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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a fatal disorder of the motor neuron system with poor prognosis and
marginal therapeutic options. Current clinical diagnostic criteria are based on electrophysiological examination and
exclusion of other ALS-mimicking conditions. Neuroprotective treatments are, however, most promising in early disease
stages. Identification of disease-specific CSF biomarkers and associated biochemical pathways is therefore most relevant to
monitor disease progression, response to neuroprotective agents and to enable early inclusion of patients into clinical trials.

Methods and Findings: CSF from 35 patients with ALS diagnosed according to the revised El Escorial criteria and 23 age-
matched controls was processed using paramagnetic bead chromatography for protein isolation and subsequently
analyzed by MALDI-TOF mass spectrometry. CSF protein profiles were integrated into a Random Forest model constructed
from 153 mass peaks. After reducing this peak set to the top 25%, a classifier was built which enabled prediction of ALS with
high accuracy, sensitivity and specificity. Further analysis of the identified peptides resulted in a panel of five highly sensitive
ALS biomarkers. Upregulation of secreted phosphoprotein 1 in ALS-CSF samples was confirmed by univariate analysis of
ELISA and mass spectrometry data. Further quantitative validation of the five biomarkers was achieved in an 80-plex
Multiple Reaction Monitoring mass spectrometry assay.

Conclusions: ALS classification based on the CSF biomarker panel proposed in this study could become a valuable
predictive tool for early clinical risk stratification. Of the numerous CSF proteins identified, many have putative roles in ALS-
related metabolic processes, particularly in chromogranin-mediated secretion signaling pathways. While a stand-alone
clinical application of this classifier will only be possible after further validation and a multicenter trial, it could be readily
used to complement current ALS diagnostics and might also provide new insights into the pathomechanisms of this disease
in the future.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is the most common fatal

adult onset motor neuron disorder. Although some interacting

pathomechanisms are already known, therapeutic options remain

marginal [1,2].

With ALS diagnosis being based mainly on clinical and

electrophysiological examination, serum and CSF analyses are

only performed to exclude ALS-mimicking conditions. A major

hindrance to the development of novel therapeutic strategies is

that diagnosis usually occurs at a late disease stage, limiting the

efficacy of neuroprotective approaches. It was shown that up to

10% of ALS patients die before achieving diagnostic certainty

according to the revised El Escorial criteria [3,4].

These factors spur on an intensive search for diagnostic markers

to enable earlier ALS detection, and help monitor disease

progression and treatment response while furthering the un-

derstanding of the associated pathomechanisms. Despite notable

contributions of CSF metabolomics profiling in ALS and

considerable advances in mapping the normal human CSF

proteome, the discovery of ALS-specific protein markers in CSF

would allow the most direct clinical application [5–7]. In one of

the first clinical proteomics studies in this field, Ranganathan et al.
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used surface-enhanced laser desorption/ionization time-of-flight

mass spectrometry (SELDI-TOF-MS) to compare 23 ALS patients

with 31 controls and identified three predictive ALS marker

proteins [8]. Pasinetti et al. also used SELDI-TOF-MS to study

ALS (n = 36) and control (n = 21) CSF. They proposed a combi-

nation of proteins as a putative ALS profile [9]. A more recent

SELDI technology-based study by Ryberg et al. (2010) profiled

CSF of 100 ALS patients and a total of 141 control subjects to

build a predictor model based on 41 mostly unidentified masses

[10]. However, no independent validation cohort was used to

validate these findings.

In our study, primary CSF low molecular weight proteome

profiles of 35 ALS patients and 23 age-matched controls were

generated. To minimize pre-analytical variability, an immunode-

pletion of high-abundance CSF proteins was not performed. CSF

was processed using chromatographically functionalized para-

magnetic beads in combination with linear MALDI-TOF-MS

(matrix-assisted laser desorption/ionization) to increase reproduc-

ibility, resolution and identification capabilities compared to

SELDI-TOF approaches [11]. Multivariate bioinformatic analysis

revealed differential masses between ALS and control CSF.

Peptide and protein identification by tandem MS enabled us to

build a classifier to predict ALS with high sensitivity and

specificity. The resulting list of 186 unique CSF proteins was

further analyzed using enrichment analysis. Among the 38

classifier masses were ALS biomarker candidates like cystatin C,

alpha-1-antitrypsin, VGF, chromogranin A and SPP1 [12]. To

evaluate our results in a broader biochemical context, we

performed a pathway-based analysis of the identified classifier

peptides and proteins. Univariate analysis by mass spectrometry

and ELISA confirmed the significant upregulation of secreted

phosphoprotein 1 (SPP1) in ALS patients in an independent

validation cohort. Moreover, a quantitative Multiple Reaction

Monitoring (MRM) mass spectrometry assay was performed for

further validation of all markers.

Materials and Methods

Patients
Primary CSF specimens from 35 ALS patients and 23 controls

(main patient cohort) were included in this study. The ALS

patients were diagnosed according to the revised El Escorial

criteria [3]. The group of control subjects consisted of age-

matched patients with different neurological diseases, e.g. head-

ache, vertigo, facial nerve paresis, back pain, peripheral neurop-

athy. No abnormalities were detectable in routine CSF analysis.

Relevant patient demographics are summarized in Table 1a. An

independent cohort (Table 1b), consisting of primary CSF

specimens from 23 ALS patients and 23 controls, was used for

validation purposes. After lumbar puncture, all CSF samples were

centrifuged to remove cellular debris, frozen on dry ice

immediately upon withdrawal in 0.5 mL aliquots and stored at –

80uC until further analysis (Figure 1).

CSF Preparation with ClinProt Beads and Proteomic
Profiling

In contrast to the proprietary chip-based SELDI-TOF MS

analysis, we used superparamagnetic particles (ClinProt beads,

Bruker Daltonics, Bremen, Germany) to prepare CSF for

MALDI-TOF-based proteomic profiling. CSF peptides and

proteins were concentrated on the surface of weak cation exchange

microparticles (MB-WCX, particle size ,1 mm, mean pore size

40 nm; specific surface area 100 cm2/g) according to adapted

manufacturer’s instructions. The protocol was adapted to 10 ml

CSF and binding solution volumes, followed by the addition of

10 ml bead suspension. The dried bead eluates were mixed with

alpha-cyano-4-hydroxycinnamic acid matrix solution and spotted

onto a MALDI Anchor Chip target (Bruker). The analysis was

performed with a linear Microflex MALDI-TOF mass spectrom-

eter (Bruker) optimized for highly sensitive detection in the mass

range up to 10 kilodaltons. The raw data used for statistical

analysis and detailed patient information are available from

http://www.mh-hannover.de/proteomix/plos/. Username and

password will be provided upon request.

Identification of CSF Components
Due to the limited availability of sample material, CSF

proteins/peptides from 6 ALS samples and 5 controls were used

for peptide identification. The CSF samples were enriched and

analyzed in 11 separate nanoLC-ESI-MS/MS high resolution

experiments (Proteome Factory AG, Berlin, Germany). Peptide

fragmentation and detection were accomplished in the instru-

ment’s LTQ ion trap. Proteins were identified using MS/MS Ion

Search of the Mascot search engine (Matrix Science, London, UK)

and the Entrez protein database (National Center for Bio-

technology Information, Bethesda, MD, USA).

Functional Enrichment of CSF Components
The identified proteins were further analyzed using enrichment

analysis based on the DAVID bioinformatics online resource [13].

Functional groups from Tissue Expression (UP_tissue), Swiss Prot

keywords (SP Pir keywords) and Gene Ontology: Molecular

Function (GO MF) were assessed for enrichment in CSF.

Statistical Analysis of MALDI-MS Data
The MALDI-TOF mass profiles were integrated into a multistep

bioinformatics analysis. First, spectra were pre-processed using the

PROcess R-package [14]. After resampling and baseline correc-

tion, normalization was performed using the total ion count.

Following quality control, mass spectra from 35 ALS patients and

23 controls (main patient cohort) were included in the final

analysis. Peak finding was applied to the mean spectrum of the

pre-processed spectra. For classification and peak ranking, we used

a Random Forest (RF) predictor [15,16]. The RF method is an

ensemble classifier that consists of a collection of decision trees.

Each tree is constructed using a bootstrap subsample of the data.

Class assignment for a sample is performed separately for each tree

of the collective. The percentage of trees voting for the class of

interest is used to define a degree of class membership between 0%

and 100% The final class assigned to a sample is determined by

major vote (.50%). At each iteration (bootstrap subsampling) of

the RF construction, the data that were not part of the training

subsample (out of bag data) make it possible to estimate the error

rate. The average (mean) error over all iterations is commonly

referred to as the out of bag error (OOB). Peak importance can be

estimated using the mean decrease in accuracy (MDA) measure.

This gives the increase in OOB error when the OOB data for that

peak are permuted while all others are left unchanged. For an

unbiased estimation of classifier performance on new samples, we

used 10-fold cross-validation, selecting each sample 10 times for

the test set. All feature ranking/selection steps using class

information were included in the cross-validation. Generalization

performance was visualized using a ROC curve [17]. To find an

optimal peak set, we used recursive feature elimination, at each

step removing the peaks with a mean decrease in accuracy lower

than the median mean decrease in accuracy [18]. The peak sets

were rated according to their cross-validation area under the curve

(AUC), choosing the set with the highest AUC for further analysis.

Biomarker Profiling in ALS
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The AUC was calculated using the percentages of ensemble trees

voting for a specific class. Accuracy, sensitivity and specifity were

calculated based on class assignment according to major vote.

Statistical significance of differential expression between different

groups was calculated using the Wilcoxon rank test (two-tailed). All

statistical tests were carried out using the open source software R

(http://www.r-project.org). P-values of p,= 0.05 were considered

significant, while p-values of p,= 0.1 were considered to show

a trend towards statistical significance. The reported fold changes

for the respective proteins of interest were calculated by dividing

their mean concentrations in the ALS samples by the mean

concentrations in the controls.

ELISA Validation
The expression of SPP1 was validated in the validation cohort

using ELISA technology according to the manufacturer’s instruc-

tions (RayBiotech Inc., Norcross, GA, USA) at a 75-fold dilution.

CSF samples were randomly assayed in duplicate. Inter-assay

variation was minimized by measuring three samples on different

ELISA plates and subsequent normalization.

Multiple Reaction Monitoring (MRM) for the
Quantification of Protein Expression

Eight ALS, four of our controls and four additional control CSF

samples (NextGen sample ID no. 101, 102, 103, 104), were tested

against the CSFassay-human A.1.0 protein assay (NextGen

Sciences, Inc, Ann Arbor, MI, USA) [19]. Briefly, CSF samples

(50 ml) were processed to generate tryptic peptides using a pro-

prietary sample processing method developed by NextGen

Sciences. The resulting peptide-containing solutions were spiked

with known quantities of heavy stable-isotope labeled (heavy)

peptides that have identical sequences and are chemically

equivalent to the endogenous (light) peptides. The spiked samples,

calibrators and quality controls were injected to acquire data by

LC-MRM/MS using a 25 minute scheduled method. MRM data

were processed to obtain absolute quantitation results using

Figure 1. Workflow of CSF profiling by MALDI-TOF MS spectra acquisition and data processing. After analysis by MALDI-TOF mass
spectrometry, profile spectra were pre-processed. Discriminatory features were selected using a Random Forest Classifier. Prediction of diagnostic
accuracy was assessed by cross-validation. Mass identification of discriminatory mass peaks was enabled by nanoLC-ESI-MS/MS. Validation was
performed by ELISA. Further validation was performed using Multiple Reaction Monitoring (MRM) for the quantification of protein expression.
doi:10.1371/journal.pone.0044401.g001
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NextGen Sciences’ proprietary software. Protein quantity was

expressed in [ng/ml] and subsequently transferred to statistical

analysis. Down or upregulation of protein concentrations was

described as a fold change (FC) value. FC values ,1 mean

downregulated and .1 upregulated in the ALS CSF samples.

Results

Cerebrospinal fluid contains a high diversity of proteins, 186 of

which were identified in this study (Table S1). While 44 of the CSF

proteins could be identified in both the 6 analyzed ALS and the 5

control samples, 62 were only identified in ALS and 80 in control

CSF (Figure S1). Comprehensive Mascot search results are

available from http://www.mh-hannover.de/proteomix/plos/

mascot. Username and password will be provided upon request.

Performing a DAVID analysis on the full set of identified proteins,

several functional groups were found to be significantly enriched in

CSF (Table 2a and 2b).

To screen for differentially regulated proteins and peptides that

may serve as biomarkers for ALS, we used weak cationic exchange

magnetic beads to enrich a protein and peptide fraction of interest

[20]. This allows for the depletion of some abundant CSF proteins,

a common approach in proteomic screening, while minimizing the

inadvertent removal of less abundant potential biomarkers in pre-

fractionation procedures [21]. The eluted fractions were analyzed

with a linear MALDI-TOF-MS, facilitating the acquisition of a set

of profile spectra in the mass range below 10 kDa (Figure 2). Using

this approach, the peak recognition algorithm was able to detect

153 mass peaks. Using the detected peaks, we were able to classify

the spectra according to their ALS status. Using all detected peaks

in the classifier construction process, the following prediction

performance was achieved: accuracy: 77.2% (448/580); sensitivity:

78% (273/350); specificity: 76.1% (175/230); area under the curve

(AUC): 0.82. Using recursive feature elimination to search for the

optimal peak set, the biomarker set was reduced to the top 25% of

153 peaks (Table 3).

These top peaks not only manage to retain the data partition

achieved using all peaks, but also show a better generalization

performance. The prediction performance was: accuracy: 80.3%

(466/580); sensitivity: 80.7% (286/350); specificity: 78.3% (197/

250); AUC: 0.84. The results for the feature optimized model are

presented as a receiver operating characteristic curve (ROC) in

Figure 3. Using ESI-MS/MS, we identified some of the top

classifying peaks (Table 3) in selected samples.

The proteins in the CSF matching the MALDI-TOF-MS mass

peaks were alpha-1-antitrypsin (A1AT), cystatin C (CST 3),

Table 1. Patient Demographics.

a) Main Cohort ALS Control

Samples 35 23

Gender male 18 11

female 17 12

Age at CSF collection (years) 59612.77 62.39612.24

Disease Duration (months) 13.43619.72 NA

Onset site (ALS) limb 23 NA

bulbar 12 NA

Familial ALS yes 4 NA

no 31 NA

Level of diagnostic certainty according to El Escorial
criteria: Possible ALS: Laboratory-supported
probable ALS: Probable ALS: Definite ALS:

7 (20%) 10 (29%) 13 (37%)
5 (14%)

NA

SOD1 yes 0 NA

no 35 NA

b) Validation Cohort ALS Control

Samples 23 23

Gender male 16 14

female 7 9

Age at CSF collection (years) 55.91610.26 55611.09

Disease Duration (months) 12.5769.29 NA

Onset site (ALS) limb 21 NA

bulbar 2 NA

Familial ALS yes 1 NA

no 22 NA

Level of diagnostic certainty according to El Escorial
criteria: Possible ALS: Laboratory-supported
probable ALS: Probable ALS: Definite ALS:

5 (22%) 6 (26%) 9 (39%)
3 (13%)

NA

SOD1 yes 0 NA

no 23 NA

NA = not applicable.
doi:10.1371/journal.pone.0044401.t001
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chromogranin A (CHGA), VGF nerve growth factor inducible

protein (VGF) and the secreted phosphoprotein 1 (SPP1).

To evaluate our results in a broader biochemical context, we

performed a pathway-based analysis of the identified classifier

peptides and proteins. The BisoGenet multi-tier Cytoscape

application was used for visualization and analysis of biomolecular

relationships involving A1AT1, CST3, CHGA, VGF and SPP1

[22]. The resulting protein network is shown in Figure 4. Our

Table 2. DAVID analysis of the full set of identified proteins in CSF.

a) Significantly Enriched UP Tissue Expression

UP Tissue % P-value (BH corrected)

Brain 63.21 ,0.001

Plasma 10.38 ,0.001

Bile 4.72 ,0.001

Epithelium 27.36 ,0.001

Saliva 4.72 ,0.001

Liver 22.64 ,0.001

Cajal-Retzius cell 6.60 0.001

Fetal liver 6.60 0.001

Platelet 9.43 0.003

Mesangial cell 2.83 0.004

b) Significantly Enriched Gene Ontology: Molecular Function

GO Molecular Function % P-value (BH corrected)

GO:0008092,cytoskeletal protein binding 13.208 0.006

GO:0003779,actin binding 10.377 0.007

GO:0060228,phosphatidylcholine-sterol O-acyltransferase activator activity 2.830 0.034

GO:0030414,peptidase inhibitor activity 6.604 0.032

doi:10.1371/journal.pone.0044401.t002

Figure 2. Reproducibility of MALDI-TOF profile spectra. Principal component analysis (PCA) for the entire spectra (1–10 kDa) of four different
samples using the ClinProTools Software (Version 2.1, Bruker Daltonics). A: Replicate spectra from one sample are colored red, green, blue and yellow
in the stack view. B: Each dot in the PCA plot represents one technical replicate from two repeated sample preparations over the course of one
month. Despite inevitable variations in ambient and instrument conditions, the replicates form distinct clusters according to their biological origin.
doi:10.1371/journal.pone.0044401.g002
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biomarker panel allowed the detection of ALS using a multivariate

classification model. Mass peaks from the optimized peak set and

corresponding peak intensities in ALS patients and control

samples (see Figure 5 and Figure S2 for boxplots) were further

evaluated individually, using the Wilcoxon rank test (two-tailed).

A1AT (p-value = 0.02) was found to be significantly (p,= 0.05)

upregulated in ALS patients compared to the controls. Further,

there was a trend (p,= 0.1) towards a lower expression of VGF,

cystatin C (CST 3) and chromogranin A (CHGA). A higher

expression of secreted phosphoprotein 1 (SPP1, p-value = 0.08)

was detectable in the ALS patients. VGF was already identified as

potential biomarker in ALS, [9] while an upregulation of SPP1 has

previously been reported in the microglia of transgenic ALS mice

[23]. Thus, to assess the differential expression of SPP1 in ALS

Table 3. Top Peaks Used for Classification.

Peak Mass [m/z]
Mean Decrease in
Accuracy (z-Score) Protein ID

Peptide Peaks
Matched

Protein Identity
GI #

Protein Mass
[Dalton]

MASCOT
Score

8398.49 7.66497

9346.98 5.61487

2116.79 4.19806

2378.33 2.86895 alpha-1 antitrypsin 2 177816 3724 58

9738.48 2.79567

9061.22 1.52224

8633.19 1.30805

7453.3 1.24643

9635.76 1.0146

4008.93 0.87181

1213.53 0.82527

4353.34 0.72187

4283.89 0.69717

9134.49 0.65734

1315.84 0.56229 cystatin-C precursor 4 4503107 15789 128

2069.8 0.51385

3954.58 0.48911 VGF nerve growth factor
precursor

13 17136078 67218 220

4092.77 0.43934

3807.59 0.43499

8798.94 0.4059

3253.32 0.40418

3405.3 0.37003 VGF nerve growth factor
precursor

13 17136078 67218 220

3023.91 0.34859

3689.73 0.34071 VGF nerve growth factor
precursor

13 17136078 67218 220

3380 0.33391

1270.6 0.33247

1401.38 0.31381

3909.19 0.304 chromogranin A 2 2072129 50688 61

5067.31 0.27799

1298.07 0.26727

6690.88 0.18376

3514.26 0.18011

6125.72 0.14527

1676.56 0.13198

1541.13 0.13908 secreted phospho-protein 1
isoform b

2 4759166 33823 88

9211.54 0.11068

7743.15 0.10234

1520.48 0.08217

doi:10.1371/journal.pone.0044401.t003
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patients, an ELISA was performed using 46 the CSF samples from

our validation patient cohort (Table 1b). The SPP1 ELISA

confirmed an upregulation of SPP1 in ALS patients (Figure 5).

Since a CSF ELISA assay was only available for SPP1, we

decided to further validate our findings in a quantitative mass

spectrometry assay. (CSF assay-human A.1.0 protein assay,

NextGen Sciences). This assay allows the simultaneous measure-

ment of the concentration of 80 proteins in human CSF samples.

We used this procedure for 16 CSF samples. From the validation

patient cohort, 8 ALS patient CSF samples were run together with

four of our control samples and four normal human CSF controls

(NextGen) in a single batch. All controls met precision specifica-

tion goals of ,30%. The results for our marker panel consisting of

A1AT, CST 3, CHGA, and VGF were in line with the MALDI-

TOF-MS data-derived ALS classifier. The fold changes in

concentration for these proteins as well as for the 75 remaining

analytes are listed in Table S2 which also shows how the MRM

results are complemented by the MS/MS peptide identifications

and their alignment with the BisoGenet pathway. Apart from our

marker proteins, the MRM assay revealed 4 additional differen-

tially expressed proteins which are a part of the biomolecular

network (Figure 4). These proteins were cathepsin D (CTSD),

thrombin (F2), plasminogen (PLG) and secretogranin III (SCG3).

All 4 proteins were slightly downregulated in the ALS patients.

Discussion

A definite diagnosis of ALS can, according to the diagnostic

criteria in current use, be reliably made only in advanced disease

stages. Laboratory and technical tests can help to exclude other

ALS-mimicking syndromes but do not provide positive markers of

the disease. It is therefore necessary to improve the sensitivity and

specificity of the diagnostic tools. Moreover, the identification of

disease-specific markers and their interaction in a common systems

biological network could allow novel insights into disease-

associated dysregulation of signalling cascades and more accurate

monitoring of patients within therapeutic trials.

Proteomics represents a combination of different methods for

the study of peptides and proteins in tissues, biological fluids or cell

cultures at a specific point in time [22,24,25]. In context with

Figure 3. ROC plot analysis with area under the curve of CSF classification of ALS/non-ALS spectra. The Random Forest and decision
tree predictor assign a score between 0 ( = non-ALS) and 1 ( = ALS) to all spectra. A CSF sample that shows a higher score than a predefined cut-off is
classified as an ALS sample. The ROC plot curve shows the sensitivity against the specificity for different cut-offs. The curves are color-coded
according to the level of the cut-off. The results shown are for the Random Forest with the optimized set of 38 peaks.
doi:10.1371/journal.pone.0044401.g003
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diseases such as ALS, protein expression analysis means the

detection of specific protein changes in affected cells or in body

fluids such as CSF [8,22,24].

ALS is a degenerative disorder of the central nervous system

which primarily affects motor neurons in brain and spinal cord

even though more widespread changes in brain regions other than

the primary motor cortex have been detected by neuropatholog-

ical and neuroimaging techniques. CSF may most probably reflect

biochemical disease-related alterations as it is much closer to the

central motor system than blood or urine. Analysis of the CSF

proteome of ALS patients can identify pathophysiologically

relevant pathways as well as non-specific changes associated with

neurodegeneration in general. The protein component of CSF not

only consists of brain-derived proteins but also of proteins

abundant in plasma [26]. Differences found in CSF may therefore

result from increased or reduced expression/turnover in neurons

and glial cells, sequestration into intracellular protein aggregates,

but also from dysfunction of the blood-brain-barrier and sub-

sequent entry of proteins from the plasma [27–29]. For the

identification of differentially expressed peptides and proteins, chip

or paramagnetic bead-based methods in combination with

MALDI-TOF-MS can be performed. Using this approach, we

and others [8–10] were able to find differences in the CSF

proteome of patients with ALS and to identify disease-specific

biomarkers or changes in protein patterns. CSF contains a large

number of different peptides and proteins with a highly variable

composition. Therefore, advanced pattern recognition algorithms

are used in this study to associate these peptide and protein

fingerprints with known disease states, resulting in the identifica-

tion of unique protein patterns that can distinguish between

healthy and affected individuals. We used a robust WCX bead-

based MALDI-TOF platform in combination with the Random

Forest algorithm [15] to deal with the complexity of the low

molecular weight CSF proteome. This enabled us to select peaks

not only based on their own expression changes, but also

evaluating them directly in the context of complex interactions

and composition changes. This made it possible to extract the most

important information from the complex patterns for the

classification model. The complexity of the spectra also makes

cross-validation necessary to get an unbiased estimate of classifier

performance on new samples. In our study, we identified five

classifier proteins that played a predictive role in our optimized

ALS biomarker network: A1AT, CST3, CHGA, VGF and SPP1.

These findings for A1AT, CST3, CHGA and VGF are in line with

previously published data [9,24].

Cystatin C is widely expressed in neuronal and non-neuronal

cells and physiologically acts as an inhibitor of extracellular cystein

proteases. Its concentration in the CSF is about 5-fold higher than

Figure 4. BisoGenet Pathway. The pathway shown was generated using BisoGenet [22]. It shows the biomolecular relationships involving A1AT
(alpha-1 antitrypsin; FC: 0.96), CST3 (cystatin-C precursor; FC: 0.96), CHGA (chromogranin A; FC: 0.90), VGF (nerve growth factor precursor; FC: 0.79)
and SPP1 (secreted phospho-protein 1 isoform b; FC: 0.94). The red lines mark the shortest paths between the identified biomarker candidates which
are represented by red nodes. FC: Fold Change.
doi:10.1371/journal.pone.0044401.g004
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in serum, mainly resulting from secretion by the choroid plexus

[30,31]. Cystatin C prevents proteolytic cleavage resulting from

leakage of cysteine proteases from damaged cells but its exact role

in ALS or other neurological conditions still remains unclear as

both neurotoxic and neuroprotective effects have been described

[32,33]. It is - together with transferrin - one of the two protein

components of Bunina bodies, small eosinophilic intracytoplasmic

inclusions considered as a neuropathological hallmark of ALS [34–

37]. A recent study has specifically investigated whether cystatin C

content in ALS CSF (measured by ELISA) could serve as a disease

biomarker: the authors describe a correlation between lower

Cystatin C levels and shorter survival times as well as significantly

reduced levels in ALS patients in comparison to healthy controls

but not to CSF from patients with other neurological disorders,

again highlighting the benefit of biomarker panels consisting of

several differentially regulated peptides [12].

VGF and CHGA belong to the chromogranin/secretogranin

family of regulated neurosecretory proteins which can be detected

in secretory large dense-core vesicles (LDCV) in neurons and

neuroendocrine cells [38]. Granins are pro-hormones and their

cleavage products possess Ca2+ binding, protein sorting and

antibiotic properties and are involved in the regulation of the

cellular content of Ca2+, hormones, ATP and catecholamines

[39]. VGF has been identified as a potential ALS biomarker using

SELDI-TOF-MS [9]. In a follow-up study, VGF levels in CSF

were shown to correlate with progressing muscle weakness [40].

Decreased VGF content in the CSF has also been described in

Alzheimer’ disease and frontotemporal dementia [41,42]. VGF

expression increases with neuronal activity, decreases with aging

and is regulated by neurotrophic factors such as brain-derived

neurotrophic factor (BDNF) [43]. The decrease in VGF could

therefore be the result of either neuronal loss/dysfunction and/or

reduced growth factor secretion. In a transgenic ALS mouse

model, VGF expression was reduced already in presymptomatic

stages and decreased further with disease progression. In vitro,

adenoviral VGF overexpression was protective against excitotoxic

Figure 5. Boxplots. The four boxplots visualize the expression of A: A1AT, B: VGF 3405 Da peptide, C: SPP1 in the main patient cohort and D: SPP1
in the validation cohort as quantified by ELISA.
doi:10.1371/journal.pone.0044401.g005
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injury of primary spinal cord neurons [40]. A role of chromo-

granins in the pathophysiology of both familial and sporadic ALS

is supported by studies in ALS transgenic mice: CHG A and B

selectively co-localize and interact with misfolded mutant SOD1 in

spinal cord motor neurons and interneurons. This triggers the

secretion of mutant SOD1 into the extracellular space where it

induces microgliosis and subsequent motor neuron death [38].

Given the fact that we studied CSF of patients with sporadic ALS

(sALS), it is of particular interest that wild-type SOD1, once

oxidized by hydrogen peroxide, also interacts with CHGB, can be

secreted and induces microglial activation and dose-dependent

death of motor neurons [44]. This corresponds with a recent

immunohistochemical study in spinal cord tissue of sporadic ALS

(SALS) patients, where CHGA and CHGB displayed a character-

istic pattern in motor neurons with intracellular aggregation and

colocalization of chromogranins together with SOD1 [45].

Alterations in CHGA and B expression and localization, however,

do not seem to be ALS-specific. They have also been detected in

plaque in brain tissue of patients with Alzheimer’s disease and

Creutzfeldt-Jacob disease [46–48]. Reduced CHGA (as well as

VGF and cystatin C) levels were found in a proteomic analysis of

CSF of patients with Alzheimer’s disease [49].

Alpha-1-antitrypsin is part of the serine protease inhibitor

(serpin) family. It has been detected in amyloid plaques of

Alzheimer’s disease patients, most probably as a result of increased

astrocytic secretion [50]. CSF upregulation of alpha-1 antitrypsin

was previously found in ALS by two-dimensional gel electropho-

resis-based studies, similar to our observation of increased A1AT

content in ALS-CSF [27]. It was also shown to be increased in

CSF and plasma in various other neurological diseases ranging

from Alzheimer’s disease to Guillain-Barre syndrome and is now

mainly interpreted as an epiphenomenon due to blood brain

barrier (BBB) dysfunction [51–53].

SPP1 is an extracellular matrix protein first identified in

osteoblasts but also expressed in neurons and glial cells. It is

upregulated in acute and chronic inflammation, has been shown to

possess neuroprotective capacities and was identified as a bio-

marker in the plasma of patients with relapsing-remitting multiple

sclerosis [54,55]. In mutant SOD1-G93A transgenic ALS mice,

increased SPP1 expression was measured in spinal cord microglia,

possibly contributing to the beneficial effects of neuroinflammation

[23].

Our study is therefore in line with previous findings in the CSF

of not only ALS but also other degenerative diseases of the CNS.

Therefore, it remains to be shown whether these members of our

biomarker panel are specific for ALS or rather unspecific for

different diseases associated with neuronal degeneration. As

assessed by univariate analysis, two of the identified biomarker

proteins (A1AT and SPP1) individually showed a significant

change of expression in ALS patients.

Although suspected to be non-specifically affected by different

neurological diseases - diminishing their potential value as singular

biomarkers for ALS - A1AT, CHGA, VGF and cystatin C

together do, however, appear to be highly specific for ALS

detection as a part of the condensed marker panel described in this

study.

Using a new mass spectrometry-based technique (MRM) for the

quantitation of peptides and proteins in the CSF of our ALS

patients, we were able to identify other proteins like cathepsin D

(CTSD), thrombin (F2), plasminogen (PLG) and secretogranin III

(SCG3) as key players in the biomarker network (Figure 4). These

proteins have no classifying function concerning the biomarker

panel of this study. Nevertheless, we could show that they interact

with the five proteins of our biomarker panel.

CTSD is also a member of the cystatin family [56]. In our

network, we could show an interaction with the upregulated

classifier protein SPP1. Thrombin acts via protease-activated

receptors on the platelet cell membrane, promoting platelet

activation and aggregation. Platelets have been shown to be

systemic markers for disease in several neurological disorders,

including ALS [57].

A further downregulated protein was SCG3 [58]. Like

chromogranin A, it also belongs to the granin/secretogranin

family [30] and like the classifier protein chromogranin A, it is also

downregulated concerning the MRM analysis. We also identified

plasminogen (PLG) in our study. This protein interacts directly

with the other downregulated proteins CHGA and SCG. PLG

belongs to the serin protease family and can be activated by the

urokinase-type plasminogen activator (uPA) system. In 2007, Glas

et al showed that the inhibition of the uPA system prolonged the

life of transgenic animals and that the overexpression of PLG may

therefore play a role in the complex pathogenesis of ALS [59].

Further experiments with a strong aspect of quantitative analysis

will be necessary to obtain a better understanding of the complex

interactions involved in the onset of ALS. Moreover, to become

useful as a diagnostic tool, CSF samples of patients in earlier

disease stages and of patients suffering from ALS-mimicking

conditions will have to be analyzed.

In summary, this study shows that CSF proteome profiling using

bead-based protein fractionation and MALDI-TOF mass spec-

trometry in combination with specialized data mining tools is able

to identify biomarker patterns which have similarly been described

in previous studies analyzing ALS CSF. While further studies are

required to better understand the disease specificity of these

markers, they ultimately might become valuable for improved

diagnosis of ALS, monitoring of patients in clinical trials and

increased understanding of underlying pathomechanisms. We

built a validated protein network that will enable us to gain

a deeper understanding of the complex nature of this disease. To

identify enriched functionally-related protein groups, cluster these

groups in terms of subcellular localization and map enriched

protein groups to KEGG pathways, a DAVID analysis was

performed for the 59 peptides and proteins that make up our

pathway analysis-derived ALS proteome network. The results of

this analysis are shown in Table S3. Interestingly, the most

enriched protein groups were mapped to the neuroactive ligand-

receptor interaction, lysosome and focal adhesion KEGG path-

ways, which further underlines the potential significance of our

results in the quest to discover ALS-specific disease mechanisms

[13]. The flexibility of our approach will also provide the

possibility to integrate new findings from different databases and

new proteomic data into our biomarker network (Figure 4). Our

results emphasize that it is essential to employ a biomarker panel

and a biomarker network. In contrast to the poor specificity of

individual cross-disease biomarkers, an interaction map of this

condensed panel may provide a better insight into deregulated

biochemical pathways involved in ALS.

Supporting Information

Figure S1 Venn diagram of identified CSF proteins. The

Venn diagram shows that 44 of the 186 CSF proteins identified in

this study were identified in ALS and control CSF alike while 62

were only identified in ALS and 80 in control samples.

(TIFF)

Figure S2 Boxplots. The four boxplots visualize the expression

of A: CHGA, B: CST3, C: VGF 3689 Da peptide and D: VGF

3954 Da peptide in the main patient cohort.
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Table S1 CSF proteins identified by high-resolution LC-
ESI-MS/MS.
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Table S2 Comparison between MRM, MS/MS and
BisoGenet pathway.
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Table S3 DAVID analysis of the 59 proteins from the
BisoGenet pathway.
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