
−
5
–1

0
−
9
μM

]
–

⊥
[1
0
-5
-1
0
-9
μM

]
–

Ju
rk
at

E
6
.1

T
ce
lls

–
(K
ar
ie
b
&
F
o
x,
2
0
1
3
)

⊥
[5
0
μM

]
⊥
[5
0
μM

]
–

–
H
M
C
-1

ce
lls

In
h
ib
it
io
n
o
f
th
e
E
R
K
p
at
h
w
ay

(D
.H

.K
im

et
al
.,
2
0
1
4
)

B
io
ch

an
in
-A

⊥
[1
0
–5

0
μM

]
⊥
[1
0
–5

0
μM

]
⊥
[1
0
–5

0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(K
o
le
,G

ir
i,
M
an

n
a,
P
al
,&

G
h
o
sh
,2

0
1
1
)

⊥
[1
0
–4

0
μM

]
–

#[1
0
–4

0
μM

]
–

A
5
4
9
ce
lls

R
ed

u
ct
io
n
o
f
vi
ru
s-
in
d
u
ce
d

ac
ti
va
ti
o
n
o
f
A
kt
,E

R
K
,a
n
d

N
F
-k
B
si
gn

al
in
g

(S
it
h
is
ar
n
et

al
.,
2
0
1
3
)

F
o
rm

o
no

ne
ti
n

⊥
[0
.1
–1

0
μM

]
⊥
[0
.1
–1

0
μM

]
⊥
[0
.1
–1

0
μM

]
–

R
B
L-
2
H
3
ce
lls

D
o
w
n
re
gu

la
ti
o
n
o
f
N
F
-κ
B

(N
.X

u
&
A
n
,2

0
1
7
)

Si
lib

in
in

⊥
[1
0
an

d
5
0
μM

]
⊥
[1
0
an

d
5
0
μM

]
⊥
[1
0
an

d
5
0
μM

]
⊥
IL
-8

an
d
"IL

-

1
0

P
B
M
C
s

–
(G
u
gl
ia
n
d
o
lo

et
al
.,
2
0
2
0
)

–
⊥
[5
0
an

d
1
0
0
μM

]
⊥
[5
0
an

d
1
0
0
μM

]
–

R
A
W

2
6
4
.7

ce
lls

In
h
ib
it
io
n
o
f
N
F
-κ
B
an

d

N
LR

P
3
ac
ti
va
ti
o
n

(B
.Z

h
an

g,
W

an
g,
C
ao

,

W
an

g,
&
W

u
,2

0
1
7
)

N
ot
e:
⊥
,S

ig
ni
fi
ca
nt

in
hi
bi
ti
o
n;

#,
In
-s
ig
ni
fi
ca
nt

in
hi
bi
ti
o
n;

",
A
ct
iv
at
io
n.

GOUR ET AL. 4267



T
A
B
L
E
3

In
vi
vo

ef
fe
ct

o
f
fl
av
o
no

id
s
o
n
cy
to
ki
ne

s
in

th
e
pr
ec
lin

ic
al
m
o
de

l

Fl
av

o
no

id
's

na
m
e

A
ct
io
n
o
n
cy
to
ki
ne

s‡
[B
io
lo
gi
ca
lt
is
su
e/
fl
ui
d
an

al
yz
ed

]
St
ud

y
de

si
gn

[A
ni
m
al

sp
ec

ie
s;

D
o
se
;T

es
t
ar
ti
cl
e

ad
m
in
is
tr
at
io
n
ro
ut
e;

D
is
ea

se
m
o
de

l;
In
du

ci
ng

ag
en

t]
P
at
h
w
ay

o
f
ac
ti
o
n

R
ef
er
en

ce
s

IL
-6

IL
-1
β

T
N
F-
ɑ

O
th
er

cy
to
ki
ne

s

E
pi
ca
te
ch

in
⊥
[L
un

g
ti
ss
ue

an
d
B
A
LF

]

—
⊥
[L
un

g
ti
ss
ue

]
—

C
5
7
B
L6

/N
m
ic
e;

1
5
m
g/
kg

;

na
so
ga
st
ri
c;

ac
ut
e
lu
ng

in
ju
ry
;

LP
S

In
h
ib
it
io
n
o
f
th
e
p
3
8
M
A
P
K

si
gn

al
in
g
p
at
h
w
ay

(X
in
g
et

al
.,
2
0
1
9
)

E
G
C
G

⊥
[L
un

g
ti
ss
ue

]
⊥
[L
un

g
ti
ss
ue

]
⊥
[L
un

g
ti
ss
ue

]
—

W
is
ta
r
ra
ts
;4

0
m
g/
kg

;o
ra
l;
lu
ng

in
ju
ry
;f
lu
o
ri
de

A
ct
iv
at
io
n
o
f
th
e
N
rf
2
/K

ea
p
1

p
at
h
w
ay

(S
h
an

m
u
ga
m
,S

el
va
ra
j,

&
P
o
o
m
al
ai
,2

0
1
6
)

—
—

⊥
[L
un

g
ti
ss
ue

]
⊥
IL
-1
,"
IL
-1
0

Sp
ra
gu

e-
D
aw

le
y
ra
ts
;1

0
m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;s
ea

w
at
er

as
pi
ra
ti
o
n

In
h
ib
it
io
n
o
f
JA

K
/S
T
A
T

p
at
h
w
ay
s

(L
iu
,D

o
n
g,

et
al
.,
2
0
1
4
)

T
he

af
la
vi
n

⊥
[S
er
um

]
#[

Se
ru
m
]

⊥
[S
er
um

at
4
0

m
g/
kg

]

—
C
5
7
B
L6

/N
m
ic
e;

2
0
an

d
4
0

m
g/
kg

;i
nt
ra
pe

ri
to
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L
PS

—
(Y
.W

u
et

al
.,
2
0
1
7
)

H
es
pe

ri
di
n

—
⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
IL
-1
2
;"

IL
-4

an
d
IL
-1
0

B
al
b/
c
m
ic
e;

2
0
0
m
g/
kg

;o
ra
l;

ac
ut
e
lu
ng

in
ju
ry
;L
PS

D
o
w
n
-r
eg

u
la
ti
o
n
N
F
-κ
B
an

d

A
P
-1

si
gn

al
in
g

(C
.-
C
.Y

eh
et

al
.,
2
0
0
7
)

H
es
pe

ri
ti
n

⊥
[S
er
um

]
⊥
[L
un

g
ti
ss
ue

]
⊥
[L
un

g
ti
ss
ue

]
"IL

-1
0

W
is
ta
r
ra
ts
;1

0
0
m
g/
kg

;o
ra
l;

ac
ut
e
lu
ng

in
ju
ry
;L
PS

D
o
w
n
-r
eg

u
la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(K
ay
a,
2
0
2
0
)

⊥
[
Se

ru
m
,B

A
LF

an
d
lu
ng

ti
ss
ue

]

⊥
[
Se

ru
m
,B

A
LF

an
d

lu
ng

ti
ss
ue

]

⊥
[
Se

ru
m
,B

A
LF

an
d

lu
ng

ti
ss
ue

]

—
C
5
7
B
L/
6
m
ic
e;

2
5
an

d
5
0

m
g/
kg

;o
ra
l;
ac
ut
e
lu
ng

in
ju
ry
;

LP
S

In
h
ib
it
io
n
o
f
M
A
P
K
p
at
h
w
ay

ac
ti
va
ti
o
n
vi
a
ta
rg
et
in
g
T
LR

4
/

M
D
2
p
ro
te
in

(J
.Y

e
et

al
.,
2
0
1
9
)

E
ri
o
di
ct
yo

l
⊥
[
Se

ru
m

an
d

B
A
LF

]

⊥
[S
er
um

an
d
B
A
LF

]
⊥
[S
er
um

an
d
B
A
LF

]
⊥
M
IP
-2

C
5
7
B
L/
6
m
ic
e;

3
0
m
g/
kg

;o
ra
l;

ac
ut
e
lu
ng

in
ju
ry
;L
PS

R
eg

u
la
ti
o
n
o
f
N
rf
2
p
at
h
w
ay

(G
.F

.Z
h
u
,G

u
o
,

H
u
an

g,
W

u
,&

Z
h
an

g,
2
0
1
5
)

N
ar
in
ge

ni
n

⊥
[S
er
um

an
d

B
A
LF

]

⊥
[S
er
um

an
d
B
A
LF

]
⊥
[S
er
um

an
d
B
A
LF

]
⊥
M
IP
-2

C
5
7
B
L/
6
m
ic
e;

1
0
0
m
g/
kg

;o
ra
l;

ac
ut
e
lu
ng

in
ju
ry
;L
PS

In
h
ib
it
io
n
o
f
th
e
P
I3
K
/A

kt

p
at
h
w
ay

(M
in
gh

o
n
g
Z
h
ao

et
al
.,
2
0
1
7
)

⊥
[L
un

g
ti
ss
ue

at

1
0
0
m
g/
kg

]

—
⊥
[L
un

g
ti
ss
ue

]
—

Sp
ra
gu

e–
D
aw

le
y
ra
ts
;5

0
an

d

1
0
0
m
g/
kg

;o
ra
l;
ac
ut
e
lu
ng

in
ju
ry
;L
PS

D
o
w
n
-r
eg

u
la
ti
o
n
o
f
N
F
-κ
B

si
gn

al
in
g

(F
o
u
ad

,A
lb
u
al
i,
&

Jr
es
at
,2

0
1
6
)

N
ar
in
gi
n

⊥
[L
un

g
ti
ss
ue

]
⊥
[L
un

g
ti
ss
ue

]
⊥
[L
un

g
ti
ss
ue

]
—

C
5
7
B
L/
6
m
ic
e;

8
0
m
g/
kg

,

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;a

cr
o
le
in

R
eg

u
la
ti
o
n
o
f
M
A
P
K
,p

5
3
,a
n
d

N
F
-κ
B
si
gn

al
in
g
p
at
h
w
ay
s

(J
.K

.K
im

et
al
.,
2
0
1
8
)

⊥
[P
le
ur
al

ex
ud

at
es
]

—
⊥
[P
le
ur
al

⊥
IL
-1
7
an

d
IL
-2
;

"IL
-4

an
d
IL
-

1
0

B
al
b/
c
m
ic
e;

4
0
an

d
8
0
m
g/
kg

;

o
ra
l;
ac
ut
e
lu
ng

in
fl
am

m
at
io
n;

ca
rr
ag
ee

na
n

In
h
ib
it
io
n
o
f
N
F
-κ
B
an

d
ST

A
T
3

si
gn

al
in
g

(S
.F

.A
h
m
ad

et
al
.,
2
0
1
5
)

P
in
o
ce
m
br
in

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
"IL

-1
0

B
al
b/
c
m
ic
e;

2
0
an

d
5
0
m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
fl
am

m
at
io
n;

LP
S

In
h
ib
it
io
n
o
f
M
A
P
K
an

d
N
F
-κ
B

ac
ti
va
ti
o
n

(S
o
ro
m
o
u
et

al
.,
2
0
1
2
)

4268 GOUR ET AL.



T
A
B
L
E
3

(C
o
nt
in
ue

d)

Fl
av

o
no

id
's

na
m
e

A
ct
io
n
o
n
cy
to
ki
ne

s‡
[B
io
lo
gi
ca
lt
is
su
e/
fl
ui
d
an

al
yz
ed

]
St
ud

y
de

si
gn

[A
ni
m
al

sp
ec

ie
s;

D
o
se
;T

es
t
ar
ti
cl
e

ad
m
in
is
tr
at
io
n
ro
ut
e;

D
is
ea

se
m
o
de

l;
In
du

ci
ng

ag
en

t]
P
at
h
w
ay

o
f
ac
ti
o
n

R
ef
er
en

ce
s

IL
-6

IL
-1
β

T
N
F-
ɑ

O
th
er

cy
to
ki
ne

s

M
yr
ic
et
in

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
—

Sp
ra
gu

e-
D
aw

le
y
ra
ts
;1

0
-4
0

m
g/
kg

;i
nt
ra
pe

ri
to
ne

al
;a

cu
te

lu
ng

in
fl
am

m
at
io
n;

LP
S

In
h
ib
it
io
n
o
f
N
F
-κ
B
m
ed

ia
te
d

in
fl
am

m
at
o
ry

re
sp
o
n
se
s

(M
ao

&
H
u
an

g,
2
0
1
7
)

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
—

B
al
b/
c
m
ic
e;

2
.5
-1
0
m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
fl
am

m
at
io
n;

LP
S

In
h
ib
it
io
n
o
f
b
o
th

N
F
-κ
B
/A

K
T

an
d
p
3
8
/M

A
P
K
si
gn

al
in
g

p
at
h
w
ay
s

(H
o
u
et

al
.,
2
0
1
8
)

Q
ue

rc
et
in

⊥
[S
er
um

]
⊥
[S
er
um

]
⊥
[S
er
um

]
"IL

-1
0

C
5
7
/B

L6
m
ic
e;

6
0
m
g/
kg

;o
ra
l;

ac
ut
e
lu
ng

in
ju
ry
;L
PS

R
ed

u
ct
io
n
o
f
C
O
X
-2
,H

M
G
B
1
,

iN
O
S
ex

p
re
ss
io
n
,a
n
d
N
F
-κ
B

p
6
5
p
h
o
sp
h
o
ry
la
ti
o
n

(L
.W

an
g
et

al
.,
2
0
1
4
)

R
ut
in

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
—

IC
R
m
ic
e,

1
–1

0
0
μm

o
l/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L
PS

In
h
ib
it
io
n
o
f
o
xi
d
at
iv
e
st
re
ss

an
d

M
A
P
K
–N

F
-κ
B
p
at
h
w
ay

(C
.-
H
.Y

eh
,Y

an
g,
Y
an

g,

Li
,&

K
u
an

,2
0
1
4
)

C
as
ti
ci
n

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
—

B
al
b/
c
m
ic
e;

2
.5
–1

0
m
g/
kg

;

in
tr
ag
as
tr
ic
;a

cu
te

lu
ng

in
ju
ry
;

LP
S

In
h
ib
it
io
n
o
f
N
F
-κ
B
an

d
N
LR

P
3

si
gn

al
in
g
p
at
h
w
ay
s

(C
.W

an
g,
Z
en

g,

Z
h
an

g,
Li
u
,&

W
an

g,
2
0
1
6
)

G
al
an

gi
n

⊥
[L
un

g
ti
ss
ue

]
—

⊥
[L
un

g
ti
ss
ue

]
—

B
al
b/
c
m
ic
e;

1
.5

an
d
1
5
m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L
PS

In
h
ib
it
io
n
o
f
N
F
-κ
B
an

d

u
p
re
gu

la
ti
o
n
o
f
H
O
-1

si
gn

al
in
g
p
at
h
w
ay
s

(S
h
u
,T

ao
,M

ia
o
,L
u
,&

Z
h
u
,2

0
1
4
)h

K
ae

m
pf
er
o
l

⊥
[
B
A
LF

]
⊥
[
B
A
LF

]
⊥
[
B
A
LF

]
—

B
al
b/
c
m
ic
e;

1
0
0
m
g/
kg

;

in
tr
ag
as
tr
ic
;a

cu
te

lu
ng

in
ju
ry
;

LP
S

Su
p
p
re
ss
io
n
o
f
M
A
P
K
s
an

d
N
F
-

κB
si
gn

al
in
g
p
at
h
w
ay
s

(X
.C

h
en

et
al
.,
2
0
1
2
)

F
is
et
in

⊥
[
B
A
LF

—
⊥
[
B
A
LF

—
Sp

ra
gu

e-
D
aw

le
y
ra
ts
;1

–4
m
g/
kg

;i
nt
ra
ve

no
us
;a

cu
te

lu
ng

in
ju
ry
;L
PS

Su
p
p
re
ss
io
n
o
f
T
LR

4
-m

ed
ia
te
d

N
F
-κ
B
si
gn

al
in
g
p
at
h
w
ay
s

(G
.F

en
g,
Ji
an

g,
Su

n
,

F
u
,&

Li
,2

0
1
6
)

Lu
te
o
lin

⊥
[B
A
LF

at
7
0

μm
o
l/
kg

]

—
⊥
[B
A
LF

at
7
0
μm

o
l/

kg
]

—
IC
R
m
ic
e;

1
8
-7
0
μm

o
l/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L
PS

Su
p
p
re
ss
io
n
o
f
A
kt
/N

F
-κ
B

si
gn

al
in
g
p
at
h
w
ay

(Y
.-
C
.L
i,
Y
eh

,Y
an

g,
&

K
u
an

,2
0
1
2
)

⊥
[P
la
sm

a
an

d

B
A
LF

]

⊥
[L
un

g
ti
ss
ue

]
⊥
[P
la
sm

a]
—

Sw
is
s
al
bi
no

m
ic
e;

0
.2

m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;c

ec
al
lig
at
io
n

an
d
pu

nc
tu
re

Su
p
p
re
ss
io
n
o
f
IC
A
M
-1
,N

F
-κ
B
,

o
xi
d
at
iv
e
st
re
ss
,a
n
d
p
ar
ti
al
ly

iN
O
S
si
gn

al
in
g
p
at
h
w
ay
s

(R
u
n
gs
u
n
g
et

al
.,
2
0
1
8
)

⊥
[B
A
LF

]
—

⊥
[B
A
LF

]
—

M
al
e
C
5
7
B
L/
6
m
ic
e;

1
0
m
g/
kg

;

o
ra
l;
bl
eo

m
yc
in

In
h
ib
it
io
n
o
f
T
G
F
-β
1
-i
n
d
u
ce
d

Sm
ad

3
,p

h
o
sp
h
o
ry
la
ti
o
n

(C
.-
Y
.C

h
en

,P
en

g,
W

u
,

W
u
,&

H
su
,2

0
1
0
)

A
pi
ge

ni
n

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

at
2
0
an

d
4
0

m
g/
kg

]

—
B
al
b/
c
m
ic
e;

1
0
–4

0
m
g/
kg

;

in
tr
ag
as
tr
ic
;a

cu
te

lu
ng

in
ju
ry
;

LP
S

Su
p
p
re
ss
io
n
o
f
ac
ti
va
ti
o
n
o
f

T
LR

4
/T

R
P
C
6
si
gn

al
in
g

p
at
h
w
ay

(K
.L
ie

t
al
.,
2
0
1
8
)

C
hr
ys
in

⊥
[P
le
ur
al

ex
ud

at
es
]

⊥
[P
le
ur
al
ex

ud
at
es
]

—
Sp

ra
gu

e-
D
aw

le
y
ra
ts
;2

0
an

d
4
0

m
g/
kg

;o
ra
l;
ac
ut
e
lu
ng

in
ju
ry
;

ca
rr
ag
ee

na
n

A
ct
iv
at
io
n
o
f
SI
R
T
1
/N

R
F
2

si
gn

al
in
g

(Z
.Y

an
g,
G
u
an

,L
i,
Li
,&

Li
,2

0
1
8
)

(C
o
n
ti
n
u
es
)

GOUR ET AL. 4269



T
A
B
L
E
3

(C
o
nt
in
ue

d)

Fl
av

o
no

id
's

na
m
e

A
ct
io
n
o
n
cy
to
ki
ne

s‡
[B
io
lo
gi
ca
lt
is
su
e/
fl
ui
d
an

al
yz
ed

]
St
ud

y
de

si
gn

[A
ni
m
al

sp
ec

ie
s;

D
o
se
;T

es
t
ar
ti
cl
e

ad
m
in
is
tr
at
io
n
ro
ut
e;

D
is
ea

se

m
o
de

l;
In
du

ci
ng

ag
en

t]
P
at
h
w
ay

o
f
ac
ti
o
n

R
ef
er
en

ce
s

IL
-6

IL
-1
β

T
N
F-
ɑ

O
th
er

cy
to
ki
ne

s

Is
o
vi
te
xi
n

⊥
[B
A
LF

]
—

⊥
[B
A
LF

]
—

B
al
b/
c
m
ic
e;

5
0
an

d
1
0
0
m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L

P
S

In
h
ib
it
io
n
o
f
M
A
P
K
,N

F
-κ
B
an

d

ac
ti
va
ti
o
n
o
f
H
O
-1
/N

rf
2

P
at
h
w
ay
s

(L
v
et

al
.,
2
0
1
6
)

M
o
ri
n

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
IL
-1
8

B
al
b/
c
m
ic
e;

2
0
an

d
4
0
m
g/
kg

;

in
tr
ag
as
tr
ic
;a

cu
te

lu
ng

in
ju
ry
;

LP
S

Su
p
p
re
ss
io
n
o
f
lu
n
g
N
LR

P
3

in
fl
am

m
as
o
m
e

(T
ia
n
zh
u
,S

h
ih
ai
,&

Ju
an

,2
0
1
4
)

B
ai
ca
le
in

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
IL
-1
8

Sp
ra
gu

e-
D
aw

le
y
ra
ts
;2

0
m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L

P
S

In
h
ib
it
io
n
o
f
N
F
-κ
B
m
ed

ia
te
d

in
fl
am

m
at
o
ry

re
sp
o
n
se
s
an

d

u
p
re
gu

la
ti
o
n
o
f
N
rf
2
/H

O
-1

si
gn

al
in
g
p
at
h
w
ay

(T
sa
i,
Li
n
,W

an
g,
&

C
h
o
u
,2

0
1
4
)

B
ai
ca
lin

⊥
[P
la
sm

a
an

d

B
A
LF

]

—
⊥
[P
la
sm

a
an

d
B
A
LF

at
4
0
an

d
8
0

m
g/
kg

]

#I
L-
8

Sp
ra
gu

e-
D
aw

le
y
ra
ts
;2

0
-8
0

m
g/
kg

;i
nt
ra
ga
st
ri
c;
ac
ut
e
lu
ng

in
ju
ry
;c
ig
ar
et
te

sm
o
ke

In
h
ib
it
io
n
o
f
N
F
-k
B
ac
ti
va
ti
o
n

(L
ix
u
an

et
al
.,
2
0
1
0
)

⊥
[S
er
um

]
⊥
[S
er
um

]
⊥
[S
er
um

]
⊥
T
G
F
-
β
an

d
IL
-

1
8

C
X
3
C
L1

-k
no

ck
o
ut

m
ic
e;

5
0
-2
0
0

m
g/
kg

;o
ra
l;
ac
ut
e
lu
ng

in
ju
ry
;

LP
S

In
h
ib
it
io
n
o
f
N
F
-k
B
p
at
h
w
ay

(D
in
g,
P
an

,W
an

g,
&

X
u
,2

0
1
6
)

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
—

Sp
ec
if
ic
pa

th
o
ge

n-
fr
ee

m
al
e

m
ic
e;

2
0
0
m
g/
kg

;o
ra
l;
ac
ut
e

lu
ng

in
ju
ry
;L

P
S

R
eg

u
la
ti
o
n
o
f
N
rf
2
-m

ed
ia
te
d

H
O
-1

si
gn

al
in
g
p
at
h
w
ay

(M
en

g,
H
u
,&

Li
,2

0
1
9
)

W
o
go

ni
n

⊥
[B
A
LF

an
d

lu
ng

ti
ss
ue

]

⊥
[B
A
LF

an
d
lu
ng

ti
ss
ue

]

⊥
[B
A
LF

an
d
lu
ng

ti
ss
ue

]

—
C
5
7
B
L/
6
m
ic
e;

3
0
m
g/
kg

;

in
tr
av
en

o
us
;a

cu
te

lu
ng

in
ju
ry
;

LP
S

In
h
ib
it
io
n
o
f
N
F
-k
B
p
at
h
w
ay

(Y
ao

et
al
.,
2
0
1
4
)

D
io
sm

in
⊥
[L
un

g
ti
ss
ue

]
-

⊥
[L
un

g
ti
ss
ue

]
⊥
IL
-1
7
A

B
al
b/
c
m
ic
e;

5
0
an

d
1
0
0
m
g/
kg

;

o
ra
l;
ac
ut
e
lu
ng

in
ju
ry
;L

P
S

In
h
ib
it
io
n
o
f
T
LR

4
-M

yD
8
8
-N

F
-

κB
p
at
h
w
ay

(Im
am

et
al
.,
2
0
1
5
)

D
io
sm

et
in

⊥
[B
A
LF

]
⊥
[B
A
LF

at
2
5
m
g/
kg

]
⊥
[B
A
LF

]
—

B
al
b/
c
m
ic
e;

5
an

d
2
5
m
g/
kg

;

in
tr
ap

er
it
o
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L

P
S

A
ct
iv
at
io
n
o
f
N
rf
2
p
at
h
w
ay

an
d

in
h
ib
it
io
n
o
f
N
LR

P
3

in
fl
am

m
as
o
m
e

(Q
.L

iu
,C

i,
W

en
,&

P
en

g,
2
0
1
8
)

G
en

is
te
in

#[
Lu

ng
ti
ss
ue

]
#[B

A
LF

]
#T

N
F
-α

#T
G
F
-β

Sp
ra
gu

e-
D
aw

le
y
ra
ts
;2

0
m
g/
kg

;

o
ra
l;
lu
ng

in
ju
ry
;6

0
C
o
γ

ra
di
at
io
n

—
(C
al
ve

le
y
et

al
.,
2
0
1
0
)

⊥
[S
er
um

an
d

B
A
LF

]

⊥
[S
er
um

an
d
B
A
LF

]
⊥
[S
er
um

an
d
B
A
LF

]
⊥
T
G
F
-β

C
5
7
B
L/
6
J
m
ic
e;

2
0
0
m
g/
kg

;

su
bc

ut
an

eo
us
;p

ne
um

o
ni
ti
s;

ra
di
at
io
n

D
o
w
n
re
gu

la
ti
o
n
o
f
A
p
e1

/R
ef
-1

ex
p
re
ss
io
n

(L
iu
,X

ia
,e
t
al
.,
2
0
1
4
)

B
io
ch

an
in
-A

⊥
[B
A
LF

]
⊥
[B
A
LF

]
⊥
[B
A
LF

]
—

C
5
7
B
L/
6
m
ic
e;

1
2
.5
,2

5
,a
nd

5
0

m
g/
kg

;i
nt
ra
pe

ri
to
ne

al
;a

cu
te

lu
ng

in
ju
ry
;L

P
S

D
o
w
n
-r
eg

u
la
ti
o
n
o
f
ac
ti
va
ti
o
n

o
f
T
LR

4
/N

F
-κ
B
si
gn

al
in
g

p
at
h
w
ay

an
d
en

h
an

ci
n
g
th
e

ex
p
re
ss
io
n
o
f
P
P
A
R
-γ

(H
u
et

al
.,
2
0
2
0
)

4270 GOUR ET AL.



Its aglycone part, namely hesperitin, is reported to inhibit TNF-α, IL-1β,

and IL-6 significantly by hindering multiple pathways like JNK, NF-κB,

and MAPK based on the in vitro (Choi & Lee, 2010; Ren et al., 2016)

and in vivo investigations (Kaya, 2020; J. Ye et al., 2019). In a clinical

study involving human adults, hesperidin exhibited a significant reduction

of IL-6 level at an oral dose of 160 mg/day (Buscemi et al., 2012; Pla-

Pagà et al., 2019). Computational studies demonstrated that hesperidin

could perform a significant antiviral activity against SARS-CoV-2 due to

its binding affinity to spike protein, ACE-2, and main protease

(Bellavite & Donzelli, 2020; Meneguzzo, Ciriminna, Zabini, &

Pagliaro, 2020). Furthermore, virtual screening purposed that it can inter-

fere with the interaction of ACE-2 receptors, thus preventing the entry

of the virus into lung cells (Haggag, El-Ashmawy, & Okasha, 2020). It

exhibited a greater binding affinity toward 3CL-pro, S2-RBD, TMPRSS,

and PD-ACE2 to inhibit the SARS-CoV-2 infection (Utomo, Putri, Sal-

sabila, & Meiyanto, 2020). Hesperidin is considered safe to be adminis-

tered as nutraceuticals (FSSAI, 2016). Recently, this is under clinical

investigation for the management of COVID-19 (NCT04452799).

4.4 | Naringenin

Naringenin is an extensively used flavonoid from the class of flava-

nones and predominantly present in grapefruits (Pandey, Gurung, &

Sohng, 2015). It had shown inhibitory effect of IL-6, IL-1β, and TNF-ɑ

levels in LPS-stimulated U937 cells and RAW 264.7 cells (Soromou

et al., 2012). It had also reported inhibiting the secretion of IL-6, IL-1β,

and TNF-ɑ in LPS-stimulated acute lung injury in C57/BL6 mice by

targeting the inhibition of the phosphatidylinositol-3-kinase (PI3K)/Akt

pathway (Minghong Zhao et al., 2017). It had also shown to reduce the

levels of IL-6 and TNF-ɑ in LPS-stimulated acute lung injury in rats via

inhibition of the NF-κB pathway (Fouad et al., 2016). In both cases, the

required effective dose was found to be 100 mg/kg through the oral

route. Naringin, a glycoside of naringenin, has reported to effectively

control the levels of IL-6, IL-1β, TNF-ɑ, IL-4, and IL-17 even at a dose

of 40–80 mg/kg in in vivo mice model of lung injury through regulation

of NF-κB, MAPK, p53, and STAT signaling (S. F. Ahmad, Attia,

et al., 2015; J. K. Kim et al., 2018). Naringenin exhibited significant ant-

iviral activity against chikungunya and dengue virus with an IC50 of

6.8 μM and 52.64 μg/ml in cultured cells, respectively (Ahmadi

et al., 2016; Keivan et al., 2011). Molecular docking analysis revealed

that naringenin and naringin interfere with 3CLpro, and ACE-2 activity

of SARS-CoV-2 (Alrasheid et al., 2021; Tutunchi, Naeini, Ostadrahimi, &

Hosseinzadeh-Attar, 2020). Clementi et al. (2020) reported that

naringenin could be considered to be a safe anti-SARS-CoV-2 agent

endowed with SARS-CoV-2 inhibitory activity. Naringenin is also part

of the FSSAI list of nutraceuticals (FSSAI, 2016).

4.5 | Quercetin

Quercetin belongs to the category of flavonols and is widely present

in berries, grapes, apples, shallots, onions, and tomatoes (Baková &T
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Kolesárová, 2020). In PMACI-stimulated HMC-1, quercetin notably

reduced the secretion of IL-6, IL-1β, IL-8, and TNF-α (Park

et al., 2008). The production of IL-6, IL-1β, and TNF-α was notably

inhibited at 5 μM in A549 cells (T.-C. Wu et al., 2018). A similar result

on IL-1β was also reported in RAW 264.7 cell lines (Blonska

et al., 2003). The levels of IL-6, IL-1β, and TNF-α were reduced signifi-

cantly in LPS-induced acute lung injury in C57/BL6 mice through

reduced expression of cyclooxygenase-2 (COX-2), high mobility group

box 1 (HMGB1), inducible nitric oxide synthase (iNOS), and NF-κB p65

phosphorylation (L. Wang et al., 2014). In clinical subjects with coro-

nary artery disease, quercetin treatment at only 120 mg/kg through

oral route significantly inhibited the secretion of IL-1β, and TNF-α

(Chekalina et al., 2018). Minute reduction in IL-6 and TNF-α was

observed in community-dwelling adults at 500–1000 mg/day in com-

bination with vitamin C and niacin (Knab et al., 2011). It has been

reported that administration of quercetin could lead to reduced level

of IL-8 and TNF-α and IL-6 in patients with rheumatoid arthritis and

sarcoidosis, respectively (Al-Rekabi et al., 2014; Boots et al., 2011). It

exhibited in vitro anti-replication property by reducing the plaque for-

mation induced by RNA and DNA viruses (De Palma, Vliegen, De

Clercq, & Neyts, 2008; Pagani, 1990). In Vero cells, it showed to

inhibit the dengue virus type-2 replication that can cause a 67%

reduction of viral load at a concentration of 36 μg/ml (Zandi

et al., 2011). Pretreatment of quercetin blocked virulence, entry, and

replication of rhinovirus in BEAS-2B cells (Ganesan et al., 2012). It

notably inhibited the reverse transcriptase activity in a dose-

dependent manner in cultured cells infected with Maloney murine leu-

kemia virus, Rous-associated virus-2, and Avian myeloblastosis

reverse transcriptase (Spedding, Ratty, & Middleton Jr, 1989). It also

demonstrated a potent inhibition activity against HIV and hepatitis C

virus protease as well as ability to interfere with virus assembly by

modulating the heat shock protein expression (Bachmetov

et al., 2012; Gonzalez et al., 2009; H.-X. Xu, Wan, Dong, BuT, &

Foo, 2000). Quercetin and its galactoside are known to interfere with

the proteolytic activity by binding to SARS-CoV 3CL protease

(Alrasheid et al., 2021; Colunga Biancatelli et al., 2020). In silico stud-

ies illustrated that quercetin could interfere with Mpro and ACE2 as

well as showed potential inhibition when compared to the synthetic

repurposed drug, hydroxychloroquine (Omar, Bouziane, Bouslama, &

Djemel, 2020). Quercetin impedes the entry of the SARS virus by

targeting ACE2 and exhibits antiviral activity (P. K. Agrawal, Agrawal, &

Blunden, 2020; Chaabi, 2020; Pawar & Pal, 2020). Derosa and its

team demonstrated the role of quercetin in SARS-CoV-2 due to its

ability to inhibit main protease as well as its anti-inflammatory and

thrombin-inhibitory activities (Bastaminejad & Bakhtiyari, 2020; Der-

osa, Maffioli, D'Angelo, & Di Pierro, 2020; Saeedi-Boroujeni &

TABLE 4 In vivo effect of flavonoids on cytokines in the clinical model

Flavonoid's
name

Study design

Effect on cytokine ReferencesDose
Route of
administration

Dose
schedule

Hesperidin 160 mg/day Oral 1.5 weeks Significant decrease the IL-6 level in

clinical subjects with increased

cardiovascular risk

(Buscemi et al., 2012;

Pla-Pagà et al., 2019)

Quercetin 500–1500 mg/day in

combination with

azathioprine

Oral 8 weeks Decreased the level of IL-6 in

patient with active rheumatoid

arthritis

(Al-Rekabi et al., 2014)

500 mg/day Oral 24 h Reduced the level of IL-8 and TNF-α
in sarcoidosis patients

(Boots, Drent, de Boer,

Bast, & Haenen, 2011)

120 mg/day Oral 8 weeks Inhibited IL-1β and TNF-α in

coronary artery disease

(Chekalina et al., 2018)

500 and 1000 mg/day in

combination with vitamin

C and Niacin

Oral 12 weeks A minute reduction in IL-6 level in

community-dwelling adult

(Knab et al., 2011)

Luteolin 100 mg/day Oral 26 weeks Reduced IL-6 and TNF-α levels in

children with autism spectrum

disorders

(Tsilioni, Taliou, Francis, &

Theoharides, 2015)

Diosmin 1200 mg/day Oral 12 weeks Decreased IL-6 and TNF-α levels in

patients with chronic venous

disorders

(Feldo et al., 2019)

Silymarin 420 mg/day Oral 12 weeks Decreased serum TNF-ɑ level and

enhanced IL-4 and IFN-γ levels in
β-thalassemia patients

(Gharagozloo, Karimi, &

Amirghofran, 2013)

Silibinin 240 mg/day Oral 16 weeks Reduced IL-6, IL-8 and TNF-α levels

and increased production of IL-2

and IL-10 in active rheumatoid

patients

(Hussain, Mortada, Jasim,

& Gorial, 2016)
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Mahmoudian-Sani, 2021). A tripartite combination consisting of quer-

cetin/vitamin D/estradiol had depicted the expression of 73% of

human genes encoding SARS-CoV-2 targets (Glinsky, 2020). Aucoin

and co-workers demonstrated the effect of quercetin on the preven-

tion or treatment of COVID-19 and other respiratory tract infections

in humans (Aucoin et al., 2020). It might act as a therapeutic drug to

treat SARS-CoV-2 induced nephrotoxicity (Diniz, Souza, Duarte, &

Sousa, 2020). Supplementation of quercetin along with multivitamin

and trace elements (vitamins A, B complex, C, D and E, zinc) can be use-

ful in prophylaxis and treatment of mild symptomatic COVID-19

patients (Petric, 2020). A novel therapy consisting of quercetin, zinc,

vitamin C, and bromelain exhibited a promising result to improve clini-

cal outcome in SARS-CoV-2 patients (A. K. Ahmed, Albalawi, Shora,

Abdelseed, & Al-Kattan, 2020). Oral administration of quercetin at a

dose of 30 or 40 mg/kg BID for 4 days reduced the viral load in mice

inoculated with meningoencephalitis virus at a dose-dependent manner

(Veckenstedt, Béládi, & Mucsi, 1978). Quercetin obtained from the

extracts of citrus fruits and other vegetables is recommended as a

nutraceutical, where the maximum recommended intake of quercetin is

100 mg/day (FSSAI, 2016). Quercetin in phytosomal formulation, which

was developed using food grade lecithin to boost its oral absorption,

was found to be effective in allergies through stabilization of the mast

cell membranes to decrease the release of histamine (Colunga

Biancatelli et al., 2020). Recently, this is under clinical investigation for

the management of SARS-CoV-2 (NCT04377789, NCT04578158).

4.6 | Rutin

Rutin is one of the common flavonols widely distributed in citrus fruits

and buckwheat (Lachman, Orsak, Pivec, & Faustusova, 2000). It is basically

a glycoside form of quercetin. Treatment of rutin significantly inhibited the

secretion of IL-6, IL-1β, IL-8, and TNF-α in PMACI-stimulated HMC-1 cells

(Park et al., 2008). It reduced the secretion of TNF-α in LPS-stimulated

human umbilical vein endothelial cells (HUVEC) (W. Lee et al., 2012). Rutin

treatment decreased the secretion of IL-6, IL-1β, and TNF-α in LPS-

induced acute lung injury in in vivo ICR mice by targeting the inhibition of

oxidative stress and MAPK-NF-κB pathway (C.-H. Yeh et al., 2014). The

simulation study revealed that rutin could be a potent inhibitor of the main

protease of COVID-19 as it represents minimum binding energy of -136

(Al-Zahrani, 2020). Rutin was considered to be a potent inhibitor of SARS-

CoV-2 3CL main protease and other key proteins in the life cycle of

COVID-19 based on the ML prediction and molecular docking procedures

(Al-Zahrani, 2020; Xu, Yang, et al., 2020). A Molecular docking study

showed significant binding of rutin with RdRp, Mpro, PLpro, and S-proteins

of SARS-CoV-2 (F. Rahman et al., 2021). Rutin from fruit peels is consid-

ered as safe to use as nutraceuticals (FSSAI, 2016).

4.7 | Luteolin

Luteolin is one of the most common flavones, which are widely dis-

tributed in fruits and vegetables such as cabbages, carrots, broccoli,

celery, parsley, and apple skins (López-Lázaro, 2009). In an in vitro

nickel-stimulated A549 cell lines assay, luteolin considerably reduced

the production of IL-6, IL-1β, IL-10, and TNF-α. It inhibited the secre-

tion of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells (Xagorari

et al., 2001). Similar downregulation activities of the important cyto-

kines are also reported in the in vitro assay at a very low micro-molar

level using PBMCs and RAW 264.7 cells (Hougee et al., 2005). In LPS

induced acute lung injury, luteolin treatment significantly reduced the

level of IL-6 and TNF-α in mice model via inhibition of NF-κB and

transforming growth factor-beta1 (TGF-β1)-induced Smad3 pathway

(C.-Y. Chen et al., 2010; Y.-C. Li et al., 2012). Rungsung et al. (2018)

demonstrated significant inhibition of IL-6, IL-1β, and TNF-α in Swiss

albino mice via inhibition of ICAM-1 and NF-κB pathways. In the clini-

cal trial, the treatment of luteolin decreased the IL-6 and TNF-α in

children with autism spectrum disorders (Tsilioni et al., 2015). Fan,

Qian, Qian and Li (2016) reported potent antiviral activity of luteolin

against replication of encephalitis virus in A549 cells with IC50 of 4.56

μg/ml. Luteolin inhibited the reverse transcriptase activity in breast

cancer cells (L. Huang, Jin, & Lan, 2019). Luteolin was also reported to

inhibit the proteolytic activity of SARS-CoV 3CLpro (Jo, Kim, Shin, &

Kim, 2020). The compound possessed antiviral activity against SARS-

CoV in Vero cultured cells having EC50 of 10.6 μM (Yi et al., 2004).

Luteolin was reported to interfere with spike, main protease, and

nucleocapsid protein of SARS-CoV-2 to inhibit the viral infection

(Ansari, Ahamad, Khan, Khan, & Khan, 2020; Shawan, Halder, &

Hasan, 2021).

4.8 | Baicalein

Baicalein is a flavone extracted mainly from the roots of Scutellaria

baicalensis and Scutellaria lateriflora (Varsha et al., 2017). It had shown

the inhibitory effect of IL-6 and TNF-ɑ secretion significantly in LPS-

stimulated HUVECs as well as H5N1 virus-induced stimulation of

cytokines in A549 cells (Sithisarn et al., 2013). The ability to inhibit

IL-8 and IL-1β was also reported using HUVECs and RAW 264.7 cells,

respectively (Blonska et al., 2003). Baicalein treatment significantly

decreased the level of IL-6, IL-1β, and TNF-ɑ in LPS-induced acute

lung injury in Sprague-Dawley rats through inhibition of NF-κB medi-

ated inflammatory response and upregulation of Nrf2/Heme

oxygenase-1 (HO-1) pathway (Tsai et al., 2014). Similar activity of hin-

dering IL-6, TNF-ɑ, and IL-8 was also reported for baicalin, the agly-

cone of baicalein in Type II pneumocytes as well as in vivo acute lung

injury model (Lixuan et al., 2010; Meng et al., 2019). Moreover, this

aglycone baicalin had been shown to inhibit TGF-β and IL-18 in LPS-

induced CX3CL1 knockout mice model of lung injury (Ding

et al., 2016). Baicalein, at a concentration of 2 μg/ml, exhibited a 70%

inhibition of HIV reverse transcriptase activity (Ono, Nakane,

Fukushima, Chermann, & Barré-Sinoussi, 1990). It inhibited the repli-

cation of the dengue virus in Vero cells with IC50 of 6.4 μg/ml (Zandi

et al., 2012). Baicalein enhanced the efficacy of ribavirin against influ-

enza virus in cultured cells as well as in the preclinical mice model

(L. Chen et al., 2011). Aqueous extract of Scutellaria bicalensis
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standardized to baicalin content not less than 50% is approved as

nutraceutical at a dose level of 250–1000 mg/day (FSSAI, 2016).

Baicalin had been reported to inhibit ACE activity (Yang, Islam, Wang,

Li, & Chen, 2020). Baicalein and its aglycone unit possessed a signifi-

cant inhibition against 3CLpro of SARS-CoV-2 (Su et al., 2020). A

recent report revealed that the application of baicalein would inhibit

the replication of the SARS-CoV-2 through the interference of mito-

chondrial oxidative phosphorylation. The inhibitory effect of baicalein

is mPTP dependent and reversible, where co-application of mPTP

inhibitors with baicalein could act synergistically in the control of

SARS-CoV-2 (Huang, Liu, et al., 2020).

4.9 | Diosmin

Diosmin is one of the most prevalent flavones that is consumed

through diverse dietary sources like fruits, viz., grapes, citrus fruits,

berries, pomegranates, and apples; vegetables, viz., onions, broccoli,

and leafy greens; legumes, soy products, as well as beverages, viz., red

wine and tea (Roy, Azamthulla, & Mukkerjee, 2020). Diosmin had sig-

nificantly reduced the production of IL-6 and TNF-α in LPS-induced

acute lung injury in Balb/c mice via targeting the TLR4-MyD88-NF-κB

signaling pathway (Imam et al., 2015). Diosmin is a glycoside of

diosmetin, which had also shown a significant inhibitory effect on

IL-6, IL-1β, and TNF-α via activation of Nrf2 and inhibition of NOD-,

LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome

in LPS-induced animal model of lung injury (Q. Liu et al., 2018). Dio-

smin decreased the production of IL-1β and TNF-α in patients with

chronic venous disorders (Feldo et al., 2019). In silico studies have

demonstrated that diosmin possess the ability to interfere with

3CLpro of SARS-CoV-2 by blocking its substrate-binding site, with an

IC50 of 8.3 μM (Chen, Yiu, & Wong, 2020). Molecular docking studies

revealed that diosmin is a potent candidate to inhibit the Mpro (Adem,

Eyupoglu, Sarfraz, Rasul, & Ali, 2020). It exhibited a greater binding

affinity toward 3CL-pro, S2-RBD, TMPRSS, and ACE2 to inhibit the

SARS-CoV-2 infection (Utomo et al., 2020). Citrus flavonoids are safe

to use at 150–600 mg/kg as mentioned in nutraceuticals guidelines

(FSSAI, 2016). Recently, this agent is under clinical investigation for

the management of SARS-CoV-2 (NCT04452799).

4.10 | Genistein

Genistein is an isoflavone, which is primarily found in edible legumes,

red clover, and soy-based foods (Liggins et al., 2000). The level of IL-6

and TNF-α was notably inhibited by genistein in both LPS-stimulated

RAW 264.7 cells and Jurkat E6.1 T cells (Karieb & Fox, 2013). D. H.

Kim et al. (2014) demonstrated the inhibitory effect of genistein on

IL-6 and IL-1β production in PMA-stimulated HMC-1 cells. In the pre-

clinical mice model of LPS-induced acute lung inflammation, it was

reported to inhibit the secretion of IL-6, IL-1β, TNF-ɑ, and TGF-β via

downregulation of expression of Ape1/Ref-1 (Liu, Xia, et al., 2014).

The above compound inhibited the production of virus and prevented

plaque generation with an IC50 of 46 μM and 33μM for macaque and

human fibroblasts, respectively. Genistein reduced the viral load by 99%

and 93% in combination with ganciclovir and acyclovir, respectively,

using the same concentration of IC50 (LeCher, Diep, Krug, &

Hilliard, 2019). It inhibited in vitro viral replication and its associated pro-

teins in Vero cells infected with the swine flu virus (Arabyan et al., 2018).

Molecular docking studies reported that genistein interferes with Mpro

and RdRp to inhibit the activity of SARS-CoV-2 (Khan et al., 2020).

Genistein or its sources like soya protein isolate/edible legume seed pro-

tein isolate are safe to use as a nutraceutical (FSSAI, 2016).

4.11 | Biochanin A

Biochanin A is an isoflavone that is widely present in zigzag clover, red

clover, crimson clover, and also in other plants such as soy, peanuts,

alfalfa, and chickpea (Sundaresan, Radhiga, & Deivasigamani, 2018). It

had been reported to inhibit IL-6, IL-1β, and TNF-α production in LPS-

stimulated RAW 264.7 cells via regulating the NF-κB pathway (Kole

et al., 2011). Moreover, treatment of Biochanin A significantly reduced

the secretion of IL-6 in H5N1 virus-induced stimulation of cytokines in

A549 cells via reducing the activation of multiple pathways like Akt,

extracellular signal-regulated kinases (ERK), and NF-κB (Sithisarn

et al., 2013). In an in vivo model of LPS-induced acute lung injury in

C57/BL6 mice, biochanin A notably reduced the level of IL-6, IL-1β,

and TNF-ɑ through downregulation of TLR4/NF-κB signaling pathway

and upregulation in the expression of peroxisome proliferator-activated

receptor-gamma (PPAR-γ) (Hu et al., 2020). The replication of the avian

influenza H5N1 virus strain was reduced to 55-fold by biochanin A at a

concentration of 40 μM in A549 cells (Sithisarn et al., 2013). Molecular

docking analysis revealed that biochanin A significantly binds to the

active sites of RBD-Sand ACE2 to inhibit the viral infection (Gorla, Rao,

Kulandaivelu, Alavala, & Panda, 2020).

4.12 | Silymarin

Silymarin is one of the common flavonolignans and is widely present

in milk thistle (Vaknin, Hadas, Schafferman, Murkhovsky, &

Bashan, 2008). Treatment of silymarin had decreased the level of IL-6

and TNF-ɑ significantly in LPS-induced acute lung injury in Wistar rats

via downregulation of the NF-κB signaling pathway (Z. Zhu &

Sun, 2018). In β-thalassemia patients, oral treatment of silymarin at a

dose of 420 mg/day demonstrated a reduced level of TNF-ɑ but

enhanced the production of IL-4 and IFN-γ (Gharagozloo et al., 2013).

The compound exhibited threefold inhibition at a concentration of

25 μg/ml against the chikungunya virus in cultured cells (Lani

et al., 2015). It possessed a significant inhibition of Zika virus with an

IC50 of 34 μg/ml (da Silva et al., 2020). Silymarin at a concentration of

100 μg/ml demonstrated anti-influenza viral activity of 98% in cul-

tured cells (J. Song & Choi, 2011). Molecular docking analysis revealed

that silymarin considerably interferes with RBD-Sand ACE2 to inhibit

the SARS-CoV-2 infection (Gorla et al., 2020). Standardized Silybum
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marianum extract containing silymarin can be taken as a nutraceutical

at a dose level of 250–1000 mg/day (FSSAI, 2016). Recently, this nat-

ural compound is under clinical investigation for the management of

SARS-CoV-2 (NCT04394208).

4.13 | Other flavonoids

The potential role of flavonoids is not limited to the above examples

in the management of SARS-CoV-2 conditions. There are several

other flavonoids of different subclass at different stages of research,

which have shown activities in in vitro and in vivo models, such as

flavan-3-ols like catechin and theaflavin; flavanones like liquiritigenin,

eriodictyol, taxifolin, and pinocembrin; flavonols like myricetin, cas-

ticin, galangin, and kaempferol; flavones like fisetin, apigenin, chrysin,

wogonin, and velutin; isoflavones like formononetin. Their actions on

major inflammatory cytokines are highlighted in Tables 2 and 3.

5 | CONCLUSION

In spite of rapid advances in the modern system of medicines, there is

no effective and safe therapy available to date for the management of

COVID-19. Therefore, exploration of dietary supplementation was

evaluated for their beneficial role in the management of the critical situ-

ation, where these were found to be an effective option to boost up

the immunity for the prevention and recovery from SARS-CoV-2 infec-

tion. Based on the inhibitory effect of important cytokines, e.g., IL-6, IL-

1β & TNF-α, with their pathways of action in in vitro and in vivo studies

on preclinical and clinical models, molecular docking studies information

on interference with SARS-CoV-2 infection, antiviral activity, and intake

level as a safe nutraceutical, a number of flavonoids have been found

to possess excellent potential to combat against SARS-CoV-2 infection.

Clinical exploration is warranted to establish suitable phytotherapeutics

and their regimens for the effective and safe management of the cyto-

kine storm in COVID-19 condition to manage ARDS.
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