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A B S T R A C T   

The last three decades have demonstrated the ability of combining data analytics (e.g. big data, machine 
learning) with modern analytical instrumental techniques such as vibrational spectroscopy (VIBSPEC) (e.g. NIR, 
Raman, MIR) and sensing technologies (e.g. electronic noses and tongues, colorimetric sensors) to analyse, 
measure and monitor a wide range of properties and samples. Developments in instrumentation, hardware and 
software have placed VIBSPEC as a useful tool to quantify several bioactive compounds and metabolites in a wide 
range of fruit and plant samples. With the incorporation of hand-held and portable instrumentation, these 
techniques have been valuable for the development of in-field and high throughput applications, opened new 
frontiers of analysis in fruits and plants. This review will present and discuss some of the current applications on 
the use of VIBSPEC techniques combined with data analytics on the measurement bioactive compounds and plant 
metabolites in different fruit samples.   

1. Introduction 

Recent developments in a wide range of disciplines associated with 
crops and fruit production (e.g. plant nutrition and physiology, 
biochemistry, chemistry and mathematics) have increased our knowl-
edge about the compositional, nutritional characteristics and functional 
properties of these agricultural commodities (Cozzolino, 2009; Capozzi 
and Bordoni, 2013; Fardet, 2014; Zhang et al., 2010). Understanding the 
inherent complexity of fruit composition and chemistry, and their in-
terrelations with consumers, nutrition, safety and physiology, demands 
new approaches that will allow moving to the direction of a more ho-
listic and interdisciplinary approaches (Fardet, 2014). These new ap-
proaches have been associated with the introduction of new 
technologies (e.g. sensors) and advances in data analytics (e.g. machine 
learning) (Capozzi and Bordoni, 2013; Cozzolino 2009; 2011; Cozzolino, 
2012; Granato et al., 2014; Nunes et al., 2015; Zhang et al., 2010). 

For many years, researchers have been very effective to (Fig. 1) 
integrate and evaluate the implementation of different data analytical 
methods (e.g. chemometrics, machine learning) with a wide range and 
variety of instrumental analytical techniques to analyse the composition 

and functional properties of a wide range of samples, including fruits, 
grains, wine, etc (Capozzi and Bordoni, 2013; Cozzolino 2009; 2011; 
Cozzolino, 2012; Granato et al., 2014; Fardet, 2014; Nunes et al., 2015; 
Smyth and Cozzolino, 2011; Zhang et al., 2010). 

The last three decades have also demonstrated the advantages of 
incorporating data analytics (e.g. machine learning, chemometrics) to 
modern analytical instrumental techniques (Fig. 2) such as vibrational 
spectroscopy (VIBSPEC) (e.g. NIR, Raman, MIR) and sensing technolo-
gies (e.g. electronic noses and tongues, optical sensors) to identify, 
monitor and quantify the composition, the nutritional value and func-
tional properties in a wide range of natural products and foods (Capozzi 
and Bordoni, 2013; Cozzolino 2009; 2011; Cozzolino, 2012; Granato 
et al., 2014; Fardet, 2014; Nunes et al., 2015; Smyth and Cozzolino, 
2011; Zhang et al., 2010). The growing number in this type of appli-
cations have been directly associated with the imperative to ensure that 
both raw ingredients and commodities meet the required minimal 
quality control standards required by both the market and consumers. In 
addition, these technologies have allowed to both identify and monitor 
changes in the chemical composition of the sample during transport, 
storage, and processing. 
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The chemical composition, nutritional value and functional proper-
ties of fruits is of importance during trade and processing, and ultimately 
to the consumer (Dembitsky et al., 2011; Guaadaoui et al., 2004; Kaur 
and Kapoor, 2001; Moure et al., 2011; Schieber et al., 2001). For 
example, nutrients such as sugars (SUG) and other carbohydrates 
(CHO), lipids (LIP), protein (PRO) and compounds containing nitrogen 
are very important to maintain the health and wellbeing of consumers, 
as well as to monitor storage conditions, or to improve agricultural 
practices (e.g. orchard fertilization) (Dembitsky et al., 2011; Guaadaoui 
et al., 2004; Kaur and Kapoor, 2001; Moure et al., 2011; Schieber et al., 
2001). However, other compounds present in low concentrations like 
vitamins, bioactive ingredients (e.g. phytochemicals), are of great 
importance as they can have direct or indirect effects on human health 
and safety (Dembitsky et al., 2011; Guaadaoui et al., 2004; Kaur and 
Kapoor, 2001; Moure et al., 2011; Schieber et al., 2001). Most of these 
bioactive and natural compounds are well known to have a positive 
effect against different diseases such as cancer, cardiovascular diseases 
(CVD), obesity, neurodegenerative disorders, type 2 diabetes (Bazzano 
et al., 2003; Potter, 2005; Rabeta et al., 2013; Van Duyn and Pivonka, 
2000; Wootton-Beard and Ryan, 2011). These bioactive ingredients 
include a wide range of phytochemicals and plant compounds such as 
antioxidants (e.g. phenols and flavonoids), minerals and vitamins (e.g. 
vitamin E, pro-vitamin A, and vitamin C) (Delgado-Vargas et al., 2000; 
Manganaris et al., 2018; Choe and Min, 2006; Martson and Hos-
tettmann, 2009; Park et al., 2012). 

Recent analytical developments have been improved by advances in 
instrumentation, hardware, software and data analytics, allowing for the 
growth of new applications in a wide range of fields including VIBSPEC, 
chromatography [e.g. gas chromatography (GC)], high performance 
liquid chromatography (HPLC), mass spectrometry (MS), and electro-
phoresis (Gorinstein et al., 2010; Sumner et al., 2003; Krüger and Schulz, 
2007; McGoverin et al., 2010). Most of these techniques are very precise 
and specific allowing for the handling of several samples and analytes in 
the laboratory (e.g. R&D) as well as in an industrial setting (Gorinstein 
et al., 2010; Sumner et al., 2003; Krüger and Schulz, 2007; McGoverin 
et al., 2010). While routine analytical instrumentation and technologies 
are used to efficiently measure several analytes in a wide variety and 
types of fruits, the utilization of most of these technologies generally 
require several pre-processing stages prior or during analysis (e.g. 
isolation, filtration, extraction) (Gorinstein et al., 2010; Sumner et al., 
2003; Krüger and Schulz, 2007; McGoverin et al., 2010). Nevertheless, 
less attention was devoted on the development and utilization of rapid 
instrumental methods based on VIBSPEC to analyse fruit bioactive 
compounds and metabolites (Gorinstein et al., 2010; Sumner et al., 

2003; Krüger and Schulz, 2007; McGoverin et al., 2010; Ignat et al., 
2011). Other sensing technologies (e.g. optical, colorimetric, etc.) have 
become highly popular due to their high sensitivity and low cost of 
analysis, making them also very useful for screening or high throughput 
applications (Oroian and Escricho, 2015; Blanco and Villaroya, 2002; 
Sorak et al., 2012; Herberholz et al., 2010; Karoui et al., 2010; Bec and 
Huck, 2019; Bec et al., 2020). 

A very significant advantage of the application of VIBSPEC tech-
niques is that they can define and record the so-called fingerprinting of a 
given sample or even a single compound (Oroian and Escricho, 2015; 
Blanco and Villaroya, 2002; McClure, 2003; Sorak et al., 2012; Her-
berholz et al., 2010; Karoui et al., 2010; Hashimoto and Kameoka, 2008; 
Bec and Huck, 2019; Li-Chan, 2010; Bec et al., 2020). The utilization of 
these methods has allowed for the development and implementation of 
rapid and high throughput methods, avoiding the need for sample 
preparation or chromatographic separation. Without the need of such 
requirements, these technologies can be utilised and implemented in 
several steps during pre and post-harvest, during processing and storage, 
and even at the market (Oroian and Escriche, 2015; Blanco and Villar-
oya, 2002; McClure, 2003; Sorak et al., 2012; Herberholz et al., 2010; 
Karoui et al., 2010; Hashimoto and Kameoka, 2008; Bec and Huck, 
2019; Li-Chan, 2010; Bec et al., 2020). The development of these ap-
plications has been made possible by the incorporation of data analytics, 
allowing for the analysis and interpretation of the data collected. 

This review will present and discuss some of the current applications 
on the use of VIBSPEC techniques combined with data analytics to 
measure bioactive compounds and plant metabolites in a wide range of 
fruit samples. 

2. Main characteristics of vibrational spectroscopy 

The indistinctive advantages of VIBSPEC are associated with their 
non-destructive nature, where both minimal or no sample preparation is 
needed, in addition to chemical free requirements during the analysis of 
samples as reported by several authors in the field (Oroian and Escriche, 
2015; Blanco and Villaroya, 2002; McClure, 2003; Sorak et al., 2012; 
Herberholz et al., 2010; Karoui et al., 2010; Hashimoto and Kameoka, 
2008; Bec and Huck, 2019; Li-Chan, 2010; Bec et al., 2020). In addition 
to these advantages, the possibility to measure or predict several com-
pounds or properties from a single analysis has been very attractive for 
in field and high throughput applications (Oroian and Escriche, 2015; 
Blanco and Villaroya, 2002; McClure, 2003; Sorak et al., 2012; Her-
berholz et al., 2010; Karoui et al., 2010; Hashimoto and Kameoka, 2008; 
Bec and Huck, 2019; Li-Chan, 2010; Bec et al., 2020). 

Fig. 1. Quantification and monitoring of fruit metabolites using spectroscopy and data analysis.  
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Vibrational spectroscopy is based on the measurement of overtones 
and vibrations of atoms that constitute a molecule (Oroian and Escriche, 
2015; Blanco and Villaroya, 2002; McClure, 2003; Sorak et al., 2012; 
Herberholz et al., 2010; Karoui et al., 2010; Hashimoto and Kameoka, 
2008; Bec and Huck, 2019; Li-Chan, 2010; Bec et al., 2020). For 
example, in the IR region, vibrations of carbon-hydrogen, oxygen- 
hydrogen and nitrogen–hydrogen as well as a diverse number of func-
tional groups can be detected and measured in this region (Oroian and 
Escriche, 2015; Blanco and Villaroya, 2002; McClure, 2003; Sorak et al., 
2012; Herberholz et al., 2010; Karoui et al., 2010; Hashimoto and 
Kameoka, 2008; Bec and Huck, 2019; Li-Chan, 2010; Bec et al., 2020). 
Biochemical, chemical compounds and metabolites of fruits and plant 
tissues can be measured according to the Beer-Lambert law where the 
amount of absorbed light is directly proportional to concentration 
(Oroian and Escriche, 2015; Blanco and Villaroya, 2002; McClure, 2003; 
Sorak et al., 2012; Herberholz et al., 2010; Karoui et al., 2010; Hashi-
moto and Kameoka, 2008; Bec and Huck, 2019; Li-Chan, 2010; Bec 
et al., 2020). During the analysis chemical bonds present in the sample 
will vibrate at specific frequencies, depending on their mass, and type of 
bonds (Oroian and Escriche, 2015; Blanco and Villaroya, 2002; McClure, 
2003; Sorak et al., 2012; Herberholz et al., 2010; Karoui et al., 2010; 
Hashimoto and Kameoka, 2008; Bec and Huck, 2019; Li-Chan, 2010; Bec 
et al., 2020). 

Spectroscopy in the near infrared (NIR) range is characterised by low 
molar absorption and scattering, allowed for an efficient and simple 
analysis of the sample (Oroian and Escriche, 2015; Blanco and Villaroya, 
2002; McClure, 2003; Sorak et al., 2012; Herberholz et al., 2010; Karoui 
et al., 2010; Hashimoto and Kameoka, 2008; Bec and Huck, 2019; Li- 
Chan, 2010; Bec et al., 2020). Spectral ‘signatures’ in the mid infrared 
region (MIR) derived from the fundamental stretching, bending, and 
rotating vibrations of organic molecules, whereas in the NIR region they 
are derived from overtones and combinations tones (Oroian and Escri-
che, 2015; Blanco and Villaroya, 2002; McClure, 2003; Sorak et al., 
2012; Herberholz et al., 2010; Karoui et al., 2010; Hashimoto and 
Kameoka, 2008; Bec and Huck, 2019; Li-Chan, 2010; Bec et al., 2020). 
One of the main drawbacks of the characteristic overlap and complexity 
in the NIR spectra make it difficult to directly interpret and quantify the 
NIR spectra. Frequencies in the MIR region is sharper and better 
resolved than those observed in the NIR range, for example the higher 
overtones of the O–H (oxygen-hydrogen), N–H (nitrogen–hydrogen), 
C–H (carbon-hydrogen) and S-H (sulphur-hydrogen) bands from the 
MIR are still observed in the NIR region (Oroian and Escriche, 2015; 
Blanco and Villaroya, 2002; McClure, 2003; Sorak et al., 2012; Her-
berholz et al., 2010; Karoui et al., 2010; Hashimoto and Kameoka, 2008; 
Bec and Huck, 2019; Li-Chan, 2010; Bec et al., 2020). One of the main 
advantages of the MIR region is that it contains the so-called fingerprint 

range between 1500 and 400 cm− 1 where most of the identification of 
specific functional groups can occur (Oroian and Escriche, 2015; Blanco 
and Villaroya, 2002; McClure, 2003; Sorak et al., 2012; Herberholz 
et al., 2010; Karoui et al., 2010; Hashimoto and Kameoka, 2008; Bec and 
Huck, 2019; Li-Chan, 2010; Bec et al., 2020). 

Raman spectroscopy, is based on the inelastic scattering of mole-
cules, and is gaining widespread applications in different industries (e.g. 
pharmaceutical, food) (Baranska and Schultz, 2006; Baranska et al., 
2004; Schulz et al., 2005). The inelastic scattered light delivers infor-
mation about the vibration modes of the molecules, allowing for the 
elucidation of the specific characteristics and structure of a given 
molecule (Baranska and Schultz, 2006; Baranska et al., 2004; Schulz 
et al., 2005). During the analysis a small amount of the incident light is 
inelastically scattered, therefore the Raman effect is considered intrin-
sically a weak effect, the weak counterpart of the incident light energy is 
modified by the molecular vibrations of the scattering sample (Baranska 
and Schultz, 2006; Baranska et al., 2004; Schulz et al., 2005). Therefore, 
the observed vibrational responses provide with the relevant informa-
tion about the chemical composition of the sample. In recent years, 
measuring the Raman spectra of complex foods has became more 
accessible due to the release of high-resolution and portable instruments 
with good detection capabilities (Baranska and Schultz, 2006; Baranska 
et al., 2004; Schulz et al., 2005). The combination of Raman spectros-
copy with microscopy and imaging makes it possible for the identifica-
tion and quantification of photochemical molecule distribution directly 
in the plant tissues (Baranska and Schultz, 2006; Baranska et al., 2004; 
Schulz et al., 2005). 

The application of vibrational spectroscopy as analytical tool re-
quires the extraction and analysis of data to develop a model (e.g. 
calibration, classification and pattern recognition). The family of 
methods and techniques utilised to extract information from these 
instrumental techniques have become part of so-called artificial intelli-
gence or machine learning tools (Szymańska et al., 2015; Szymanska, 
2018; Bureau et al., 2019; Callao and Ruizsanchez, 2018; Cozzolino, 
2020). Machine learning tools are associated with the utilization of 
statistical methods to identify patterns in a data set and can be classified 
as unsupervised and supervised approaches (Witten et al., 2016). These 
techniques allow the analyst to isolate and interpret information from 
complex data sets, illustrate patterns within the data, as well as the 
development of mathematical relationships between different sources of 
data (e.g. calibration and validation models) (Szymańska et al., 2015; 
Szymanska, 2018; Bureau et al., 2019; Callao and Ruizsanchez, 2018). 
Principal component analysis (PCA) is the most widely adopted 
variable-reduction method utilised in many of these applications in the 
food sector (Bro and Smilde, 2014). In addition to PCA other classifi-
cation or pattern recognition techniques have been utilised and 

Fig. 2. Mid and near infrared spectra of ascorbic acid, pectin (from apple), glucose, ellagic acids and maltodextrin.  
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reported, including the use of discriminant analysis methodologies (e.g. 
supervised and unsupervised) such as cluster analysis, K-nearest 
neighbours (k-NN), linear discriminant analysis (LDA), factorial 
discriminate analysis (FDA), partial least squares discriminant analysis 
(PLS-DA), quadratic discriminant analysis (QDA), artificial neural net-
works (ANN), soft independent modelling of class analogy (SIMCA), and 
more recently the group of machine learning methods and techniques [e. 
g. support vector machines (SVM)] (Szymańska et al., 2015; Szymanska, 
2018; Bureau et al., 2019; Callao and Ruizsanchez, 2018). The uti-
lisation and combination of data analytics alongside the adoption of 
sensing technologies has make possible the development of a wide range 
of applications targeting issues detailed in the following sections. 

3. Measurement of metabolites in fruits 

3.1. Applications of mid and near infrared spectroscopy 

The assessment of several metabolites in kiwifruit fruit samples was 
evaluated using MIR spectroscopy (Park et al., 2012). These authors 
quantify the concentration of polyphenols (POLY), flavonoids (FLAV), 
flavanols, and tannins (TAN) in different cultivars (e.g. Bidan and 
Hayward) (Gorinstein et al., 2010). The ability of MIR spectroscopy to 
measure compounds that have high antioxidant ability in a wide range 
of fruit samples such as durian, mango and avocado was also reported in 
this study (Gorinstein et al., 2010). Total POLY, FLAV, TAN and flava-
nols were determined using routine analytical methods. The authors of 
this study concluded that this method could determine the bioactivity in 
a wide range of phytochemical and plant derived compounds (Gor-
instein et al., 2010). 

MIR spectroscopy was also used to quantify fruit ANTACT (Lam 
et al., 2005). Blueberry, grape, and blackberry extracts (methanol–-
water-formic acid) having high concentration of flavonoids were ana-
lysed for their ANTACT by conventional methods and spectroscopy (Lam 
et al., 2005). PLS regression was used to develop the predictive models 
yield a R2 of 0.97 for and RMSE of 5.35 for ANTACT (Lam et al., 2005). 
The prediction of compounds with high antioxidant ability (e.g. lyco-
pene and POLY) in tomato was achieved using visible (VIS) and NIR 
spectroscopy (500 and 1000 nm) (Szuvandzsiev et al., 2014). The 
quantification of vitamin C (VIT-C), POLY and SUG in different apple 
genotypes was attempted using NIR spectroscopy and least squares 
support vector machine (LS-SVM) as regression method (Pissard et al., 
2013). Low SEP and high RPD values, demonstrated the high precision 
of the models to predict POLY and SUG content (Pissard et al., 2013). 
MIR spectroscopy coupled with ATR was also evaluated to determine 
several bioactive compounds in Momordica charantia extracts (Khatib 
et al., 2017). 

The prevalence of natural compounds and metabolites because of 
sun exposure of Granny Smith apple samples was evaluated using VIS- 
NIR spectroscopy (Torres et al., 2016). The NIR spectra was analysed 
using discriminant PLS models (PLS-DA) and interval PLS-DA (iPLS-DA) 
(Torres et al., 2016). Variations in the VIS-NIR spectra were associated 
with variations in carotenoids (CAROT) and FLAV (Torres et al., 2016). 
The flesh of kiwifruit samples was evaluated for its nutraceutical value 
using NIR spectroscopy (POLY, CAROT, ANTACT). According to the 
authors good prediction performances were obtained for both total fla-
vans (R2: 0.81, RMSEP: 0.07) and VIT-C (R2: 0.87, RMSEP: 6.04) (Cic-
coretti et al., 20). 

Total POLY and CAROT content in blackberries was quantified using 
NIR spectroscopy (Toledo-Martin et al., 2018). The RPD and SEP values 
reported by the authors were 1.5 < RPD < 2.5 and RER values (ratio of 
the range in the reference data to SEP) were 5.92 for POLY and 8.63 for 
CAROT content (Toledo-Martin et al., 2018). According to the authors of 
this study such values indicated that the models developed were suitable 
for screening purposes (Toledo-Martin et al., 2018). The loadings 
derived from the PLS models highlighted that SUG, chlorophyll, LIP and 
cellulose contributed to the models (Toledo-Martin et al., 2018). 

Both NIR and MIR spectroscopy were assessed to measure total sol-
uble solids, acidity, SUG and VIT-C measured as ascorbic acid in citrus 
fruit samples (Oliveira-Folador et al., 2018). Although the models were 
acceptable for most of these parameters, the prediction models reported 
for VIT-C were not considered acceptable (Oliveira-Folador et al., 2018). 
Both UV–VIS and MIR spectroscopy were evaluated to measure the 
content of CAROT, FLAV, and POLY in citrus (Song et al., 2018). The 
predictive models developed yielded R2 higher than 0.90 (Song et al., 
2018). These authors concluded that accurate quantitative predictions 
can be achieved using MIR spectroscopy and this can be used in selection 
and breeding (Song et al., 2018). The combination of VIS and NIR 
spectroscopy were evaluated to measure CAROT in processed tomato 
(Saad et al., 2017). Eight CAROT compounds were measured using 
HPLC and the data used to develop calibration models based on the 
spectra. The best PLS models developed were for beta CAROT R2 = 0.88, 
for 9-cis lycopene (LYCO) R2 = 0.86, for total CAROT R2 = 0.84, for 13- 
cis LYCO R2 = 0.83, for 5-cis LYCO R2 = 0.80 and R2 = 0.80 for zeax-
anthin (Saad et al., 2017). 

Total soluble solids (TSS), LYCO and total CAROT content were 
measured in intact watermelon fruits using NIR spectroscopy (Tam-
burini et al., 2017). The PLS calibration models were able to predict 
LYCO (R2 = 0.877 and SECV = 15.68 mg kg− 1), beta CAROT (R2 = 0.822 
and SECV = 0.81 mg kg− 1), and TSS (R2 = 0.836 and SECV = 0.8%). The 
PLS models were also validated using an external data set (Tamburini 
et al., 2017). 

The ability to predict CAROT in tomato fruit using NIR spectroscopy 
was reported. The calibration models for beta CAROT content of tomato 
samples was R2 = 0.89; RMSECV = 0.174 μg g− 1 (Deak et al., 2015). The 
NIR method was also performed for the determination of all-trans LYCO 
content R2 = 0.75; RMSECV = 6.88 μg g− 1 (Deak et al., 2015). The 
content of beta CAROT in mango fruit was attempted using NIR spec-
troscopy (Rungpichayapichet et al., 2015). The MLR models reported a 
R2 > 0.80 and SEP = 11.642–20.2 RE 100 g− 1 EP (Rungpichayapichet 
et al., 2015). The authors also compared different wavelength region 
and concluded that long wavelengths have better predictive ability 
compared with short wavelengths (Rungpichayapichet et al., 2015). The 
concentration of POLY, ANTHO and VIT-C were predicted using FTNIR 
spectroscopy in whole pomegranate fruit samples (Ardense et al., 2018). 
The PLS models reported by the authors were as follows POLY (R2 =

88.0, RPD = 2.91) and VIT-C (R2 = 76.2, RPD = 2.06) and total ANTHO 
(R2 = 62.6, RPD = 1.64) (Ardense et al., 2018). The quantification of 
LYCO and beta CAROT content in intact tomato fruit samples was 
attempted by VIS-NIR spectroscopy. Calibration models were developed 
using PLS regression had R2 0.85 for LYCO and R2 0.77 for CAROT, 
respectively (Tilahun et al., 2018). 

3.2. Applications of Raman spectroscopy 

Raman spectroscopy has been evaluated to quantify TAN in pome-
granate fruit samples (Khodabakhshian, 2019). The Raman spectra was 
acquired from the cross-sections of the fruit (100–3000 cm− 1) where 
Spectral Information Divergence (SID) was used as method to monitor 
the different maturity stages of the pomegranate fruit samples (Khoda-
bakhshian, 2019). It was concluded that Raman spectroscopy has a 
potential of non-destructively analysing TAN in the surface of the 
pomegranate maturity (Khodabakhshian, 2019). Unfortunately, the 
authors did not report any SEP or RPD values for the models developed. 

Mangoes sourced from Pakistan (cultivars Rawl and Chaunsa) were 
analysed for beta CAROT using Raman spectroscopy as proxy for 
ripening (Ullah et al., 2019). The Raman spectra of pulp from different 
postharvest stages, displayed specific absorbances at 1003, 1150 and 
1515 cm -1 (Ullah et al., 2019). The content of CAROT was quantified 
using Raman spectroscopy in processed Bunchosia glandulifera, a fruit 
that originated from Brazil. The authors used PCA and PLS regression to 
identify and quantify total CAROT in B. glandulifera (Carvalho et al., 
2019). 
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The combination of microscopy and Raman spectroscopy were used 
to evaluate different metabolites in different tissues of tomato at 
different ripening stages were reported (Sharma et al., 2019). The 
Raman data of the different tissues of the fruit (exocarp, mesocarp and 
endocarp) using the region < 2000 cm− 1 using confocal Raman instru-
ment (785 nm excitation laser) (Sharma et al., 2019). The Raman spectra 
display signatures of cuticular wax which is detected only in the 
exocarp, while signatures of LYCO, CAROT, PHE, SUG and CHO were 
observed in all of tomato tissue samples with changing concentration 
while amino acid and pectin were observed in the mesocarp and endo-
carp (Sharma et al., 2019). Raman spectroscopy was used to monitor the 
composition of tomato fruits during ripening (Trebolazabala et al., 
2017). The Raman spectra confirmed a rise of CAROT concentration 
from an unripe to a ripe stage, where LYCO seemed to have a peak at the 
ripe stage (Trebolazabala et al., 2017). On the other hand, the existence 
of chlorophyll and cuticular waxes decreased from the unripe to the ripe 
stages (Trebolazabala et al., 2017). Three excitation wavelengths (532 
nm, 785 nm, and 1064 nm) were evaluated to measure the concentration 
of different CAROT in tomatoes (Hara et al., 2018a; Hara et al., 2018b). 
The authors reported that using the wavelength at 532 nm no direct 
relationship with the content of CAROT was observed, however, the 
changes in CAROT from LYCO to beta CAROT and lutein (Hara et al., 
2018a; Hara et al., 2018b). Both wavelengths at 785 nm and 1064 nm 
showed a good correlation with CAROT content (Hara et al., 2018a; 
Hara et al., 2018b). Spectral data obtained using these wavelengths was 
used to develop PLS calibrations for this compound. These researchers 
found that 785 nm is the most suitable excitation wavelength for the 
analysis of carotenoid concentration in tomatoes (Hara et al., 2018a; 
Hara et al., 2018b). 

Surface-enhanced Raman scattering (SERS) was evaluated as a 
component of a method comprised of a redox-sensitive (REDOX) and a 
pH-sensitive probe in different fruit varieties (e.g. apple, pear) (Sun 
et al., 2018). The SERS spectra of REDOX probes were applied to indi-
cate their REDOX states, and the SERS spectra of pH-sensitive probes 
were used to indicate their pH values to discount the influence of pH on 
the redox states. The authors concluded that the SERS method is simple 
without any pre-treatments and utilization of reagents or chemicals (Sun 
et al., 2018). Both MIR and Raman spectroscopy were used to predict 
total PHEN content and ANTACT in blueberry samples. Good calibra-
tions models were reported for the prediction of PHEN compounds using 
MIR spectroscopy (R2 ranged between 0.63 and 0.81; RMSE ranged 
between 6.19 and 0.71 µmol TROLOX equivalents/g fresh weight, and 
0.14 mu g GAE/g fresh weight) (Zheng et al., 2017). The content of 
CAROT in the skin of clementine, mandarin and tangerine species was 
measured by Raman spectroscopy (Nekvapil et al., 2018). Citrus fresh-
ness was found to be associated with the Raman spectra. The concen-
tration of CAROT was correlated with the Raman spectra and found to be 
a good predictor of fruit freshness (Nekvapil et al., 2018). A portable NIR 
excited Raman instrument was used to measure LYCO in vegetable-juice. 
The authors reported that the Raman spectra is directly proportional 
with the concentration of LYCO, however scattering decreased the 
repeatability of intensity of the Raman peaks. The authors reported the 
use of mean intensity ratio (PMIR) analysis to identify LYCO in the 
samples analysed (Hara et al., 2018a; Hara et al., 2018b). Tomatoes and 
tomato-related products were measured using a portable Raman system 
(Fu et al., 2016). Classification models based on Raman spectra were 
able to correctly classify 85.6 % of the samples. The authors attempted 
to quantify the concentration of LYCO in the samples with poor pre-
dictive ability (Fu et al., 2016). The ability of surface-enhanced Raman 
spectroscopy (SERS) was evaluated to determine different polyflavones 
in citrus (Ma et al., 2016). The authors highlighted that the position of 
hydroxylation in the monohydroxylated flavonoids was significant to 
expose the interactions with silver dendrites, providing with relevant 
information for further applying SERS for molecular characterization of 
flavonoids in fruit samples (Ma et al., 2016). 

A recent review highlighted and discussed the state of the art in 

applications of Raman spectroscopy and imaging techniques, including 
issues associated with backscattering, transmission spectroscopy, 
Raman chemical imaging, SERS, excitation sources, type of detectors, 
among other applications (Qin et al., 2019). Table 1 displays the stan-
dard error in prediction reported by different authors on the applications 
of vibrational spectroscopy (MIR, NIR and Raman) for the measurement 
of metabolites in fruits. 

4. Final considerations 

The implementation and adoption of VIBSPEC techniques is allowing 
for a fast and non-destructive means to analyse bioactive compounds, 
metabolites and nutraceuticals in fruits. As shown in the above sections, 
different authors have illustrated with a wide range of applications the 
significance of NIR, MIR and Raman spectroscopy combined with data 
mining tools to evaluate and measure a variety of bioactive compounds 
and metabolites in fruit samples. It has also been demonstrated in these 
applications that both the accuracy and robustness of the methods based 
in VIBSPEC are comparable to those obtained during the utilization of 
other routine analytical methods (e.g. LC-MS, MS, GC). It is well known 
that VIBSPEC generally cannot measure low concentrations, other 
chemical and physical effects can be evaluated in the MIR scan of a given 
sample (fingerprint). The introduction of modern data analysis tech-
niques jointly with these techniques can be used to explain specific 
characteristics and properties related with chemical and nutritive value 
not easily sensed by classical targeted chemical analysis, can be 
considered one of the main advantages. However, the utilisation of the 
calibration models requires continuous updating and validation (e.g. 
environmental conditions, samples from different and diverse origin, 
appropriate spectral pre-processing). Somehow ignored or under-
estimated, calibration development is the critical step to develop a 
robust method based on VIBSPEC. 

The reduction in cost, and time required during the analysis of these 
samples, combined with the environmentally friendly nature of VIB-
SPEC, make them as a very attractive set of tools in the analysis of 
bioactive compounds in fruits. Progress in hardware, optics and software 
are further positioning VIBSPEC as very effective tools to quantify 
simultaneously and non-destructively several bioactive compounds and 
metabolites in fruits. Recent advances in hand-held and portable 
instrumentation have allowed these techniques to be utilised for in field 
and high throughput applications. The last three decades, have shown 
how these techniques could be considered as an efficient and robust 
alternative for the quantification and identification of metabolites and 

Table 1 
Standard error in prediction reported by different authors on the applications of 
vibrational spectroscopy (MIR, NIR and Raman) for the measurement of me-
tabolites in fruits.  

Fruit type Technique Analyte SEP Reference 

Blackberries NIR POLY 1.22 mg 
g− 1 

(Toledo-Martin 
et al., 2018   

CAROT 0.77 mg 
g− 1  

Bunchosiaglandulifera Raman CAROT 24.7 – 
27.0 mg 
100 g− 1 

(Carvalho et al., 
2019) 

Tomato Raman LYCO 14.2 – 
16.2 μg 
g− 1 

(Fu et al., 2016) 

Apple NIR POLY 40.6 (Giovanelli 
et al., 2014)   

ANTACT 0.40  
Passion fruit NIR Ascorbic 

acid 
2.57 (Manizawa 

et al., 2014) 
Orange NIR VIT-C 8.10 (Magwaza 

et al., 2013) 

SEP: standard error of prediction; POLY; total polyphenols; CAROT: total ca-
rotenoids; ANTACT: antioxidant activity; LYCO: lycopene. 
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other compounds in fruits. However, some barriers exist to its wide-
spread utilization. The nonexistence of academic education and formal 
training in VIBSPEC (e.g. NIR spectroscopy) and the lack of integration 
of associated disciplines such as data mining and multivariate data 
analysis hinder the implementation of these methods and technologies. 

5. List of acronyms 

ANTACT anti-oxidant capacity; ANTHO anthocyanins; ATR attenu-
ated total reflectance; CAROT carotenoids; CHO carbohydrates; CVD 
cardiovascular diseases; FLAV flavonoids / flavanols, FTNIR Fourier 
transform near infrared; GC gas chromatography; HPLC high perfor-
mance liquid chromatography; iPLS-DA interval PLS-DA; LIP lipids; LS- 
SVM least squares support vector machine; LYCO lycopene; MIR, mid 
infrared; MLR multiple linear regression; MS mass spectrometry; NIR 
near infrared; PHEN phenolics; PLS partial least squares; PLS-DA partial 
least squares discriminant analysis; PRO protein/nitrogen; POLY poly-
phenols; RMSE root mean square error; R2 coefficient of determination; 
RPD residual predictive deviation; SEP standard error prediction; SERS, 
surface-enhanced Raman spectroscopy; SID spectral information diver-
gence; SUG sugars; TAN tannins; TSS total soluble solids; VIBSPEC, 
vibrational spectroscopy; VIT C vitamin C. 
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