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GpU-Accelerated GLRLM Algorithm 
for Feature extraction of MRI
Hanyu Zhang1,2,7, Che-Lun Hung1,3,4,5,6, Geyong Min8, Jhih-Peng Guo6, Meiyuan Liu1 & 
Xiaoye Hu1

the gray level run length matrix (GLRLM) whose entries are statistics recording distribution and 
relationship of images pixels is a widely used method for extracting statistical features for medical 
images, e.g., magnetic resonance (MR) images. Recently these features are usually employed in 
some artificial neural networks to identify and distinguish texture patterns. But GLRLM construction 
and features extraction are tedious and computationally intensive while the images are too big with 
high resolution, or there are too many small or intermediate Regions of Interest (ROI) to process in a 
single image, which makes the preprocess a time consuming stage. Hence, it is of great importance 
to accelerate the procedure which is nowadays possible with the rapid development of massively 
parallel Graphics Processing Unit, i.e. the GPU computing technology. In this article, we propose a new 
paradigm based on mature parallel primitives for generating GLRLMs and extracting multiple features 
for many ROIs simultaneously in a single image. Experiments show that such a paradigm is easy to 
implement and offers an acceleration over 5 fold increase in speed than an optimized serial counterpart.

The run length method is a statistical texture analysis approach first introduced by Galloway1 in 1975. A large 
set of features based on the Gray Level Run Length Matrix (GLRLM) by this approach has been designed since 
then for variant applications, including classification of a set of objects1–3, image segmentation4, content based 
image retrieval5 and even for recovering the three-dimensional relations form the surface of a scene6, etc. Though 
at its early stage, the run length method has not been widely spread as they seemed to be less efficient7,8 than 
co-occurrence features9, Tang10 eventually demonstrated that the run-length matrices possess as much discrim-
inatory information as those successful conventional texture features. Recently, statistical texture features are 
gaining more and more interests in analyzing medical images such as segmentation, lesion detection, etc., as 
human tissues are random, non-homogeneous structures with no apparent regularity, which may be best charac-
terized in statistics11, therefore, they normally provide higher discrimination indexes12. Furthermore, the power 
of statistical texture features get promoted when combining with the technology of artificial neural networks13. In 
particular, GLRLM based features are reported more robust14, and the artificial neural networks generalize better 
to unseen data with GLRLM features than with others15. However, statistics are often computationally intensive to 
compute, GLRLM construction makes no differences. The situation gets even worse when an appropriate size of 
window must be glided pixel by pixel to scan an entire medical image, especially for small and distributive lesions. 
Such a huge computation poses a big problem for real-time system. For other tasks, this preprocess of GLRLM 
construction and feature extraction would cause the whole process time consuming. Though for a single image, it 
may not take much time, but for hundreds of slices from an MRI examination, it may take hours to process them. 
Hence, it is important and beneficial if we can accelerate it. With the rapid development of massively parallel 
Graphics Processing Unit (GPU) computing technology, typically the CUDA framework, there is an afforda-
ble solution by parallelizing the GLRLM construction and features extraction. Such acceleration examples are 
reported for Gray Level Co-occurrence Matrix (GLCM) based features. Gipp et al.16 achieved 19 fold speedup for 
computing GLCM and Haralick features on microscope images of 1344 × 1024 pixels and 12 bit gray level depth. 
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Dixon and Ding17 reported 7 fold speedup for GLCM construction and 9.83 fold speedup for feature extraction 
on diffraction images. Instead of employing CUDA as mentioned in two previous literatures, Doycheva et al.18 
use OpenCL with GPU to compute GLCM and to extract features for pavement distress detection, a maximum of 
39 fold and 126 fold speedup are obtained, respectively. Tsai et al.19 designed highly tailored GPU computational 
kernels for small ROIs and pushed the speedup for GLCM generation and feature extraction together to as high 
as more than 200 fold for single precision and 160 fold for double precision in best scenarios on a single GPU. In 
these works, different techniques are employed as the underlying problems are not exactly the same. For example, 
in the work of Tsai et al., GLCM matrices and corresponding features are computed for tens of thousands ROIs 
in a single image, and the methods suits best for small ROIs from 6 × 6 to 9 × 9 pixels in order to fully exploit the 
shared memory in GPU, otherwise, performance drops significantly, whereas other works deal with the image as a 
single ROI. However, to the best knowledge of the authors, no literature is published on transplanting or inventing 
the parallel techniques to the GLRLM construction and related features extraction. Therefore, in this article, we 
proposed a new paradigm of GPU acceleration based on mature parallel primitives for generating GLRLMs and 
extracting multiple features for many ROIs simultaneously in a single image. This technique not only suits the 
problem we are tackling on, but may also be ported to other statistical approach of features extraction based on 
some kind of histograms with minor modifications.

The rest of this article is organized into five sections as follows. Section materials sets the model problem, we 
give a detailed description of the brain Magnetic Resonance (MR) Images that will be used to evaluate our meth-
ods. For completeness, the matrix GLRLM and the most widely used 11 features based on GLRLM are reviewed 
in section GLRLM and feature. Then we give our new paradigm of parallelization for GLRLM constructions and 
features extraction in section methods along with an optimized version of serial counterpart. Section experiments 
and results presents a series of experiments and empirical results of comparisons. Finally in section conclusion, 
we draw conclusions and give some possible perspectives of improvements.

Materials
In this study, test images are chosen from the Simulated Brain Database of the Mc-Connell Brain Imaging Centre 
at McGill University20. As we are not interested in performance of classifications but merely the speedup of gen-
eration of GLRLM and features extractions, a simulated MR image would be sufficient for the goal. The database 
contains a set of MR brain images produced by an MRI simulator21. Simulation settings can be configured from 3 
modalities, 5 slice thicknesses, 6 levels of noise and 3 levels of intensity non-uniformity. In general, different con-
figurations try to simulate practical artifacts which can be used to evaluate performance of some classifier, they do 
not influence significantly the speed of GLRLM construction and features extractions, as for images of a fixed size, 
they act as the same containers of similar data, which require approximately the same amount of work, i.e., similar 
GLRLM construction and similar feature extractions for the same number of ROIs. Therefore, we choose to sim-
ply use the default setting of the simulator, i.e., 1 mm slice thickness, 3% noise and 20% intensity non-uniformity. 
The original image contains heterogeneous information, including skull part, but we removed these irrelevant 
information by some preprocessing, leaving only the region of brain tissue in order to stay focused. Three exam-
ples of preprocessed simulated MR brain tissue images are ready to use, shown in Fig. 1 from left to right for T1, 
T2, and PD pulse sequences, respectively. The images are rendered in 256 gray levels and contain 181 × 217 pixels.

GLRLM and Features
In Gray Level Run Length Matrix (GLRLM), statistic in concern is the number of pairs of gray level value and its 
length of runs in a certain Region of Interest (ROI). A gray level run is a set of pixels having the same gray level 
value, which are consecutively and collinearly distributed in the ROI along some given directions. Number of 
pixels in that particular set is called the length of the gray level run. Thus a gray level value and its length of a gray 
level run together characterize such a set. A GLRLM is kind of a 2D histogram in form of a matrix that records the 
occurrence of all various combinations of gray level values and gray level runs in an ROI for a given direction. 
Conventionally, gray level values and gray level runs are denoted as keys of rows and columns, respectively, of the 
matrix, hence, the i j( , )-th entry in the matrix specifies the number of combinations whose gray level value is i and 
whose run length is j. Four principal directions are usually considered in practice, i.e., horizontal (0°), 
anti-diagonal (45°), vertical (90°) and diagonal (135°). For example, consider an ROI as shown in Table 1, then we 
compute and list its corresponding GLRLMs along 4 principal directions in Table 2, where V represents the gray 

Figure 1. MRI brain images.
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level value and L stands for run length. Notice that it is sufficient to list only 5 non null rows in the GLRLMs along 
the four main directions, as there are only 5 different gray level values.

By convention, we use P to denote a GLRLM, then Pij is the i j( , )-th entry of the GLRLM. In addition, we use 
Nr to denote the set of different run lengths that actually occur in the ROI, and Ng the set of different gray levels 
exist in the ROI. And finally let N be the number of total pixels in the ROI, then clearly we shall have the following 
equality,

N jP
(1)i N j N

i j,
g r

∑ ∑=
∈ ∈

which can be used as a simple verification for correctness of a GLRLM. Historically many run length based fea-
tures has been designed. Galloway1 proposed 5 features to classify the same set of terrain samples that were also 
studied by Haralick9 and obtained quite promising results. These features are listed here, we refer readers to their 
work1 for detailed explanations.

•	 Long Runs Emphasis

LRE j P P/
(2)i N j N

ij
i N j N

ij
2

g r g r

∑ ∑ ∑ ∑=
∈ ∈ ∈ ∈

•	 Short Runs Emphasis

0 255 113 113 42

255 42 113 113 0

128 113 255 0 42

113 255 0 128 42

42 113 128 255 255

Table 1. An example of ROI.

V\L 1 2 3 4 5

(a) 0° horizontal

0 4 0 0 0 0

42 5 0 0 0 0

113 3 2 0 0 0

128 3 0 0 0 0

255 4 1 0 0 0

(b) 45° anti-diagonal

V\L 1 2 3 4 5

0 1 0 1 0 0

42 5 0 0 0 0

113 3 0 0 1 0

128 1 1 0 0 0

255 2 2 0 0 0

(c) 90° vertical

V\L 1 2 3 4 5

0 4 0 0 0 0

42 3 1 0 0 0

113 3 2 0 0 0

128 3 0 0 0 0

255 6 0 0 0 0

(d) 135° diagonal

V\L 1 2 3 4 5

0 4 0 0 0 0

42 5 0 0 0 0

113 3 2 0 0 0

128 3 0 0 0 0

255 6 0 0 0 0

Table 2. GLRLMs along 4 main directions of the ROI example in Table 1.
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P
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(3)i N j N

ij

i N j N
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g r g r

•	 Gray Level Nonuniformaity

∑ ∑ ∑ ∑=










∈ ∈ ∈ ∈
GLN P P/

(4)i N j N
ij

i N j N
ij

2

g r g r

•	 Run Length Non-uniformity

∑ ∑ ∑ ∑=










∈ ∈ ∈ ∈
RLN P P/

(5)j N i N
ij

i N j N
ij

2

r g g r

•	 Run Percentage

∑ ∑=
∈ ∈

RP P N/
(6)i N j N

ij
g r

Having observed the symmetrical roles played by gray levels i and run length j, Chu et al.3 proposed, 
analogically to SRE (3) and LRE (2), the following 2 features, which use the gray level distribution of runs 
instead and are demonstrated to be potentially valuable in classification.

•	 Low Gray Level Run Emphasis

LGRE
P

i
P/

(7)i N j N

ij

i N j N
ij2

g r g r

∑ ∑ ∑ ∑=
∈ ∈ ∈ ∈

•	 High Gray Level Run Emphasis

HGRE i P P/
(8)i N j N

ij
i N j N

ij
2

g r g r

∑ ∑ ∑ ∑=
∈ ∈ ∈ ∈

Following the invention of LGRE (7) and HGRE (8), Dasarathy and Holder2 caught the idea of using 
distributions of gray level and run length jointly to propose 4 new features as follows. Experiments show 
that they are more effective when comparing to the features that separately employ either gray level or run 
length.

•	 Short Run Low Gray Level Emphasis

∑ ∑ ∑ ∑=
∈ ∈ ∈ ∈

SRLGE
P

i j
P/

(9)i N j N

ij

i N j N
ij2 2

g r g r

•	 Short Run High Gray Level Emphasis

∑ ∑ ∑ ∑=
∈ ∈ ∈ ∈

SRHGE
i P

j
P/

(10)i N j N

ij

i N j N
ij

2

2
g r g r

•	 Long Run Low Gray Level Emphasis

LRLGE
j P

i
P/

(11)i N j N

ij

i N j N
ij

2

2
g r g r

∑ ∑ ∑ ∑=
∈ ∈ ∈ ∈

•	 Long Run High Gray Level Emphasis

∑ ∑ ∑ ∑=
∈ ∈ ∈ ∈

LRHGE i j P P/
(12)i N j N

ij
i N j N

ij
2 2

g r g r

There is no doubt that all of the features defined above belong to the same category according to their appear-
ance and their historical development. Hence in this article, we are interested in extracting these 11 features listed 
above in a uniform way.

Methods
In this section, we present our methods in two parts. First we establish an optimized workflow of sequential 
counterpart to lay the benchmark for comparisons. Then we discuss how to transform the problems of GLRLM 
construction and features extraction into a form that is possible to leverage the computational power of GPU 
based on mature parallel primitives for acceleration.
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Sequential counterpart. We break the sequential program into two parts. One for the construction of 
GLRLM and the other for features extraction. We will define some terms in this section to make the text more 
precise and easy to read, which will also be used in discussing parallel accelerations.

Notice that we actually compute GLRLM and features in ROIs, we should distinguish its width and height 
from those of the entire image. Therefore we denote ROI’s width by roi_width, but simply with width for the 
entire image’s width which are measured by column numbers. Similarly, roi_height and height are used for 
ROI’s height and image’s height, respectively, which are measured by row numbers. A pair in form (dx, dy) is 
used to denote the direction. By following the convention in image processing that the (0, 0) pixel is the left-up 
corner, and the positive x axis points to the right while the positive y axis points downside, we may deduce that 
dx dy( , ) (1, 0)=  means horizontal (0°) direction and −(1, 1), −(0, 1), ( 1, 1)− −  represent the directions of 

anti-diagonal (45°), vertical (90°) and diagonal (135°), respectively. By this way, a consecutive neighbor pixel to a 
given pixel x y( , ) along certain direction dx dy( , ) can be easily calculated by x dx y dy( , )+ + .

Furthermore, a gray level value and run length pair may not be always stored efficiently in memory as we need 
two aligned arrays, we use a one-to-one mapping to map the pair into an integer as follows,

= × + −index gray_level roi_length run_length 1

where roi_length is the maximum possible run length of a ROI along a given direction. And it is also conven-
ient to restore the gray level or the run length by a single integer division or module operation respectively. Now 
we are prepared to give the optimized sequential algorithm for GLRLM constructions and features extractions.

Sequential GLRLM construction. The GLRLM constructions are split into two steps. As ROIs are glided pixel by 
pixel to scan over the entire image, they are heavily overlapped, so is the gray level values and run length pairs. If 
we construct GLRLM for each ROI one by one by following each pixel inside the ROI to count run lengths, there 
will be a lot of repeating works, which are redundant. Therefore we propose to count run length only once along 
a given direction for the entire image and store that information in a separate array which is of the same shape as 
the image, we shall refer to it as the run length array or RLArr. The main idea is that for each pixel in the image, 

Figure 2. Illustration of ending pixels for different directions.

Algorithm 1. Counting run length for each pixel.
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taking that pixel as the starting point along the given direction (dx, dy), we count its run length and then we 
store the run length value into the corresponding entry in the run length array. This process can be done with 
linear complexity to the size of image and constant extra memory besides the run length array, see Algorithm 1. 
Notice that we must iterate through each pixel reversely to the given direction, thus we first find out the ending 
pixels in the entire image for a given direction. See the illustration of ending pixels in Fig. 2. It is quite easy to 
determine the ending pixels according to direction and image shape. Take (dx, dy) = (1, −1) for example, 
then all ending pixels are

∪
= − ∈ −

∈ − =

x y x y
x y x y

{( , ): width 1, [[0, height 1]]}
{( , ): [[0, width 2]], 0}

L L L L

L L L L

Once ending pixels are resolved, the rest part of Algorithm 1 is easy to follow. Having computed the run length 
array, whenever we need the run length for a pixel, starting from it along a given direction in a ROI, it is sufficient 
to read the corresponding entry in the run length array and compare it to the distance (in pixels) to the boundary 
of the ROI, then take the smaller one. Furthermore, we can skip the following consecutive pixels of the same gray 
level value directly to the next starting pixel of another gray level value, which saves a considerable amount of time 
comparing to a naive implementation.

Sequential feature extraction. After constructing the GLRLM, features extraction is straight forward according 
to equations (2)–(12), notice that all the features share the same denominator, thus it is calculated only once and 
passed as an argument to compute the features.

Parallel acceleration. With the rapid development of the GPU computing technology, it has been much 
easier to obtain acceleration from parallel computing now than the very beginning of this parallel tendency. 
Especially CUDA (Compute Unified Device Architecture), which is both a parallel computing platform and 
application programming interface (API) model, created by Nvidia, allows developers and engineers to use GPU 
for general purpose programming. Based on CUDA, parallel primitives that are widely studied and carefully 
designed for particular parallel pattens have been implemented and integrated in various libraries. In this paper 
we explorer the possibility of employing only parallel primitives to accomplish the complicated tasks like GLRLM 
constructions and features extraction of multiple ROIs for a single image, and investigate the acceleration gained 
by the approach. We shall first review briefly the GPU architecture and CUDA model, then introduce the CUB 
library, mainly with which we accomplished the task.

GPU and CUDA. GPU differs from CPU mainly in two aspects. One for the multiple stream multiprocessors 
(SMs) possessed by GPU, which usually contains hundreds of integrated simple cores, each can run a thread in 
parallel, hence a GPU with dozens of SMs can easily launch thousands of threads simultaneously. Another one is 
the manageable hierarchy of memory organization at developer’s disposal, which means that explicit designation 
of usage can be made for registers, separated shared memory, constant cache, texture cache and L1/L2 cache, 
local memory for each SM and global memory for entire device of very large bandwidth. Therefore, it’s up to 
developers to assign particular data patterns to appropriate memory. Nvidia’s CUDA platform, which may be 
the earliest widely adopted software layer that gives direct access to the GPU’s virtual instruction set and parallel 
computational elements, makes the general purpose programming on GPU relatively easy. Generally speaking, 
CUDA enables custom functions to be executed in parallel on GPU’s SMs. These custom functions are called 
compute kernels, which can be directly defined in a normal C program as CUDA provide an extensions to the C 
programming language. Hence parallel primitives are generally implemented in this way and can be called as a 
function. Nowadays there are abundant literatures22–24 talking about how to program GPU with CUDA in great 
details, therefore, we suggest readers to refer to them.

CUB library. Though CUDA provides the tool set to write general purpose program to accomplish complicated 
tasks, it doesn’t mean that one can easily implement an efficient program to solve a particular problem, as parallel 
modeling is quite different from the sequential counterpart and flexible management of memory also makes 
it difficult to be handled appropriately. Hence there exists various libraries based on CUDA that implements 

Figure 3. Performance-portability comparisons (reproduced according to CUB’s official website25) between 
libraries CUB and Thrust.
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common collective primitives that take care of low-level details and leave user to deal with main logic of prob-
lems. Example primitives like parallel sort, prefix scan, reduction, histogram, etc. are essential for constructing 
high-performance, maintainable parallel programs.

CUB is such a library that provides state-of-the-art, reusable software components for every layer of the 
CUDA programming model, including warp-wide “collective” primitives, block-wide “collective” primitives and 
device-wide primitives25. Furthermore, CUB’s collective primitives are not bound to any particular width of par-
allelism or data type, developers can quickly change grain size and switch to alternative algorithmic strategies 
to best match the processors resources for their target architecture. Finally, most of CUB’s implementation of 
primitives, at least for what we employed in this work, are much faster than the famous traditional, rigidly-coded 
parallel library Thrust in performance-portability comparisons, as reported in Fig. 3. That’s also why we choose 
library CUB over Thrust. Brief, we are able to speedup the implementation of prototypes and get a decent accel-
eration with CUB, which increase the efficiency of development.

Parallel GLRLM construction. In this section, we demonstrate how straight forward it can be to construct the 
GLRLMs simultaneously for all ROIs in a single image by repeatedly applying some collective primitives with 
CUB. Though such an implementation may not be optimal in performance, the main purpose is to show the 
possibility to program a prototype really fast and yet with a reasonable acceleration in performance. In Fig. 4, 
we give a flow chart of how to simultaneously construct GLRLMs for all ROIs in an image. There are in total five 
steps to complete the construction. First we need to copy all ROIs in the image into GPU memory, with these 
pixels duplicated and rearranged appropriately in the GPU memory, we are then able to use a primitive called 
reduce-by-key to count the gray level run length for all ROIs in the given direction. Then we combine the gray 
level and its run length to generate a new key. After which we sort the array of new keys to bring segments of the 
same ROI together so that we can use another reduce-by-key to construct all GLRLMs at the end. In the whole 
process, data are conceptually stored in the main memory of GPU, as we only need to care about the high-level 
logic to accomplish the task and leave the low-level details to the CUB library, like shared memory’s usage in the 
sort or splittings of blocks in the reduction. In the following paragraphs, we look into the five steps in depth with 
some illustrations to make things more clear.

Step 1 In the first step, we separate all ROIs and spread them into the main memory of GPU. As ROIs are 
heavily overlapped, each pixel will be copied for as many times as the number of ROIs who contains it. This is the 
only place where parallel primitives can not help, thus we first copy tile blocks in the image into the shared mem-
ory to avoid multiple accesses to main memory. The shape of tile block is calculated dynamically according to the 

Figure 4. Flow chart of construction of GLRLMs for all ROIs in parallel.

Figure 5. Illustration of the first step, several pixels are colored to show their movements.

Figure 6. Illustration of the second step, a reduce-by-key leaves a single key_IG for consecutive ones and 
count its run length once for all.
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number of SMs and the size of shared memory, so that available resources are utilized as much as possible. Then 
we scatter the tile blocks to the right places, which is illustrated in Fig. 5. In this illustration, the case of horizontal 
direction (0°) is presented, but we use the term “row” to mean consecutive pixels along a given direction, so that 
in the following explanation, the idea is general and it can easily be adapted to other cases. There are two princi-
ples that must be satisfied in scattering so that crucial information is not lost or altered. First, each row in an ROI 
must be kept consecutive for counting run length. Second, different rows in an ROI should be separated in case 
that the ending pixel of one row has the same gray level value as the starting pixel of the next row. Therefore, we 
rearrange the pixels in such a way that rows of all ROIs are concatenated, all first rows first, then all second rows, 
third rows, etc. Let us denote an ROI by its index, which can be calculated from its top-left pixel’s row and column 
indices i j( , ) as ROI_index = i × width + j, then for the +l( 1)-th entry in the +k( 1)-th row in an ROI, it 
should be scattered to the place,

N R lnum ROIs ROI index (13)k k_ _× + × +

where num_ROIs is the total number of ROIs in the input image, Rk is the number of entries for the k( 1)+ -th 
row and = ∑ =

−N Rk i
k

k0
1  is the number of entries in the first k rows. Now for a particular pixel in the tile block, it is 

sufficient to figure out its position in an enclosing ROI and the ROI’s index. Remember that there are more than 
one ROIs containing the same pixel, thus in the meantime of scattering, the ROI’s index is attached to gray level 
value as follows,

key IG: ROI index gray level ROI index GL RESOLUTION gray level (14)= ⊕ = × +_ _ _ _ _ _

where GL_RESOLUTION is the number of gray levels, which is 256 in our case. And gray_level is the gray 
level value of a particular pixel. We then use key_IG and symbol ⊕ as the indicator and operation to denote the 
paired information of ROI indices and gray level values. In this way, important information are retained, and we 
are now ready to use parallel primitives.

Step 2 Once the array of key_IG is set, we can directly apply CUB’s routine reduce-by-key to count the run 
length of gray level values along a given direction for all ROIs at the same time. As illustrated in Fig. 6, different 
ROIs will have different key_IG, while the same gray level value in the same ROI will always have the same 
key_IG, and in addition, spatial structure in rows for gray level values is kept exactly the same as in the array of 
key_IG by our design. Hence, the primitive reduce-by-key for a one-array with key array of key_IG is equiv-
alent to count the run length of consecutive gray level values in all ROIs. At the end of this step, the size of array 
will be greatly reduced.

Step 3 After the first reduction, pairs of existing gray level values and its run lengths are found for each ROI. 
However, these pairs are spread over the entire array even for a single ROI, which makes it troublesome to count 
the number of unique pairs for all ROIs. Moreover, moving two arrays’ elements around means two times of 
memory accesses, especially when they are not coalesced, it may worth to do some extra arithmetic computations 
to reduce memory accesses. Therefore, we decided to use again the same strategy as in the first step to attach the 
key_IG to its run length as follows

Figure 7. Illustration of the third step, a parallel saxpy combines key_IG and run_length as key_IGL.

Figure 8. Illustration of the forth step, key_IGL are sorted so that keys are clustered for each ROI.

Figure 9. Illustration of the fifth step, all GLRLMs are generated in two arrays with only non null entries.

https://doi.org/10.1038/s41598-019-46622-w


9Scientific RepoRts |         (2019) 9:10883  | https://doi.org/10.1038/s41598-019-46622-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

key IGL: key IG run length key IG roi length run length 1 (15)_ _ _ _ _ _= ⊕ = × + −

where roi_length is larger value between roi_width and roi_height. As a result, all information of 
ROI’s index, pairs of gray level value and run length are now integrated into a single integer. As shown in Fig. 7, 
this new array of key_IGL actually stores every occurrence of gray level value and run length pairs for all ROIs.

Step 4 Now we need to count the number of different key_IGL values, which is in fact the same task as 
computing the non nulls entries in the GLRLMs. However, we must collect key_IGL for each ROI first. One 
possible way is to sort the array of key_IGL, as ROI’s index are also embedded inside as the most significant bits 
in the key.

This step is illustrated in Fig. 8. We should also remark that not only the same ROI’s key_IGL are gathered 
together, but the same pairs of gray level value and run length are also clustered, which can be observed from the 
figure as well.

Step 5 Finally we can apply again the CUB’s primitive of reduce-by-key on the sorted array of key_IGL 
with a one-array. As shown in Fig. 9, the resulting two arrays are exactly the GLRLMs for all ROIs that we are 
looking for, naturally containing only non null entries. We would refer to this reduced array of key_IGL as 
key_GLRLMs and the array of non null entries as nnz_GLRLMs.

Parallel feature extraction. Now we can turn to the stage of extracting 11 features from the generated GLRLMs. 
The general idea is to transform arrays of keys_GLRLMs and nnz_GLRLMs to get new arrays of key-value pair 
so that we can apply a reduce-by-key to calculate the sums in features for all ROIs in parallel. We divide summa-
tions in features into three categories, as sums in the same category can be treated in the same way. The first one 
only contains one summation, which is the numerator of RP and the denominator in all features except RP; the 
second one are numerators in features of LRE, SRE, LGRE, HGRE, SRLGE, SRHGE, LRLGE and LRHGE. and the 
last one are numerators in features of GLN and RLN. The unique summation in first category ∑ ∑∈ ∈ Pi N j N ijg r

 is 
relatively simple to calculate. It is sufficient to extract an array of ROIs’ indices from the key_GLRLMs as 
follows,

=ROI index (key GLRLMs/roi length)/GL RESOLUTION (16)_ _ _ _

and this array of ROIs’ indices is kept for future reuse. Then another reduce-by-key on the array of ROI’s keys and 
nnz_GLRLMs would do the job. For the second category of summations, it is necessary to construct an array of 
the inner term in the feature’s summation (2),(3),(7)–(12) before applying again another reduce-by-key, which 
can be done by transforming nnz_GLRLMs with gray_level and/or run_length. Thus we also extract 
them from key_GLRLMs as

_ _ _ % _
_ _ % _

=
= +

gray level (key GLRLMs/roi length) GL RESOLUTION
run length key GLRLMs roi length 1 (17)

For the last category of summations, they are a little more complicated to compute as one must calculate a 
square of summation first. Hence for the inner sum in (4)-(5), we need a new array of keys that gray_level or 
run_length must be dropped from the key_GLRLMs for RLN and GLN respectively. Notice that dropping 
run_length in key_GLRLMs would still keep keys in order, thus one can directly apply a reduce-by-key, to 
compute the inner summation, followed by a parallel square transformation. However, dropping gray_level 
intermingles the order of keys, therefore another segmented sort of keys is needed to restore the clustering of keys, 
in the meanwhile, occurrence number should also be moved correspondingly. Then apparently a reduce-by-key, 
a parallel square, and another reduce-by-key in order would finish the job. At the end, a parallel division leads to 
the features.

experiments and Results
In this section, we shall present the configurations of experiments, the experiments themselves and the outcomes. 
We conduct a series of experiments for different ROI sizes on three inputs, mainly aiming at comparing the 
performance of the sequential and parallel programs. In each experiment, three input of MRI images are fed to 
and processed by the program one by one. But ROI sizes are considered in separate experiments. We carefully 
examine in each experiment the extracted features from both sequential and parallel program, and validate the 

Devices Xeon E5-2620 TITAN V Tesla P100

Cores/SMs 8 80 56

Threads per core/Cores per SM 2 64 64

Total threads/cores 16 5120 3584

Clock speeds (MHz) 2100 1200 1190

Main/Global memory (GB) 12 12 12

Memory bandwidth (GB/s) 19.2 652.8 732

L1 cache/Share memory (KB) 64 96 24

Table 3. Machine configurations.
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equivalence between them. Then we record the time spent on different parts of computations or preparation, like 
GLRLM construction and feature extractions in four directions, as well as memory allocations for total execu-
tion time. All experiments are repeated for 15 times, average timing and speedups with standard deviations are 
reported in the following sections.

Environments. Our experiments were conducted with two configurations of different GPUs, so that the 
results is not specific to a particular GPU and reveals how our parallel program adapts to different devices. Here 
we list some main specifics of hardware in Table 3. For the aspect of operating system and software, we use 
Ubuntu 16.04.4-x86_64 with kernel version 4.13.0-37-generic, and the sequential program is compiled by a GNU 
C-complier of version 5.4.0 with optimization flag -O3, while the parallel counterpart is compiled with CUDA-
7.5 toolkits.

Results. We first show the features obtained from the MRI images, then we report the results of performance 
comparisons between sequential and parallel programs in this section.

Feature images. Extracted features are presented in form of images as in Fig. 10, which may be recognized easily. 
It should be mentioned that it is a little difficult to visualize the textures of features LGRE, LRHGE, LRLGE, and 
SRLGE, as these features of ROIs are close to either white or black, thus, we apply a logarithm transformation on 
them to spread the values more evenly and make the visualization of textures obvious. Though input MRI images 
of different pulse sequences are visually quite different, features extracted from them are similar as expected, 
because it is the structure of textures that matters.

Figure 10. Input MRI images of three pulse sequences (PD, T1, and T2) and 11 features extracted for each.

Figure 11. Total time and speedup evolution along ROI sizes.

Configurations P100 vs Xeon E5-2620 TITAN V vs Xeon E5-2620

unitsInput MRI image T1 T2 PD T1 T2 PD

CPU time (single) 983.6±2.3 984.0±5.3 1001.6±31.9 983.6±2.3 984.0±5.3 1001.6±31.9 ms

GPU time (single) 261.4±47.3 250.1±37.1 157.1±2.5 171.5±8.9 167.9±9.1 150.4±8.2 ms

Speedup (single) 3.8±0.7 3.9±0.7 6.4±0.2 5.8±0.3 5.9±0.3 6.7±0.3 x

CPU time (double) 1005.3±17.8 1003.7±26.6 1009.2±28.1 1005.3±17.8 1003.7±26.6 1009.2±28.1 ms

GPU time (double) 270.4±43.8 283.1±33.8 177.2±1.7 182.5±4.3 168.3±9.2 177.2±6.6 ms

Speedup (double) 3.7±0.7 3.6±0.4 5.7±0.2 5.5±0.2 5.9±0.5 5.7±0.2 x

Table 4. Time and speedup for 4 × 4 ROIs.
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Performance comparisons. We are first interested in the general evolution of the total time elapsed from the 
beginning to the point features are computed, and the total speedup calculated based on it, according to the 
increase of ROI sizes.

Results are presented in Fig. 11 for both single precision and double precision cases. As expected, paralleliza-
tion with single precision always performs better than with double precision on both devices, which is predictable 
since all GPUs are more efficient in single precision mode at a cost of lower precision. However, in any case, the 
performance of parallel program is superior to its sequential counterpart. The speedups achieved on Tesla P100 
GPU are around 4.5-fold for single precision and 4.3-fold for double precision. And for device of Titan V, the 
speedups are around 5.7-fold and 5.5-fold for single precision and double precision, respectively. As ROI size 
increases, both sequential and parallel programs spend almost linearly increasing time to complete an entire task, 
as a result, though the speedup drops, yet it only drops asymptotically to about 4-fold.

Then we look into some details of the time comparisons. We take the typical case where ROI size equals to 
4 for example. The total time is split into times of processing MRI images of pulse sequences PD, T1, and T2, as 
shown in Table 4 for both single and double precision. Average time needed to process different inputs are almost 
the same, except for the GPU Tesla P100 when dealing with MRI image of PD pulse sequence, which may be an 
outlier due to some unexpected coincidence within the device. And we should also mention that the performance 
of Titan V is more stable than that of Tesla P100.

Configurations

P100 vs Xeon E5-2620 TITAN V vs Xeon E5-2620

unitsT1 T2 PD T1 T2 PD

CPU time 70.7±0.5 70.3±0.4 71.9±2.3 70.7±0.5 70.3±0.4 71.9±2.3 ms

GPU time 56.4±18.3 50.7±11.5 38.2±0.5 37.1±2.0 36.9±2.7 37.6±2.9 ms

GLRLM Speedup 1.3±0.4 1.4±0.3 1.9±0.1 1.9±0.1 1.5±0.3 1.9±0.2 x

CPU time 209.1±0.4 209.3±1.2 212.9±6.9 209.1±0.4 209.3±1.2 212.9±6.9 ms

GPU time 96.3±24.1 96.4±27.2 60.1±0.9 57.4±3.6 54.1±2.6 52.1±4.2 ms

0° feature Speedup 2.2±0.6 2.2±0.7 3.6±0.1 3.7±0.2 2.4±0.7 4.1±0.3 x

CPU time 209.6±0.5 210.1±1.3 214.3±6.9 209.6±0.5 210.1±1.3 214.3±6.9 ms

GPU time 37.1±12.6 37.1±12.3 19.3±0.4 28.5±2.7 28.2±2.6 20.8±3.2 ms

45° feature Speedup 5.7±1.7 5.7±1.7 11.1±0.4 7.4±0.7 7.5±0.6 10.5±1.3 x

CPU time 208.9±0.4 209.1±1.2 212.8±6.8 208.9±0.4 209.1±1.2 212.8±6.8 ms

GPU time 21.3±7.9 21.8±10.3 15.9±0.3 17.2±1.5 26.6±1.5 15.7±1.5 ms

90° feature Speedup 9.8±2.4 9.6±3.3 13.4±0.6 12.3±1.1 13.1±1.1 13.7±1.3 x

CPU time 208.5±0.4 209.1±1.2 212.4±6.8 208.5±0.4 209.1±1.2 212.4±6.8 ms

GPU time 41.2±14.4 34.0±8.9 18.7±0.4 25.6±0.9 26.6±0.5 18.5±1.3 ms

135° feature 
Speedup 5.1±1.9 6.1±1.4 11.4±0.5 8.2±0.3 7.9±0.2 11.7±0.8 x

Table 5. Timing and speedup for 4 × 4 ROIs with single precision.

Configurations

P100 vs Xeon E5-2620 TITAN V vs Xeon E5-2620

unitsT1 T2 PD T1 T2 PD

CPU time 71.4±1.4 71.1±2.0 71.7±1.9 71.4±1.4 71.1±2.0 71.7±1.9 ms

GPU time 57.6±16.2 50.1±9.9 38.18±0.2 37.7±2.2 35.1±2.4 37.8±2.5 ms

GLRLM Speedup 1.2±0.3 1.4±0.3 1.9±0.1 1.9±0.1 2.0±0.2 1.9±0.1 x

CPU time 214.2±3.7 213.7±5.5 214.7±6.1 214.2±3.7 213.7±5.5 214.7±6.1 ms

GPU time 96.6±27.6 109.4±27.9 64.928±0.9 61.9±3.0 58.2±4.8 59.7±4.0 ms

0° feature Speedup 2.2±0.7 2±0.7 3.3±0.1 3.5±0.2 3.7±0.3 3.6±0.2 x

CPU time 214.9±3.8 214.9±5.4 215.8±6.0 214.9±3.8 214.9±5.4 215.8±6.0 ms

GPU time 35.2±7.8 46.8±16.6 23.9±0.2 29.3±1.7 27.2±2.2 26.8±2.9 ms

45° feature 
Speedup 6.1±1.4 4.6±1.7 9±0.3 7.4±0.5 7.9±0.9 8.1±0.9 x

CPU time 213.8±3.6 213.3±5.6 214.4±6.1 213.8±3.6 213.3±5.6 214.4±6.1 ms

GPU time 32.2±11.1 29.8±8.4 20.7±0.3 22.8±1.1 18.2±1.4 22.4±1.9 ms

90° feature 
Speedup 6.6±2.3 7.2±2.1 10.4±0.4 9.4±0.5 11.8±1.1 9.6±0.9 x

CPU time 213.9±3.6 213.6±5.6 214.7±6.1 213.9±3.6 213.6±5.6 214.7±6.1 ms

GPU time 36.1±13.8 37.9±14.2 23.8±0.2 24.4±0.9 23.1±1.0 23.6±0.4 ms

135° feature 
Speedup 5.9±1.9 5.6±2.0 9.0±0.3 8.8±0.4 9.3±0.5 8.8±1.2 x

Table 6. Timing and speedup for 4 × 4 ROIs with double precision.
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Furthermore, we also provide the individual computation time for GLRLMs construction and features extrac-
tion in 4 directions since that’s where the acceleration actually takes place. Details are shown in Table 5 for single 
precision and in Table 6 for double precision. Note that time for setting the device, moving data around or allocat-
ing memory, etc., is not considered in these tables, but these extra costs can be deduced by subtracting computa-
tion time from the total time recorded in Table 4.

Discussion
There are some points observed from the results that can be elaborated. First, we noticed that for both CPU 
and GPU devices, performances are better with single precision, which is normal. Hence, our tests suggest that 
one should prefer the single precision mode in parallelization whenever the resulting precision is acceptable. 
However, on the other hand, the performances of single precision and double precision for GPUs do not differen-
tiate themselves too much, which may seems paradoxical to the fact that theoretical peak performances of both 
Tesla P100 and Titan V GPUs are 2 times higher for single precision floating point arithmetics than double preci-
sion. A plausible explanation for the phenomena is that most of the work in our algorithm are done with integers, 
only a fraction of features computation involves floating point arithmetics. It can be observed from Tables 5 and 
6, time for GLRLMs construction are almost the same, because only integer operations are employed. And for 7 
out of 11 features as LRE, SRE, HGRE, etc., as long as there is no division in the numerator, the extraction can be 
done with almost all integer arithmetics except for the last division. Therefore, performance in single precision is 
only slightly better than in double precision.

Second, with the increase of ROI size, though the speedup drops, yet it remains much more stable than the 
method in the work19 of Tsai et al., as we don’t deal with low-level techniques directly and leaves them to the 
library CUB. In their work, a bunch of GLCM matrices must be built in parallel and features are then computed 
based on them. Our proposed paradigms would adapt to such similar tasks as claimed. The same logic can be 
applied to the GLCMs construction for each ROI, then features are computed with reduction by ROI index as 
long as there are some summation in the feature. Even better, we can combine the part of tailored matrix genera-
tion from the work of Tsai et al. and the feature extraction in our work, or vice versa. Brief, our method may suit 
other similar jobs that involve statistical computation.

However, there’s a shortcoming in such a general paradigm, the performance is not comparable to specific par-
allelization, as what Tsai et al. do in their work, which leads to the third point and the perspectives of future work, 
how to improve the performance of our algorithm. We find from Tables 5 and 6 that acceleration in GLRLMs con-
struction is too weak. The reason is that duplication of overlapped ROIs and spreading them in global memory 
in the first step for constructing GLRLMs turns the original problem into a much too big one, which causes the 
parallel algorithm to deal with unnecessary work. In other words, the first rows concatenated for all ROIs actually 
overlaps a large part of the second rows concatenated from all ROIs, and similar things happens with third rows 
as well, and so on, which makes the following primitive reduce-by-key to do repeated reductions. Therefore an 
exchange of some steps in constructing GLRLMs may improve the performance. For example, we can scan each 
row of the image first, then we scatter the gray-level and run length pairs to an array, on which, we can do a seg-
mented sort instead of a complete sort, etc. Nevertheless, these modifications are the cost we should pay for a less 
general paradigm.

Conclusion
In this work, we propose a new paradigm that can be adapted to simultaneously deal with statistical computations 
for many overlapped ROIs on a single image by merely employing parallel primitives. We apply the idea to the 
task of constructing GLRLMs and extracting features in parallel for many ROIs of a MRI image as the example to 
illustrate the paradigm. Though, there is potential space to improve the acceleration reached by parallelization of 
our paradigm, experiments demonstrate that the paradigm remains to be a convenient and realistic way of imple-
menting working prototypes for complicated problems with a reasonable performance boost.
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